CAPÍTULO 6
NOSOTROS Y ELLOS

«Ea, que no haya disputas entre nosotros… pues somos hermanos.»

Génesis, 13,8

No hay pactos entre leones y hombres.

HOMERO, La Ilíada[1]

Que la vida se haya originado en la Tierra muchas veces o una sola es un misterio profundo y quizá impenetrable. Por lo que sabemos, debió de haber en su historia millones de callejones sin salida y de falsos comienzos, antiguas genealogías desaparecidas sin que nadie las llorara mientras surgían otras nuevas. Pero parece muy claro que sólo hay un linaje hereditario que conduce a toda la vida que existe hoy en la Tierra. Cada organismo es pariente, es primo lejano, de todos los demás. Esto queda claro cuando comparamos cómo actúan todos los organismos de la Tierra, cómo están construidos, de qué están hechos, qué lenguaje genético hablan, y especialmente lo parecidos que son sus planos constructivos y sus órdenes de trabajo moleculares. Toda la vida está emparentada.

Remontémonos con los ojos de la imaginación hacia el pasado hasta llegar a los organismos más primitivos. Aquella raza de moléculas capaces de copiarse a sí mismas no podía ser tan refinada y mimada como el ADN o el ARN contemporáneos, que copian y revisan sus mensajes con una maravillosa eficacia, pero que sólo se reproducen en condiciones meticulosamente controladas como las que imponen los organismos modernos. Los primeros seres vivos debieron de haber sido rudimentarios, lentos, descuidados e ineficientes: adecuados sólo para realizar copias burdas de sí mismos y para ponerse en marcha.

En algún momento, probablemente muy pronto, los organismos tuvieron que ser algo más que una simple molécula, por hábil que fuera esa molécula. Necesitaron otras moléculas para que las instrucciones muy precisas se siguieran al pie de la letra y la reproducción se hiciera con gran fidelidad. Las necesitaron para arrancar bloques constructivos de las aguas adyacentes y someterlos a los propios fines; o para convertirlas en las comadronas del proceso de copia, como la polimerasa del ADN; o para revisar unas instrucciones genéticas recién acuñadas. Pero de nada serviría lo conseguido si estas moléculas auxiliares se perdían luego por el mar. Se precisaba una especie de trampa para tener cautivas a las moléculas útiles. Convendría quizá rodear el organismo con una membrana que actuara como una válvula de dirección única y dejara entrar las moléculas necesarias, pero no las dejara salir… Hay moléculas que hacen precisamente esto, que, por ejemplo, sienten atracción hacia el agua en uno de sus lados, pero en el otro lado sienten repulsión, absoluta repugnancia hacia el agua. Son corrientes en la Naturaleza y tienden a crear esferas pequeñas que son la base de las membranas celulares actuales.

Las células más tempranas, aunque eran capaces simultáneamente de multiplicarse y dividirse, no podían ser conscientes de nada, tal como lo somos nosotros. Sin embargo, tenían ciertos repertorios de comportamiento. Sabían cómo copiarse a sí mismas, cómo convertir las moléculas del exterior, diferentes de ellas, en moléculas interiores que eran ellas. Tenían interés en aumentar la precisión de la copia y la eficiencia del metabolismo. Algunas podían incluso distinguir entre luz solar y oscuridad.

La descomposición de las moléculas tomadas del exterior, es decir, la digestión de los alimentos, sólo puede hacerse con toda garantía paso a paso, controlando cada paso con una enzima determinada y controlando cada enzima con su propia secuencia ACGT, o gen. Los genes, por lo tanto, deben trabajar juntos en exquisita armonía; de lo contrario, ninguno de ellos se propagará en el futuro. Para digerir una molécula de azúcar, por ejemplo, se precisa la acción meticulosamente orquestada de docenas de enzimas, cada una de las cuales ha sido fabricada por un gen determinado y entra en acción donde acaba la última. La deserción de un solo gen de la empresa común puede tener consecuencias desastrosas para todas. Una cadena de enzimas tiene la fuerza de su eslabón más débil. A este nivel, los genes están dedicados de modo exclusivo al bienestar general de su tribu.

Las enzimas primitivas debían discriminar bien, debían tener cuidado en no descomponer las moléculas muy similares que constituían la forma de vida de la que participaban. Si nos digerimos a nosotros mismos —los azúcares que forman parte de nuestro ADN, por ejemplo— no dejaremos muchos descendientes. Si no digerimos lo de fuera, la provechosa reserva de materias primas orgánicas y bienes moleculares acabados, tal vez tampoco dejemos muchos descendientes. Las células de hace 3.500 millones de años debieron de haber poseído algún conocimiento de la diferencia entre «yo» y «tú». El «tú» era más sacrificable que el «yo». Era un mundo donde el perro se come al perro o, al menos, donde el microbio se come al microbio. Pero cuidado…

Llegó un momento, hace quizá dos o tres mil millones de años, en que un ser pudo ya incorporar a sí mismo otra totalidad. Un organismo se acurrucaba junto a otro, las paredes o membranas de la célula se fruncían alrededor del más pequeño y éste acababa sorbido dentro del más grande. A continuación seguían intentos de digestión, con un éxito variado. Supongamos que somos un organismo unicelular más bien grande de los mares primitivos que engulle de la forma descrita algunas bacterias fotosintéticas: los diminutos especialistas que saben utilizar la luz solar, el dióxido de carbono y el agua para fabricar azúcares y otros hidratos de carbono. Podremos dejar más descendientes si nos agenciamos el azúcar (un bloque constructivo esencial para copiar nuestras instrucciones genéticas y dar energía a todo lo que hacemos) mejor que nuestros competidores.

Pero supongamos también que estas bacterias ingeridas son de un último modelo, resistente e inoxidable y no sucumben a nuestras enzimas digestivas. Estas bacterias creerán haber encontrado la entrada a un paraíso molecular. Nosotros las protegemos de muchos de sus enemigos; somos transparentes y la luz solar brilla dentro nuestro para ellas; y hay mucha agua y dióxido de carbono. Las bacterias siguen realizando su magia fotosintética dentro nuestro. Algunos azúcares salen goteando de su interior y nosotros se lo agradecemos. Algunas bacterias mueren y nosotros podemos utilizar sus moléculas componentes. Otras bacterias prosperan y se multiplican. Cuando llega el momento de reproducirnos, algunas de estas bacterias van a parar al interior de nuestros descendientes. Se ha llegado a un arreglo entre nuestros descendientes y los suyos que no es oficial (porque todavía no está codificado en los ácidos nucleicos), pero que ya es real.[2]

El arreglo beneficia a ambas partes. Las bacterias han montado dentro de nuestro cuerpo un pequeño tenderete de bocadillos, que apenas nos cuesta nada. Nosotros les proporcionamos un entorno estable y protegido (siempre y cuando tengamos cuidado de no digerir a nuestros huéspedes). Al cabo de muchas generaciones, habremos evolucionado y nos habremos convertido en un tipo bastante distinto, con pequeñas centrales verdes de energía fotosintética funcionando en nuestro interior, que se reproducen al mismo tiempo que nosotros, que forman claramente parte de nosotros, pero que son al mismo tiempo bien diferentes. Nos hemos convertido en una sociedad. Al parecer, este proceso se ha dado una media docena de veces o más en la historia de la vida, y en cada caso ha creado un importante grupo de plantas diferente.[3]

Hoy en día todas las plantas verdes contienen estas inclusiones, llamadas cloroplastos. Los cloroplastos son todavía bastante parecidos a sus antepasados bacterianos unicelulares de vida libre. Prácticamente todos los pedacitos de verde que hay en el mundo natural se deben a los cloroplastos. Son los motores fotosintéticos de la vida. Nosotros nos enorgullecemos de ser la forma de vida dominante en este planeta, pero estos seres diminutos —discretos, el huésped perfecto— son en cierto modo quienes dirigen la función. Sin ellos, casi toda la vida en la Tierra moriría.

Los cloroplastos hicieron muchas concesiones a sus anfitriones y llegaron con ellos a un pacto eficaz y duradero de colaboración mutua, llamado simbiosis. Cada parte confía en la otra. Sin embargo, es evidente que los cloroplastos son unos recién llegados a la célula. El signo más evidente de su origen separado es la diferencia entre sus ácidos nucleicos y los ácidos nucleicos de las plantas, aunque mucho tiempo atrás todos tuvieron un antepasado común. La señal que identifica su evolución separada y temprana antes de que unieran sus fuerzas con los otros organismos es obvia. El cloroplasto original parece proceder de una bacteria fotosintética muy parecida a las que viven en las comunidades actuales de estromatolitos.[4]

Si miramos estos pequeños seres unicelulares a través del microscopio nos sorprenderá la aparente seguridad que demuestran en sí mismos. Parecen saber con gran certeza cuál es su misión. Nadan hacia la luz o atacan las presas o luchan para escapar de los depredadores. Como son transparentes, podemos ver sus partes internas, el mecanismo de relojería protoplasmático dirigido por el ADN que los hace funcionar. Su capacidad para transmutar los alimentos que encuentran en las moléculas que necesitan y convertirlas en energía, en piezas de recambio o en elementos de la reproducción es propia de la alquimia. Las plantas convierten el aire, el agua y la luz solar en sí mismas no de forma caprichosa, sino siguiendo recetas específicas, la simple transcripción de las cuales llenaría muchos volúmenes de química orgánica y biología molecular. Cada uno de estos seres es sólo una única célula; sin órganos, sin cerebro, sin conversación vivaz, sin poesía, sin elevados valores espirituales, pero aunque no tenga conciencia aparente, puede hacer muchas más cosas en términos químicos que nuestra ostentosa tecnología.

Y hay algo más que ellos pueden hacer y nosotros no. Pueden vivir para siempre. O casi. Estos organismos asexuales, unicelulares, se reproducen por fisión, no fisión nuclear, sino biológica. Aparece un pequeño surco, una hendidura, que recorre ondeando el centro del organismo. Las partes internas se dividen de modo más o menos equitativo y de pronto tenemos ante nosotros dos organismos en vez de uno. El organismo se ha partido por la mitad. Vemos dos seres más pequeños: cada uno es casi idéntico a su padre soltero y los dos son mellizos genéticamente idénticos entre sí. Cada uno crece rápidamente hasta adquirir tamaño adulto. Luego, el proceso continúa. Aparte de mutaciones extrañas, los descendientes remotos son facsímiles perfectos de sus antepasados. En un sentido real, los antepasados nunca murieron. En ningún punto a lo largo del camino hay cadáveres de padres ancianos. Si no hay accidentes, ni gotas de veneno soltado por otros microbios, ni temperaturas extremas, ni escasez de alimentos, ni encuentros con una ameba grande y malvada, los organismos siguen viviendo y la disgregación lenta y natural de las partes de su cuerpo orgánico queda mitigada o invertida por su frecuente reproducción.

Estos organismos ubicuos, invisibles y tan humildes son inmortales, al menos según los criterios humanos. Hay muchas vicisitudes naturales y es muy probable que no puedan llegar demasiado lejos sin sufrir un desastre u otro. Pero al menos algunos de ellos viven durante más vidas de lo que podría imaginar el más extravagante y crédulo discípulo de la reencarnación o de la «regresión múltiple de la vida». Detenta el récord oficial actual un cultivo de laboratorio del organismo unicelular llamado paramecio, que ya conocen los estudiantes de biología de bachillerato. Se ha alimentado cuidadosamente en la probeta a once mil generaciones sucesivas de paramecio, sin síntomas de senectud ni envejecimiento.[5] (En los hombres, once mil generaciones nos remontarían al alba de nuestra especie.) Si se exceptúa la lenta acumulación de mutaciones, los paramecios del final de esta cadena de generaciones eran genéticamente idénticos a los del comienzo. En cierto modo, el anhelo de inmortalidad, tan característico de la civilización occidental, es el anhelo de conseguir la regresión última al pasado: a nuestros antepasados unicelulares de los hirvientes mares primigenios.

Hemos seguido esta saga sin habernos acercado siquiera a mil millones de años de nuestra época, pero ya en aquella era tan remota habían quedado claramente enunciados muchos de los temas importantes y de las variaciones de la vida actual en la Tierra. Algunos de los fósiles de aquella época tienen una forma indistinguible de la de algunos organismos contemporáneos. El ejemplo de los estromatolitos es el más famoso. Otros fósiles son enormemente diferentes. Sin duda ha habido a lo largo de las eras un aumento de la complejidad bioquímica que se manifestó en la química de las enzimas, en la fidelidad de copia del ADN y en muchos otros detalles que no pueden captarse en simples fósiles; sin embargo, resulta asombroso que un organismo pueda mantenerse inalterado, aunque sea sólo en los rasgos mayores de su anatomía, durante 3.500 millones de años. Comprobamos de nuevo el impasible conservadurismo de los seres vivos. Y, sin embargo, a veces se producen cambios rápidos y fundamentales. El panorama resultante es un rico menú de adaptaciones candidatas que las mutaciones ofrecen a la selección natural para que las considere. Pero la selección natural sólo se toma en serio estas proposiciones mutantes y experimenta con ellas cuando está bajo pena de muerte (o lo que en la perspectiva evolutiva es lo mismo, bajo la amenaza de no tener descendencia). La Naturaleza no suele fomentar nuevos tipos de vida excepto para introducir toques superficiales. Los cambios se aceptan de mala gana.

Podemos ver la misma clase de moléculas utilizadas una y otra vez con objetivos completamente distintos. Hoy en día, por ejemplo, la misma molécula orgánica compleja se utiliza, con pequeñas variaciones, como pigmento verde que absorbe luz solar en las plantas, como pigmento rojo que transporta oxígeno en el torrente sanguíneo de los animales, como agente que da su color rosa a gambas y flamencos y como enzima de uso amplio que ayuda a extraer suavemente la energía que contiene el azúcar. Esta energía se almacena, para futuras necesidades, en moléculas casi idénticas a los nucleótidos ACGT del código genético. Son moléculas de una versatilidad sorprendente, pero su uso y reciclaje revela que economizar es la forma de vida preferida.

Es como si por cada millón de organismos radicalmente conservadores hubiera un revolucionario empeñado en cambiar algo, un algo generalmente muy pequeño; y como si, por cada millón de estos revolucionarios, sólo uno supiera realmente de qué está hablando: ofrecer un plan de supervivencia bastante mejor que el dominante en aquel momento. Y, sin embargo, la evolución de la vida depende de estos revolucionarios.

Si los microorganismos tienen suficiente alimento se reproducen tan rápidamente que pueden evolucionar en el tiempo transcurrido entre guardarlos en un estante y sacarlos de allí para volverlos a examinar. La velocidad con que las bacterias «adquieren» resistencia a los antibióticos aconseja recetarlos con cautela, sin demasiada frecuencia. El antibiótico generalmente no induce mutaciones adaptativas, sino que actúa como un implacable agente de selección, pues mata todas las bacterias excepto unas cuantas favorecidas que, por casualidad, son inmunes a la medicina. Las bacterias de esta cepa antes, por algún motivo, no podían competir bien con sus compañeras. El hecho de que las bacterias desarrollen rápidamente resistencia a los antibióticos (o los insectos al DDT) refleja la enorme diversidad de formas y de bioquímicas que se agitan continuamente bajo la superficie del mundo microbiano. Está entablada una guerra encarnizada y continua de medidas y contramedidas entre anfitrión y parásito; en este caso, entre las compañías farmacéuticas que desarrollan nuevos antibióticos y los microbios que desarrollan nuevas cepas resistentes para reemplazar a sus antepasados más vulnerables.

La distinción entre el interior y el exterior, entre yo y tú, nosotros y ellos, es decir una conciencia rudimentaria de uno mismo, estaba bien desarrollada, como hemos dicho, hace ya unos 3.500 millones de años. Si uno tiene la costumbre de comer moléculas orgánicas disueltas en los océanos primitivos, también se acostumbrará a devorar las moléculas con que están construidos otros seres, porque, en definitiva, son las mismas moléculas. Pero entonces uno tiene que ir con cuidado para no comerse a sí mismo. Es posible que uno no sienta piedad ni compasión por otros organismos, y que estos conceptos no entren en la concepción que un microbio tiene del mundo. Pero uno debe hacer algunas sutiles distinciones. Tal vez sus cloroplastos no le inspiren sentimientos afectuosos, pero si los digiere tendrá problemas. Si la distinción resulta demasiado difícil —si uno no puede distinguir la diferencia entre «yo» y «tú» o si no puede controlar sus enzimas digestivas— dejará menos descendencia, o ninguna. Este proceso todavía actúa sin pensar, quizá actúa sin sentimientos de ningún tipo. Sin embargo, los organismos están empezando a comportarse como si tuvieran querencias, necesidades, preferencias, emociones, impulsos, instintos.

Si uno vive en un grupo no le servirá de nada, ni a los demás ni a él, empezar a comerse a sus compañeros. Uno puede ser un depredador despiadado e implacable, pero también debe tratar con amabilidad a sus parientes y vecinos. Para ello puede bañar sus membranas exteriores con una sustancia química que permita reconocer la especie. Cuando notamos el gusto de esta molécula emanando de otro microbio, nos emocionamos. «Amigo», dice la sustancia química, «hermana». Otras sustancias químicas llevan diferente información. Algunas bacterias producen normalmente sus propios agentes químicos bélicos: antibióticos que son inofensivos para ellos y para otros de su propia cepa, pero mortíferos para bacterias de cepas diferentes, para bacterias extranjeras. Se ha llegado así a un delicado equilibrio entre la hostilidad hacia el grupo exterior y la cooperación con el grupo interior. Ellos y nosotros. Las primeras modalidades de la xenofobia y el etnocentrismo evolucionaron pronto.

Los carnívoros grandes disfrutan con lo que hacen. (Los carnívoros unicelulares quizá también.) No cazan porque tengan un conocimiento teórico de la nutrición. Cazan, al parecer, porque la caza es una alegría; porque acechar, perseguir, desgarrar, matar, desmembrar y comer son los placeres de la vida; porque el deseo apremiante de cazar es irresistible. Los gatos gordos y los perros perezosos, atiborrados de canapés, tienen sus necesidades gustativas satisfechas, pero en ocasiones oyen una llamada ancestral y depositan orgullosamente a los pies de su ama urbana un ratoncito o una paloma muertos. El circuito del mecanismo es innato; la computadora está preprogramada y unos estímulos apropiados pueden ponerla en marcha. Si la inclinación a la caza no encuentra otra salida, el perro trae una pelota, un palo o un frisbi, y el gato se pelea con una telaraña o ataca un ovillo de lana.

Sin embargo, incluso un ejemplo tan formidable y elegante de un circuito innato como el de una gata cazando a un ratón depende mucho de experiencias pasadas. El psicólogo Z. Y. Kuo[6] demostró con una serie de experimentos clásicos que casi todos los gatitos que habían visto a su madre matar y comer a un roedor acababan haciéndolo ellos también. Pero cuando los gatitos crecían en la misma jaula que una rata, sin haber visto nunca a otro gato matar a una rata, casi nunca mataban ratas ellos mismos. La mitad aproximada de los gatos que crecieron teniendo a una rata por compañera de camada, pero que también vieron a sus madres matar ratas fuera de la jaula, aprendieron a matar, pero tendían a matar sólo el tipo de rata que habían visto matar a sus madres y no el tipo de rata con el que habían crecido. Finalmente, si los gatitos recibían una descarga eléctrica cada vez que veían a una rata, pronto aprendían a no matar ratas, es más, huían de ellas despavoridos.

De modo que un comportamiento fijo tan básico como el programa de depredación de los gatos es maleable. Por supuesto, los seres humanos no son gatos. Sin embargo, podemos llegar a pensar que las experiencias infantiles, la educación y la cultura pueden contribuir mucho a mitigar incluso las tendencias innatas profundas.

El mecanismo de comportamiento que permite cazar y escapar y alterar también estas inclinaciones de conformidad con la experiencia se estaba desarrollando ya en los microbios primitivos. Los depredadores evolucionaron y se fueron convirtiendo lentamente en modelos más grandes, más rápidos, y más listos, con nuevas opciones (por ejemplo, fingir). Las presas potenciales evolucionaron también y se convirtieron en modelos más grandes, más rápidos y más listos con otras opciones (por ejemplo, «hacerse el muerto»); porque los que no lo hacían eran devorados más a menudo. Se inventaron muchas estrategias y se retuvieron las que daban resultado: camuflaje protector, armadura corporal, tinta o líquidos nocivos expulsados para cubrir una huida, picadas venenosas y explotación de nichos donde todavía no había depredadores: un agujero poco profundo en el suelo oceánico, quizá, o un santuario en un caparazón de concha, o un refugio en una isla o continente no ocupado. Otra estrategia consistía simplemente en producir tantos descendientes que al menos sobrevivieran algunos. Tampoco en tales casos las presas potenciales planearon estas adaptaciones; sucede que después de un tiempo las únicas presas que quedan son las que actúan como si lo hubieran planeado todo. No importa lo buenas que sean las intenciones personales, lo benévolas y contemplativas que sean sus inclinaciones, cuando uno es una presa en potencia la selección natural obliga a adoptar contramedidas.

Hace aproximadamente 600 millones de años, muchos animales multicelulares comenzaron a amurallarse. Aprendieron a realizar obras de ingeniería civil a pequeña escala y rodearon sus cuerpos blandos con cáscaras y caparazones construidos con roca de silicatos y carbonatos. Se desarrollaron entonces los estilos de vida de almejas, ostras, cangrejos, langostas y muchos otros animales con armaduras, algunos extinguidos hoy en día. Las partes blandas de los animales muertos se descomponen rápidamente, con raras excepciones, y las partes duras o sus marcas sobreviven más tiempo, a veces el tiempo suficiente para que centenares de millones de años después puedan descubrirlas los paleontólogos. Es decir que la evolución de la armadura corporal permitió que estos lejanos seres fuesen conocidos por sus parientes colaterales remotos.

La guerra entre depredador y presa también se extiende al reino de las plantas. Las plantas se cargan de venenos para que los animales pierdan las ganas de comérselas. Los animales desarrollan sustancias químicas de desintoxicación y órganos especiales —el hígado, especialmente— para estar a la altura de las plantas. Lo que a nosotros nos gusta del café, por ejemplo, son las toxinas que esta planta ha desarrollado para evitar que los insectos y los mamíferos pequeños consuman sus granos.[7] Pero nuestros hígados son muy competentes.

Por supuesto los depredadores no necesariamente han de ser mayores que sus presas. Los microbios de las enfermedades pueden ser formidables depredadores que no sólo atacan y finalmente matan a los organismos que los llevan, sino que se apoderan de sus huéspedes y cambian su comportamiento para contagiar con más microorganismos patógenos a otros huéspedes. Uno de los ejemplos más impresionantes es el virus de la rabia. Cuando el virus se inyecta en el torrente sanguíneo de un perro plácido, amante de las personas, se dirige directamente al sistema límbico del cerebro del perro, donde residen las teclas de control de la agresión. Allí la rabia convierte al pobre animal en un depredador gruñón y malvado que muerde la mano que le da comida. Los animales rabiosos no tienen miedo de nadie. Al mismo tiempo, otros virus de la rabia se dirigen a desactivar los nervios de la deglución, acelerar el mecanismo de producción de saliva e invadir la saliva en grandes cantidades. El perro está furioso, pero sin saber por qué. Se ha convertido en juguete de los virus que lleva dentro y es incapaz de resistir el impulso de atacar. Si el ataque sale bien, los virus de la saliva del perro entran en el torrente sanguíneo de la víctima a través de la herida, y comienzan a apoderarse del nuevo huésped. El proceso sigue su curso.

El virus de la rabia es un brillante guionista. Conoce a sus víctimas y sabe manejarlas. Burla sus defensas, se infiltra, ataca los flancos y desencadena un golpe de estado dentro de seres de un tamaño tan superior al suyo, que podríamos suponerlos invulnerables.[*]

Cuando tenemos una gripe o un resfriado común, la tos y los estornudos no son complementos accidentales de la infección, sino elementos bastante esenciales para la proliferación del virus responsable y que están bajo su control. He aquí otros ejemplos de microbios que controlan la situación:

Una toxina producida por la bacteria del cólera inhibe la reabsorción de líquido en los intestinos, y produce una diarrea abundante que propaga la infección… El virus mosaico del tabaco causa un agrandamiento de los poros de las membranas celulares de su huésped de modo que el virus pueda atravesarlos y pasar a células no infectadas… La lombriz del ganado lanar se transmite de modo eficaz de hormigas a ovejas porque impulsa a las hormigas infectadas a encaramarse hasta la punta de una hoja de hierba y quedar agarrada a ella sin soltarse nunca. Este mismo parásito induce a los caracoles infectados a arrastrarse hasta lugares expuestos de la playa donde resultan presa fácil para las gaviotas que son el siguiente huésped en el ciclo vital.[8]

Después de muchas generaciones de relación mutua vida-muerte entre depredador y presa se ha establecido una especie de carrera permanente de armamentos. Por cada progreso ofensivo hay una respuesta defensiva, y viceversa. Medida y contramedida. Pocas veces está alguien completamente seguro.

Algunas presas crecen juntas, pululan juntas, forman bancos, se reúnen en manadas y en bandadas. Están seguras porque son muchas. El más fuerte del grupo puede salir al frente para intentar intimidar al depredador o defenderse contra él. El depredador puede acabar acosado por todo el grupo de animales. Éstos pueden apostar vigías, pueden acordar determinados gritos de alarma y coordinarlos entre sí, y pueden elegirse estrategias de huida. Si las presas son rápidas, pueden correr delante del depredador, ganarle en la carrera y confundirle, o alejarlo de miembros del grupo especialmente vulnerables. Pero la selección también favorece la cooperación entre los depredadores; por ejemplo, un grupo de depredadores ahuyenta a la presa hacia otro grupo que está emboscado. Tanto para la presa como para el depredador, la vida comunitaria puede ser mucho más ventajosa que la soledad.

Para participar en el juego evolutivo y cada vez más intenso de depredador y presa son necesarios complejos repertorios de comportamiento. Cada grupo debe captar a distancia la presencia del otro, y es muy ventajoso sustituir los sentidos locales, como el tacto y el gusto, por sentidos de más largo alcance, como la vista, el oído y la localización por eco. En las cabezas de animales pequeños se desarrolla un talento especial para recordar el pasado. Los genes pueden haber proporcionado algunos medios simples de prepararse ante situaciones peligrosas, como imaginar una posible respuesta a una variedad de circunstancias («haré Z si él hace A; haré Y si él hace B»); pero es muy útil para la supervivencia aplicar ese talento a árboles de contingencias de ramificación más compleja y crear una nueva lógica para necesidades futuras. De hecho, encontrar y devorar a una presa —aunque sea un organismo que no efectúa maniobras de evasión— requiere un depredador con grandes conocimientos, especialmente si el suministro es escaso.

Basar todo nuestro comportamiento en un conjunto preprogramado de instrucciones escritas en el lenguaje ACGT no impone una carga excesiva; siempre y cuando estemos en el mismo medio ambiente para el que hemos evolucionado. Pero ningún conjunto de instrucciones preprogramadas, por complejo que sea y aunque haya dado muy buen resultado en el pasado, puede garantizar la supervivencia continua si se produce un cambio ambiental rápido. La evolución por selección natural supone un aprendizaje de la experiencia muy remoto, generalizado y casi metafórico. Se necesita algo más. Vale la pena tener un cerebro, especialmente cuando se caza comida, cuando la movilidad es grande y los organismos pueden recorrer entornos muy distintos, cuando las relaciones sociales con nuestra propia especie y las relaciones mutuas entre presa y depredador se vuelven más complejas, cuando se necesita procesar enormes cantidades de información sobre el mundo externo. Con un cerebro podemos recordar experiencias pasadas y relacionarlas con la actual situación difícil. Podemos reconocer al matón que abusa de nosotros y al débil a quien podemos perseguir, la cálida madriguera o la grieta protegida en la roca donde antes nos habíamos refugiado. Uno puede imaginar en momentos críticos soluciones oportunistas para recoger alimentos o cazar o huir. Se desarrollan circuitos neurales para tratar datos, reconocer pautas y prever situaciones peligrosas, que son un primer paso hacia la previsión.

El estilo de evolución de los cerebros —como muchas otras cosas— no suele caracterizarse por un progreso constante. El registro fósil demuestra la existencia de períodos cortos de evolución rápida y radical, que puntúan inmensos períodos de tiempo en que los tamaños de los cerebros apenas cambiaron. Esto parece ser válido tanto para la evolución de los mamíferos primitivos como para la de nuestra propia especie.[9] Parece como si hubiera una concatenación poco frecuente de hechos —quizá cambios en la secuencia del ADN coincidentes con cambios del medio externo— que proporciona una oportunidad adaptativa. Los nuevos nichos ecológicos se llenan rápidamente y durante un largo tiempo la evolución posterior se dedica a consolidar las ganancias. Puede ser muy caro lograr progresos importantes en la arquitectura neural: en la capacidad del cerebro para procesar datos, para combinar información procedente de diferentes sentidos, para mejorar su modelo de la naturaleza del mundo exterior, y para pensar las cosas. Para muchos animales estas capacidades son tan amplias que sus beneficios quizá sólo aparezcan en el futuro lejano, mientras que la evolución está obsesionada por el aquí y el ahora. Sin embargo, resultan adaptativos incluso mínimos progresos del pensamiento. En la historia de la vida se han producido aumentos repentinos del tamaño del cerebro con la suficiente frecuencia para que este hecho permita deducir por sí solo que la posesión de un cerebro es útil.

Los sentimientos, al menos en los mamíferos, están controlados principalmente por partes inferiores, más antiguas, del cerebro, y el pensamiento por las capas cerebrales exteriores, superiores y de más reciente evolución.[10] Una capacidad rudimentaria para pensar se sobrepuso a los anteriores repertorios de comportamiento programados genéticamente, cada uno de los cuales correspondía probablemente a algún estado interior, percibido como una emoción. Cuando la presa potencial se enfrenta inesperadamente con un depredador, antes de que pueda asomar algo parecido a un pensamiento, experimenta un estado interno que le pone sobre aviso del peligro. Este estado de ansiedad, incluso de terror, comprende un complejo de sensaciones conocidas, que en el caso de los humanos incluye palmas de las manos húmedas, aceleración de los latidos y aumento de la tensión muscular, respiración entrecortada, pelos de punta, náuseas en el vientre, una necesidad apremiante de orinar y defecar, y un fuerte impulso de combatir o de retroceder.[*] Puesto que en muchos mamíferos la misma molécula del tipo adrenalina produce el temor, es posible que todos ellos sientan algo bastante parecido. Por lo menos es una primera suposición razonable. Cuanta más adrenalina hay en el torrente sanguíneo, hasta un cierto límite, más temor siente el animal. Es un hecho revelador que se nos pueda hacer sentir artificialmente este conjunto concreto de sensaciones mediante una pequeña inyección de adrenalina, como pasa a veces en el dentista. La adrenalina reduce al mismo tiempo la coagulación de la sangre, lo que constituye otra adaptación útil cuando estamos frente a un depredador. Por supuesto, también es posible que en la visita al dentista generemos algo de nuestra propia adrenalina. El temor tiene que tener algo de emoción. Tiene que ser desagradable.

Si la combinación ojo/retina/cerebro del depredador está preparada especialmente para detectar el movimiento, los repertorios de defensa de la presa incluyen a menudo la táctica de quedarse rígidamente inmóvil, como petrificada, durante largos períodos de tiempo. No es que las ardillas, por ejemplo, o los ciervos comprendan la fisiología de los sistemas visuales de sus enemigos, sino que la selección natural ha establecido una bella resonancia entre las estrategias del depredador y de la presa. El animal atacado puede correr, hacerse el muerto, exagerar su tamaño, erizar sus pelos y gritar, producir un olor horrible o excreciones acres, amenazar con contraatacar, o intentar una variedad de estrategias de supervivencia útiles, todo ello sin pensamiento consciente. Puede que sólo entonces descubra una ruta de escape o ponga en práctica toda la agilidad mental que posee. Hay dos respuestas casi simultáneas: una, el repertorio hereditario antiguo, universal, comprobado, pero limitado y poco sutil; y la otra, el aparato intelectual recién estrenado y generalmente sin comprobar que, sin embargo, puede inventar soluciones completamente inéditas a problemas actuales apremiantes. Pero los cerebros grandes son una novedad. Cuando «el corazón» aconseja una acción y «la cabeza» otra, la mayoría de los organismos optan por el corazón. Los que tienen los cerebros más grandes a menudo optan por la cabeza. En cualquier caso, no hay garantías.

Los seres vivos, obligados a adaptarse a cada trampa y vericueto del entorno del que dependen, evolucionan para estar al día. La vida ha ido dando pequeños y concienzudos pasos a lo largo de inmensas perspectivas de tiempo geológico, dejando eliminados por el camino a innumerables organismos ligeramente mal adaptados, y sin quejas ni lamentos la vida se fue volviendo cada vez más compleja y capaz, con su química interior, su forma externa y el menú de comportamientos disponibles. Estos cambios, por supuesto, se reflejan en una correspondiente complicación y riqueza de los mensajes escritos en el código ACGT, hasta el mismo nivel del gen, y de hecho están causadas por ellos. Cuando aparece alguna nueva y espléndida invención —el cartílago óseo como armadura corporal, por ejemplo, o la capacidad para respirar oxígeno—, los mensajes genéticos responsables proliferan por el paisaje biológico a medida que transcurren las generaciones. Al principio nadie tiene estas secuencias determinadas de instrucciones genéticas. Más tarde, numerosos seres en toda la Tierra viven gracias a ellas.

No es difícil imaginar que lo que realmente está pasando es una evolución de las instrucciones genéticas, que las batallas se entablan entre las instrucciones de organismos competidores, y que las instrucciones genéticas controlan la situación, siendo las plantas y los animales poco más que autómatas, o quizá nada más. Los genes se las arreglan para asegurar su propia permanencia. Como siempre, este «arreglo» se hace sin auténtica previsión; se trata simplemente de que las instrucciones genéticas bien coordinadas que por casualidad dan órdenes superiores a las cosas vivas en que habitan crean más cosas vivas motivadas por las mismas instrucciones.

Pensemos de nuevo en los cambios de nuestro comportamiento causados por la incursión de un virus de rabia o de gripe (formado por ácidos nucleicos con una capa de proteínas). Es evidente que nuestros propios ácidos nucleicos ejercen un control mucho más profundo sobre nosotros. Si despojamos a la vida de la piel y las plumas, de las particularidades fisiológicas y de comportamiento, aparece como una copia preferente de unos determinados mensajes de ACGT, en lugar de otros mensajes competidores. La vida es un conflicto de recetas genéticas, una guerra de palabras.

Desde esta perspectiva,[11] las instrucciones genéticas son lo que se selecciona y lo que evoluciona. O bien podríamos decir casi sin equivocarnos que son los organismos individuales, bajo el control riguroso de las instrucciones genéticas, lo que se selecciona y lo que evoluciona. No hay lugar aquí para la selección de grupo, para la idea natural y atractiva de que las especies compiten unas con otras y de que los organismos individuales trabajan conjuntamente para preservar su especie, como los ciudadanos que colaboran juntos para preservar su nación. Los actos de altruismo aparente se atribuyen principalmente a la selección de parentesco. La madre ave se aleja del zorro aleteando despacio, arrastrando un ala como si la tuviera rota, para alejar al depredador de su nidada. Tal vez pierda la vida, pero en el ADN de sus polluelos sobrevivirán múltiples copias de instrucciones genéticas muy parecidas. Hubo primero un análisis de costos y beneficios. Los genes dictan órdenes al mundo exterior de carne y hueso con motivos completamente egoístas, y el verdadero altruismo —sacrificarse por alguien que no es pariente— se considera una ilusión sentimental.[12]

Esto, o algo bastante parecido, se ha convertido en la teoría imperante del comportamiento animal (y vegetal). Su capacidad de explicación es considerable. A nivel humano esta teoría explica cuestiones tan variadas como el nepotismo y el hecho de que es más probable que mueran a causa de malos tratos niños adoptados que niños que viven con sus padres naturales (en los Estados Unidos, por ejemplo, unas cien veces más probable).[13]

La cooperación de las células de los estromatolitos y de otros organismos coloniales puede considerarse egoísta al nivel de los genes, puesto que todos son parientes cercanos. ¿Es egoísta la cooperación del cloroplasto con la célula a la que está unido simbióticamente? La célula que devora sus cloroplastos sufre una desventaja competitiva. Si se abstiene de devorarlos no es porque tenga el más mínimo sentimiento altruista hacia los cloroplastos, sino porque sin ellos se muere. La célula renuncia a los placeres de un banquete de cloroplastos a cambio de un sustancial beneficio futuro. Ejercita la moderación a corto plazo, el comportamiento egoísta. Practica el control de los impulsos. El egoísmo sigue predominando, pero nos damos cuenta de la distinción entre egoísmo a corto y a largo plazo.

Los animales con los que crecen la mayoría de los animales sociales tienden a ser parientes cercanos, y por razones obvias. Cuando uno coopera realiza acciones que superficialmente podrían parecer altruistas pero que están dirigidas de modo natural hacia un pariente cercano y que, por lo tanto, pueden explicarse como selección de parentesco. Un organismo podría renunciar a copiarse a sí mismo, por ejemplo, y dedicar su vida a mejorar las posibilidades de supervivencia y reproducción de parientes cercanos cuyas secuencias de ADN son muy parecidas. Si lo único que cuenta es qué secuencia va a estar ampliamente representada en la vida del futuro, las especies con una cierta tendencia al altruismo podrían prosperar. Pueden contribuir a transmitir gran parte de su información genética, aunque ninguno de sus átomos vaya a parar a los cuerpos de la generación siguiente.[14]

El genetista R. A. Fisher describió el heroísmo como una predisposición que inclina a su portador hacia «una mayor probabilidad de ocuparse en cosas difícilmente conciliables con la vida familiar». Sin embargo, afirma Fisher, el heroísmo en los seres humanos o en otros animales puede aportar una ventaja selectiva al preservar las secuencias genéticas muy parecidas de parientes cercanos y favorecer su transmisión a las generaciones futuras. Éste es uno de los primeros enunciados claros de la selección de parentesco. El sacrificio de los padres por un hijo puede comprenderse con razones semejantes. El héroe o el padre entregado estarán haciendo simplemente lo que consideran «correcto», sin intentar sopesar los beneficios y los riesgos que sus actos acarrean para el patrimonio genético. Pero, según Fisher, la razón de que se consideren «correctos» es que las familias grandes caracterizadas por una paternidad concienciada y por la abundancia de héroes tienden a salir adelante muy bien.[*]

Tal vez los animales estén dispuestos a hacer auténticos sacrificios por parientes próximos, pero no por familiares más lejanos. Planteémoslo así: imaginémonos de noche, profundamente dormidos, sabiendo que nuestros hijos están hambrientos, sin hogar o gravemente enfermos. Para casi todos nosotros, eso es impensable. Pero 40.000 niños mueren cada día a causa del hambre, la falta de atención o las enfermedades evitables. Existen instituciones como el Fondo de las Naciones Unidas para la Infancia que podrían salvar a esos niños: con vacunas contra las enfermedades, con varios céntimos al día en sales y azúcar. Pero no se dispone de ese dinero. Hay otras necesidades que se consideran más apremiantes. Los niños siguen muriendo mientras nosotros dormimos bien. Están lejos. No son nuestros. No digamos ahora que no creemos en la realidad de la selección de parentesco.

Sin embargo, si uno está viviendo entre individuos de su propia especie que no son parientes próximos, le conviene sin duda cooperar con ellos contra un enemigo común. Uno puede aprovechar el comportamiento que la evolución creó para la selección de parentesco y aplicarlo a un grupo de animales que no son parientes próximos para que pueda unirse y sobrevivir.[*] Y si el altruismo es uno de nuestros talentos, podríamos muy bien practicarlo incluso con animales de otra especie. Los perros son famosos por arriesgar sus vidas para salvar a personas que sin duda no son sus parientes próximos. Tampoco puede explicar su comportamiento la esperanza de una recompensa futura.

¿Cómo vamos a interpretar los casos bien demostrados de delfines que salvan a personas a punto de ahogarse lanzándolas con el hocico hacia la superficie y empujándolas hacia la costa? ¿Es el delfín incapaz de distinguir al ser humano que se debate de un bebé delfín en peligro? Eso parece muy poco probable; los delfines son observadores muy perspicaces. ¿Y qué podemos decir de los casos de bebés humanos abandonados o extraviados, criados por madres lobas que perdieron sus cachorros; o de los pájaros de una especie diferente que empollan los huevos del cuco? ¿Por qué el conductor se desvía bruscamente para evitar atropellar a un perro en la carretera y de este modo pone en peligro a sus propios hijos que van en el asiento trasero? ¿Y qué pasa con los niños que se precipitan al interior de la casa en llamas para rescatar a un gato? Estos casos de valentía y cuidados dirigidos a otras especies derivan de una selección de parentesco mal dirigida, pero se dan y salvan vidas. ¿No cabría entonces esperar un comportamiento altruista que favorezca mucho más a menudo a otros miembros de la misma especie, aunque no sean parientes cercanos?

Examinemos dos grupos, uno formado por individualistas implacablemente egoístas, el otro por ciudadanos íntegros dispuestos de vez en cuando a sacrificarse por los demás (aunque éstos no sean parientes próximos). ¿No podemos imaginar una circunstancia en que, ante un enemigo común, el último grupo tenga más éxito que el primero? También tiene inconvenientes obvios el proceder de una comunidad de altruistas estrictos que constantemente sacrifican sus vidas para beneficiar a completos desconocidos. Un grupo de este tipo no duraría mucho, aunque sólo fuera porque cualquier tendencia al egoísmo se extendería rápidamente.

¿Qué sucede si el grupo necesita conseguir un tamaño crítico para poder funcionar? Cuando el número de componentes del grupo está por debajo de un umbral aproximado, ciertas funciones del grupo comienzan a fallar. Por ejemplo, cuanto mayor es el grupo, mayor resultado da acurrucarse juntos para tener calor,[15] o acosar en grupo a un depredador;[16] y por debajo de un determinado tamaño, cada vez hay menos beneficios de grupo. No es difícil imaginar genes completamente egoístas que promuevan el abandono de la cooperación comunitaria: no acosar en grupo a un depredador, por ejemplo, porque podría resultar peligroso. Si estos genes proliferan, llegará un momento en que casi nadie tendrá el valor de acosar a los depredadores y aumentará el peligro para todos. De este modo, por razones a más largo plazo, estrictamente egoístas en el nivel de las instrucciones genéticas, el altruismo a corto plazo puede ser adaptativo y la selección podría favorecerlo, aunque los miembros del grupo no fueran parientes próximos. En comunidades muy unidas además de la selección individual actúa algo muy parecido a la selección de grupo.

Una nueva escuela de biólogos y teóricos de los juegos ha explicado por lo menos igualmente bien y con un ingenio casi exasperante muchos ejemplos aducidos para demostrar la selección de grupo. Algunas explicaciones parecen bastante plausibles, pero no todas. Por ejemplo, cuando un depredador amenaza a un grupo de gacelas de Thomson, quizá una o dos salten trazando en el aire elevados arcos muy llamativos cerca del depredador. La explicación de este acto fundada en la selección de grupo es sencilla: el individuo llama la atención sobre sí mismo y se arriesga a que lo devoren para salvar al grupo. (Pero supongamos que los saltos de exhibición no se hubieran inventado nunca, ¿podría el depredador comerse, de todos modos, a más de una gacela de Thomson? ¿Mueren devoradas con este truco menos gacelas que en otras especies de gacelas que desconocen la maniobra?) La explicación dominante de la teoría de la selección individual es que la gacela que salta está exhibiendo sus capacidades gimnásticas y recordando al depredador que hay otras gacelas menos atléticas y más fáciles de devorar. La gacela se exhibe por razones puramente egoístas.[17] (Pero entonces, ¿por qué la mayoría de las gacelas de Thomson no saltan cuando hay peligro? ¿Por qué ese egoísmo no se extiende al resto de la manada? ¿Se interesa el depredador alguna vez por una gacela menos visible que la gacela que salta?)

El caso es parecido al de las clásicas ilusiones ópticas: ¿es la figura de un candelabro o de dos caras de perfil?; los mismos datos pueden comprenderse desde dos perspectivas bastante diferentes (aunque tal vez ninguna sea totalmente satisfactoria). Es posible que cada una tenga su propia validez y utilidad.[18] La selección individual y la selección de grupo deben generalmente ir juntas (o, en el discurso científico, tener una gran correlación); de lo contrario, la evolución no se produciría nunca. Podríamos decir que la selección individual debe tener alguna primacía, ya que puede haber individuos sin grupo, pero no a la inversa. Sin embargo, hay muchos animales, entre ellos los primates, que no pueden sobrevivir individualmente sin el grupo.

Creemos que el egoísmo estricto y el altruismo estricto son los extremos mal adaptados de un continuo; la posición intermedia óptima varía con las circunstancias y la selección inhibe los extremos. Si resulta difícil que los genes descubran por sí solos cuál es la combinación óptima para cada circunstancia nueva, ¿no les convendría delegar la autoridad? También para esto se necesitan cerebros. Examinemos de nuevo la selección de parentesco. No importa mucho si las aves, por ejemplo, pueden distinguir bien a los tíos de los primos; esto importa especialmente poco en grupos pequeños donde todos son parientes bastante próximos, y la selección de parentesco actúa en un sentido estadístico, incluso si uno se arriesga ocasionalmente por algún vecino que no es pariente suyo. Para preservar múltiples copias de instrucciones genéticas estrechamente relacionadas tiene sentido aceptar una probabilidad de morir del 40% y salvar la vida de un hermano (que tiene el 50% de los genes idénticos a uno); o una probabilidad del 20% de morir y salvar a un tío o a un sobrino o a un nieto (que comparte un 25% de los genes); o una probabilidad del 10% de morir y salvar la vida de un primo carnal (que tiene el 12,5% de los mismos genes exactos que uno). En tal caso, ¿no podríamos renunciar a los medios que nos permitirían tener otro hijo si así ayudamos a mantener las familias de muchos primos segundos? ¿O donar el 10% de nuestros ingresos para que un grupito de primos terceros tenga suficiente comida? ¿No valdría la pena abstenerse de unos cuantos artículos de lujo para poder educar a unos primos cuartos? ¿O escribir una carta de recomendación para un primo quinto poco brillante?

La selección de parentesco es también un continuo y sus arcanos cálculos pueden aprobar algunos sacrificios en bien de los miembros más remotos y distantes de nuestra familia. Pero como todos estamos emparentados, estarán justificados algunos sacrificios para salvar a todos los habitantes de la Tierra, y no sólo a los de nuestra propia especie. Aun en sus términos estrictos, la selección de parentesco se extiende mucho más allá de los parientes cercanos. Dos miembros cualesquiera de una pequeña comunidad de primates en estado salvaje suelen tener de un 10 a un 15% de genes en común[19] (y aproximadamente un 99,9% de sus secuencias de ACGT en común, puesto que basta la diferencia de un único nucleótido para que un gen, compuesto de miles de nucleótidos, sea diferente de los demás). Es pues bastante probable que un miembro cualquiera del grupo sea padre o hijo o hermano, tío, tía, sobrino, sobrina, o primo carnal o primo segundo de otro. Aunque no se puedan distinguir uno del otro, tiene un sentido evolutivo realizar auténticos sacrificios y aceptar, por ejemplo, un 10% de probabilidades de morir para salvar la vida de cualquier miembro de la comunidad.

En los anales de la ética de los primates hay algunas historias que suenan a parábola. Por ejemplo, el caso de los macacos, llamados también monos rhesus, que viven en agrupaciones de primos estrechamente unidas.[20] Es estadísticamente muy probable que el macaco que uno salva comparta muchos de nuestros genes (suponiendo que uno sea un macaco), por lo tanto está justificado arriesgarse para salvarlo y es innecesaria una fina discriminación de los matices de la consanguinidad. Un experimento de laboratorio[21] consistía en dar comida a unos macacos sólo si tiraban de una cadena y mandaban una descarga eléctrica a otro macaco no emparentado cuyo dolor podían ver perfectamente a través de un espejo transparente en una sola dirección. De lo contrario el animal tenía que pasar hambre. Después de aprender el truco, los monos se negaban con frecuencia a tirar de la cadena; en un experimento, sólo el 13% lo hizo y el 87% prefirió pasar hambre. Un macaco estuvo sin comer durante casi dos semanas antes de maltratar a su compañero. Los macacos que habían recibido descargas en experimentos anteriores estaban aún menos dispuestos a tirar de la cadena. La posición social o el sexo de los macacos tenía poco que ver con su negativa a maltratar a otros.

Si nos piden que elijamos entre los experimentadores humanos que ofrecen a los macacos este pacto faustiano y los propios macacos, dispuestos a sufrir auténtica hambre antes de causar dolor a otros, nuestras simpatías morales no se inclinan hacia los científicos. Pero sus experimentos permiten vislumbrar en seres que no son humanos una santa disponibilidad a sacrificarse para salvar a los demás, incluso a animales con quienes no están emparentados de cerca. De acuerdo con las normas humanas convencionales, estos macacos, que nunca han asistido a la catequesis, que nunca han oído hablar de los Diez Mandamientos, que nunca han tenido que aguantar una clase de educación cívica en la escuela, resultan ejemplares por sus sólidos fundamentos morales y su valiente resistencia al mal. Si las circunstancias se invirtieran, y unos macacos científicos obligaran a seres humanos cautivos a elegir entre las dos opciones, ¿reaccionaríamos del mismo modo?[22] En la historia humana son muy pocas las personas cuyo recuerdo veneramos porque se sacrificaron conscientemente por los demás. Por cada una de ellas, hay muchísimas más que no hicieron nada.

T. H. Huxley comentó que la conclusión más importante que había sacado de sus estudios anatómicos era que toda la vida en la Tierra estaba relacionada entre sí. Los descubrimientos realizados desde su época nos han revelado que toda la vida en la Tierra emplea ácidos nucleicos y proteínas, que todos los mensajes de ADN están escritos en el mismo lenguaje y se transcriben al mismo lenguaje, que seres muy diferentes tienen en común muchas secuencias genéticas, todo lo cual profundiza y amplía la importancia de la conclusión a la que llegó Huxley. No importa dónde creamos que estamos en ese continuo entre altruismo y egoísmo. Con cada velo de misterio que levantemos, nuestro círculo de parentesco se amplía.

Descubrimos las afinidades más profundas entre nosotros y las demás formas de vida en la Tierra no por un sentimentalismo carente de sentido crítico, sino después de realizar un escrutinio científico realista. Pero todos los hombres, por muy diferentes que sean étnicamente, son esencialmente idénticos en comparación con las diferencias que existen entre cualquiera de nosotros y cualquier otro animal. La selección de parentesco es un hecho de la vida, y es muy acentuado en los animales que viven en grupos pequeños. El altruismo está muy cerca del amor. En algún lugar de estas realidades puede haber una ética en germen.

SOBRE LA IMPERMANENCIA

Pobres mortales, semejantes a hojas, que ora llegan a una ardiente plenitud alimentados con los frutos del campo y luego se desvanecen privados de vida.

Homero, Ilíada[23]