Stellen wir uns einmal vor, wir lebten in einer Welt, die von Diwasserstoffoxid beherrscht wird, einer geschmack- und geruchlosen Verbindung mit so vielfältigen Eigenschaften, dass sie in der Regel harmlos ist, manchmal aber auch sehr schnell tödlich wirken kann.1 Je nachdem, in welchem Zustand sie sich befindet, können wir uns daran verbrennen oder erfrieren. Sind zusätzlich bestimmte organische Moleküle vorhanden, bildet sie bösartige Carbonsäuren, die das Laub von den Bäumen fallen lassen und steinernen Statuen die Gesichter zerfressen. Wird sie in großen Mengen aufgewühlt, schlägt sie unter Umständen mit solcher Gewalt zu, dass kein von Menschen gemachtes Gebäude ihr widerstehen kann. Selbst für jene, die gelernt haben, mit ihr zu leben, ist sie häufig eine Mördersubstanz. Wir nennen sie Wasser.
Wasser ist überall. Eine Kartoffel besteht zu 80 Prozent aus Wasser, eine Kuh zu 74, ein Bakterium zu 75 Prozent.2 Eine Tomate ist mit 95 Prozent eigentlich kaum etwas anderes als Wasser. Selbst bei uns Menschen macht das Wasser 65 Prozent aus, das heißt, wir sind im Verhältnis von fast zwei zu eins mehr Flüssigkeit als Festsubstanz. Wasser ist ein seltsamer Stoff. Es ist formlos und durchsichtig, und doch sehnen wir uns danach, in seiner Nähe zu sein. Es hat keinen Geschmack, und doch lieben wir seinen Geschmack. Wir reisen über große Entfernungen und bezahlen ein kleines Vermögen dafür, um es im Sonnenlicht zu sehen. Und obwohl wir wissen, dass es gefährlich ist und dass jedes Jahr Zehntausende von Menschen ertrinken, können wir es nicht erwarten, darin herumzutollen.
Da Wasser so allgegenwärtig ist, übersehen wir häufig seine wahrhaft außergewöhnlichen Eigenschaften. Fast nichts davon ist geeignet, zuverlässige Aussagen über andere Flüssigkeiten zu machen, und umgekehrt.3 Wenn wir nichts über das Wasser wüssten und unsere Annahmen auf das Verhalten der Verbindungen stützen würden, die ihm chemisch am stärksten ähneln – insbesondere Wasserstoffselenid und Schwefelwasserstoff –, würden wir damit rechnen, dass es bei minus 93 Grad siedet und bei Zimmertemperatur ein Gas ist.
Die meisten Flüssigkeiten ziehen sich beim Abkühlen um bis zu zehn Prozent zusammen. Das gilt auch für das Wasser, aber nur bis zu einer bestimmten Grenze. Knapp oberhalb des Gefrierpunktes dehnt es sich wieder aus – eine paradoxe, rätselhafte, äußerst unwahrscheinliche Eigenschaft. Wenn es fest wird, ist sein Volumen um fast ein Zehntel größer als zuvor.4 Wegen dieser Ausdehnung schwimmt Eis auf dem Wasser – »eine ganz und gar bizarre Eigenschaft«, wie John Gribbin es formuliert.5 Ohne diese reizvolle Besonderheit würde Eis nach unten sinken, Seen und Ozeane würden von unten nach oben zufrieren. Ohne Oberflächeneis, das die Wärme festhält, würde diese aus dem Wasser entweichen, sodass es sich noch stärker abkühlt und mehr Eis entsteht. Dann würden auch die Ozeane schnell zufrieren und mit ziemlicher Sicherheit sehr lange in diesem Zustand bleiben, vielleicht sogar für immer – kaum die richtige Voraussetzung für das Leben. Wir können dankbar dafür sein, dass das Wasser sich scheinbar weder um die Regeln der Chemie noch um physikalische Gesetze kümmert.
Wasser hat die allgemein bekannte chemische Formel H 2 O, das heißt, es besteht aus einem relativ großen Sauerstoffatom, an das zwei kleinere Wasserstoffatome angeheftet sind. Die Wasserstoffatome halten sich eisern an ihrem zugehörigen Sauerstoff fest, gehen aber auch lockere Verbindungen zu anderen Wassermolekülen ein. Auf Grund seines Aufbaus beteiligt sich jedes Wassermolekül gewissermaßen an einem Tanz mit anderen Wassermolekülen: Immer wieder geht es eine kurze Paarung ein und wandert dann weiter wie die ständig wechselnden Partner in einer Quadrille, um eine hübsche Formulierung von Robert Kunzig zu übernehmen.6 Ein Glas Wasser mag nicht sonderlich lebendig wirken, aber in Wirklichkeit wechselt jedes Molekül darin mehrere Milliarden Mal in der Sekunde den Partner. Das ist der Grund, warum Wassermoleküle aneinander haften und Gebilde wie Pfützen und Seen bilden; andererseits ist die Bindung aber nicht besonders fest und lässt sich leicht trennen, beispielsweise wenn man in ein Gewässer eintaucht. Zu jedem einzelnen Zeitpunkt stehen nur jeweils 15 Prozent der Moleküle tatsächlich untereinander in Berührung.7
In einem gewissen Sinn ist es eine sehr starke Bindung – deshalb können Wassermoleküle bergauf fließen, wenn man sie ansaugt, und die Wassertropfen auf der Motorhaube eines Autos zeigen eine einzigartige Entschlossenheit, mit ihren Partnern kleine Perlen zu bilden. Ebenso ist es die Ursache für die Oberflächenspannung des Wassers. Die Moleküle an der Oberfläche werden von ihren gleichartigen, unteren und seitlichen Nachbarn stärker angezogen als von den Luftmolekülen über ihnen. So entsteht eine Art Häutchen, das kräftig genug ist, um Insekten zu tragen und Steine abprallen zu lassen.
Dass wir ohne Wasser zu Grunde gehen würden, brauche ich wohl nicht besonders zu erwähnen. Fehlt es, verfällt der menschliche Organismus sehr schnell. Schon nach wenigen Tagen verschwinden die Lippen, »als wären sie amputiert, das Zahnfleisch wird schwarz, die Nase schrumpft auf die Hälfte ihrer Länge, und die Haut zieht sich rund um die Augen so straff zusammen, dass man nicht mehr blinzeln kann«.8 Wasser ist für uns derart unentbehrlich, dass man eine wichtige Tatsache leicht übersieht: Mit Ausnahme eines sehr kleinen Anteils ist das Wasser auf der Erde für uns Gift – und zwar ein tödliches. Das liegt an dem Salz, das es enthält.
Zum Leben brauchen wir zwar Salz, aber nur in sehr geringen Mengen. Meerwasser enthält viel zu viel davon: etwa das 70-fache der Menge, die unser Stoffwechsel gefahrlos verarbeiten kann. In einem Liter sind durchschnittlich nur ungefähr zweieinhalb Teelöffel normales Kochsalz gelöst,9 jene Verbindung, die wir uns auch auf das Essen streuen. In viel größeren Mengen enthält das Meerwasser aber andere Elemente, Verbindüngen und gelöste Feststoffe, die man zusammenfassend ebenfalls als Salze bezeichnet. Der Anteil dieser Salze und Mineralstoffe in unserer Körperflüssigkeit ist dem im Meerwasser gespenstisch ähnlich – beim Schwitzen und Weinen geben wir Meerwasser ab, wie Margulis und Sagan es formulieren –, aber seltsamerweise vertragen wir es nicht, sie direkt zu uns zu nehmen.10 Wenn zu viel Salz in den Organismus gelangt, tritt sehr schnell eine Stoffwechselkrise ein. Aus allen Zellen strömen die Wassermoleküle herbei wie freiwillige Feuerwehrleute, um den plötzlichen Salzüberschuss zu verdünnen und abzutransportieren. In den Zellen führt das zu einem gefährlichen Mangel an dem Wasser, das sie zur Ausführung ihrer normalen Funktionen brauchen. Sie werden dehydriert, um den Fachausdruck zu gebrauchen. Im Extremfall führt der Wassermangel zu Krampfanfällen, Bewusstlosigkeit und Gehirnschäden. Gleichzeitig transportieren die überforderten Blutzellen das Salz zu den Nieren, die schließlich ebenfalls überlastet sind und ihre Tätigkeit einstellen. Wenn die Nieren nicht mehr funktionieren, stirbt man. Das ist der Grund, warum wir kein Meerwasser trinken.
Es gibt auf der Erde rund 1,33 Milliarden Kubikkilometer Wasser, und mehr wird es auch nie werden.11 Das System ist geschlossen: Es kann praktisch nichts hinzukommen oder verschwinden. Das Wasser, das wir heute trinken, existiert und erfüllt seine Aufgaben, seit die Erde jung war. Schon vor 3,8 Milliarden Jahren hatten die Ozeane (zumindest mehr oder weniger) ihr heutiges Volumen erreicht.12
Die Gesamtmasse des Wassers auf der Erde, auch Hydrosphäre genannt, befindet sich zum allergrößten Teil in den Ozeanen. 97 Prozent sind Meerwasser, der größte Teil davon im Pazifik, der die Hälfte des Globus bedeckt und größer ist als sämtliche Landmassen zusammen. Insgesamt enthält der Pazifik ein wenig mehr als die Hälfte des gesamten Ozeanwassers13 (51,6 Prozent, um genau zu sein); im Atlantik sind es 23,6 und im Indischen Ozean 21,2 Prozent, sodass nur 3,6 Prozent für alle anderen Meere übrig bleiben. Die durchschnittliche Tiefe der Ozeane liegt bei 3900 Metern, im Pazifik sind es dabei durchschnittlich rund 300 Meter mehr als im Atlantik und im Indischen Ozean. Rund 60 Prozent der Erde sind von Ozean mit einer Tiefe von mehr als 1600 Metern bedeckt. Wie Philip Ball ganz richtig bemerkt, sollten wir unseren Planeten eigentlich nicht Erde, sondern Wasser nennen.14
Von den drei Prozent des Wassers, die Süßwasser sind, ist der größte Teil in den Eiskappen gebunden.15 Nur eine winzige Menge – 0,036 Prozent – befindet sich in Seen, Flüssen und anderen Gewässern, und ein noch kleinerer Teil von nur 0,001 Prozent hat die Form von Wolken oder Wasserdampf. Die Eismassen der Erde befinden sich zu fast 90 Prozent in der Antarktis, der Rest zum größten Teil in Grönland. Am Südpol steht man auf einer Eisschicht von fast drei Kilometern Dicke, am Nordpol sind es nur viereinhalb Meter.16 In der Antarktis liegen rund 25 Millionen Kubikmeter Eis, genug, damit der Meeresspiegel um 60 Meter ansteigen würde, wenn alles schmilzt.17 Würde dagegen das gesamte Wasser aus der Atmosphäre gleichmäßig verteilt als Regen fallen, würden die Ozeane nur um zweieinhalb Zentimeter tiefer.
Der Meeresspiegel ist übrigens fast ausschließlich ein theoretischer Begriff. Die Ozeane haben keine gleichmäßig hohe Oberfläche. Gezeiten, Wind, Corioliskraft und andere Effekte verursachen von einem Ozean zum anderen und auch innerhalb der einzelnen Ozeane beträchtliche Schwankungen des Wasserspiegels. Der Pazifik steht an seinem Westrand knapp einen halben Meter höher – eine Folge der Zentrifugalkraft, die durch die Erddrehung entsteht. Sie wirkt ganz ähnlich, als wenn man eine Wanne mit Wasser auf einer Seite anhebt: Das Wasser fließt ans andere Ende. Nach dem gleichen Prinzip türmt auch die nach Osten gerichtete Drehung der Erde das Wasser am Westrand des Ozeans auf.
Wenn man bedenkt, welch große Bedeutung die Meere seit alters her für uns haben, ist es eigentlich erstaunlich, dass das wissenschaftliche Interesse an ihnen erst so spät erwachte. Bis weit ins 19. Jahrhundert hinein stammten unsere Kenntnisse über die Ozeane fast ausschließlich aus dem, was an die Küste gespült wurde oder mit Fischernetzen ans Licht kam, und nahezu alle schriftlichen Berichte stützten sich mehr auf Anekdoten und Vermutungen als auf handfeste Belege. In den dreißiger Jahren des 19. Jahrhunderts vermaß der britische Naturforscher Edward Forbes den Boden von Atlantik und Mittelmeer, und anschließend erklärte er, es gebe in mehr als 600 Metern Tiefe keinerlei Leben. Diese Annahme erschien durchaus vernünftig. In derartige Tiefen dringt kein Licht vor, sodass Pflanzen dort nicht existieren können, und man wusste, dass auch der Wasserdruck extrem hoch ist. Deshalb war man überrascht, als man 1860 eines der ersten Transatlantikkabel zu Reparaturarbeiten aus mehr als 3000 Metern Tiefe an die Oberfläche holte: Es war dick mit Korallen, Muscheln und anderen Lebewesen verkrustet.
Die systematische Erforschung der Meere begann erst 1872. In diesem Jahr machte sich eine Gemeinschaftsexpedition des Britischen Museums, der Royal Society und der britischen Regierung mit dem früheren Kriegsschiff HMS Challenger von Portsmouth aus auf den Weg. Dreieinhalb Jahre lang fuhren die Wissenschaftler rund um die Welt, entnahmen Wasserproben, fingen Fische ein und zogen einen Schleppkasten durch das Sediment. Es waren offensichtlich sehr zermürbende Arbeiten. Von der Besatzung, insgesamt 240 Wissenschaftler und Mannschaftsmitglieder, verließ jeder Vierte im Laufe der Reise das Schiff, und acht weitere starben oder wurden verrückt, »von der nervtötenden Eintönigkeit des jahrelangen Schleppnetzfischens zur Verzweiflung getrieben«, so eine Formulierung der Historikerin Samantha Weinberg.18 Aber sie legten fast 70000 Seemeilen zurück,19 sammelten mehr als 4700 neue Arten von Meerestieren und gewannen derart viele Erkenntnisse, dass sie einen 50-bändigen Bericht verfassen konnten (dessen Fertigstellung 19 Jahre in Anspruch nahm). Damit hatten sie eine ganz neue Wissenschaftsdisziplin geschaffen: die Meeresforschung oder Ozeanografie. Außerdem entdeckten sie durch Tiefenmessungen, dass es in der Mitte des Atlantiks offensichtlich unterseeische Gebirge gibt, was einige aufgeregte Autoren zu der Vermutung veranlasste, man habe den versunkenen Kontinent Atlantis gefunden.
Da die etablierte Wissenschaft das Meer zum größten Teil nicht zur Kenntnis nahm, blieb es sehr wenigen engagierten Amateuren überlassen, Auskunft über die unterseeische Welt zu geben. Die moderne Tiefseeforschung begann 1930 mit Charles Williarn Beebe und Oris Barton. Beide waren zwar gleichberechtigte Partner, aber die größere Aufmerksamkeit der Geschichtsschreibung erregte stets Beebe, der die farbigere Gestalt war. Er wurde 1877 als Sohn einer wohlhabenden Familie in New York geboren, studierte Zoologie an der Columbia University und nahm dann bei der New Yorker Zoological Society eine Stelle als Vogelwärter an. Als er dieser Tätigkeit überdrüssig war, entschloss er sich zu einem Leben als Abenteurer, und während der nächsten 25 Jahre unternahm er ausgedehnte Reisen durch Asien und Südamerika. Dabei wurde er nacheinander von verschiedenen attraktiven Assistentinnen begleitet, die er fantasievoll als »Historikerin und Technikerin« oder als »Assistentin für Fischprobleme« bezeichnete.20 Zur Finanzierung der Unternehmungen schrieb er mehrere populärwissenschaftliche Bücher mit Titeln wie Edge of the Jungle und Jungle Days, er verfasste aber auch einige ansehnliche Fachbücher über wilde Tiere und Ornithologie.
Mitte der zwanziger Jahre entdeckte er während einer Reise auf die Galapagosinseln »den Genuss des Baumelns« – so seine Beschreibung des Tiefseetauchens. Wenig später tat er sich mit Barton zusammen, der aus einer noch reicheren Familie stammte, ebenfalls die Columbia University besucht hatte und sich nach Abenteuern sehnte.21 Das Verdienst wird zwar fast immer Beebe zugeschrieben, in Wirklichkeit war aber Barton derjenige, der die erste Bathysphäre (nach den griechischen Worten für »Tiefe« und »Kugel«) entwarf und ihren Bau mit 12000 Dollar finanzierte. Es war eine winzige, zwangsläufig sehr widerstandsfähige Kammer aus vier Zentimeter dickem Gusseisen und zwei kleinen Bullaugen, in die siebeneinhalb Zentimeter dicke Quarzblöcke eingelassen waren. Die Bathysphäre bot zwei Personen Platz, die allerdings bereit sein mussten, sich sehr eng zusammenzudrängen. Es war selbst nach den Maßstäben jener Zeit keine sonderlich hoch entwickelte Technologie. Die Tauchkugel ließ sich nicht manövrieren – sie hing einfach an einem langen Drahtseil – und hatte ein höchst primitives Belüftungssystem.22 Zur Neutralisierung des ausgeatmeten Kohlendioxids dienten offene Gefäße mit gebranntem Kalk, und um die Feuchtigkeit zu beseitigen, öffneten die Insassen eine kleine Wanne mit Calciumchlorid, über der sie manchmal Palmwedel hin und her bewegten, um die chemischen Reaktionen zu beschleunigen.
Aber die namenlose kleine Bathysphäre erfüllte ihre Aufgabe. Der erste Tauchgang fand im Juni 1930 auf den Bahamas statt, und dabei stellten Barton und Beebe mit 200 Metern einen neuen Tiefenrekord auf. Bis 1934 hatten sie den Rekord bereits auf fast 1000 Meter hochgetrieben, und dort blieb er bis nach dem Krieg. Barton war sicher, dass man mit dem Gerät ohne Gefahr auch 1500 Meter erreichen konnte, aber mit jedem Meter, den sie weiter in die Tiefe vordrangen, war die Belastung der Bolzen und Nieten deutlicher zu hören. Es war in jeder Tiefe eine tapfere, mutige Arbeit. Bei 1000 Metern lastete auf jedem Quadratzentimeter ihrer kleinen Bullaugen bereits ein Druck von fast drei Tonnen. In dieser Tiefe drohte ihnen jeden Augenblick der Tod, das betonte Beebe in seinen vielen Büchern, Zeitschriftenartikeln und Radiosendungen immer wieder. Ihre größte Sorge bestand aber darin, dass die Winde auf dem Schiff unter der Belastung durch die Stahlkugel und ein Stahlkabel von zwei Tonnen Gewicht brechen und die beiden Männer auf den Meeresboden sinken lassen könnte. In diesem Fall hätte es keine Rettung gegeben.
Allerdings lieferten die Tauchgänge kaum handfeste wissenschaftliche Erkenntnisse. Die beiden beobachteten zwar viele Lebewesen, die sie nie zuvor gesehen hatten, aber da die Sichtverhältnisse so schlecht waren und keiner der beiden unerschrockenen Aquanauten über eine Ausbildung als Meeresforscher verfügte, konnten sie ihre Befunde häufig nicht in den Einzelheiten beschreiben, nach denen die echten Wissenschaftler verlangten. Die Tauchkugel hatte keinen Außenscheinwerfer, sondern sie konnten nur eine 250-Watt-Lampe in das Fenster halten. In mehr als 150 Metern Tiefe herrscht aber ohnehin praktisch undurchdringliche Dunkelheit, und außerdem starrten sie durch siebeneinhalb Zentimeter Quarz. Wenn sie also etwas sehen wollten, musste dieses Etwas an ihnen fast ebenso viel Interesse haben wie sie an ihm. Letztlich konnten sie nur berichten, dass es da unten eine Menge seltsamer Dinge gab. Im Jahr 1934 erspähte Beebe bei einem Tauchgang zu seiner großen Verblüffung eine Riesenschlange »von mehr als sechs Metern Länge und großer Breite«. Sie schwamm so schnell vorüber, dass er eigentlich nur einen Schatten sah. Was immer es auch gewesen sein mag, etwas Ähnliches hat seitdem nie wieder jemand beobachtet. Ihre Berichte waren also so unbestimmt, dass sie von der Wissenschaft in der Regel kaum beachtet wurden.23
Nach ihrem Rekord-Tauchgang im Jahre 1934 verlor Beebe das Interesse an der Tiefsee und wandte sich anderen Abenteuern zu. Barton jedoch machte weiter. Zu Beebes Ehre muss man anmerken, dass er immer erklärte, Barton sei der eigentliche Kopf ihres Unternehmens, aber dieser war offensichtlich nicht in der Lage, aus dem Schatten seines Kollegen zu treten. Allerdings schrieb Barton ebenfalls spannende Berichte über ihre Unterwasserabenteuer, und er trat sogar in einem Hollywoodfilm mit dem Titel Titans of the Deep auf. Darin kamen eine Bathysphäre und zahlreiche spannende, im Wesentlichen erfundene Begegnungen mit aggressiven Riesenkraken und ähnlichen Tieren vor. Er machte sogar Reklame für Camel-Zigaretten (»Damit zittern meine Nerven nicht mehr«). Im Jahr 1948 erhöhte er den Tiefenrekord im Pazifik vor Kalifornien um 50 Prozent auf 1500 Meter, aber die Welt war offenbar auch jetzt noch entschlossen, ihn zu übersehen. Ein Zeitungskritiker hielt sogar Beebe für den Hauptdarsteller des Films Titans of the Deep. Heute könnte Barton von Glück sagen, wenn er überhaupt noch erwähnt wird.
Aber ohnehin wurde er schließlich durch ein Vater-Sohn-Gespann aus der Schweiz völlig in den Schatten gestellt. Auguste und Jacques Piccard konstruierten ein völlig neues Tauchfahrzeug, das sie Bathyscaph (»Tiefenboot«) nannten. Nach der italienischen Stadt, in der es gebaut wurde, tauften sie es auf den Namen Trieste. Das neue Gerät ließ sich unabhängig manövrieren, im Wesentlichen allerdings nur nach oben und unten. Anfang 1954, bei einem der ersten Tauchgänge, erreichte es eine Tiefe von über 4400 Metern, nahezu das Dreifache des Rekordes, den Barton sechs Jahre zuvor aufgestellt hatte. Aber das Tiefseetauchen erforderte erhebliche finanzielle Mittel, und den Piccards ging allmählich das Geld aus.
Im Jahr 1958 schlossen sie ein Abkommen mit der US-Marine. Danach ging das Tauchfahrzeug in den Besitz der Navy über, die Piccards behielten aber das Verfügungsrecht.24 Nachdem sie nun wieder flüssig waren, bauten sie das Fahrzeug um, versahen es mit mehr als zwölf Zentimeter dicken Wänden und verkleinerten die Fenster auf einen Durchmesser von nur noch fünf Zentimetern, wenig mehr als ein Schlüsselloch. Jetzt konnte es einen gewaltigen Druck aushalten, und im Januar 1960 ließen sich Jacques Piccard und der US-Marineleutnant Don Walsh rund 400 Kilometer vor der Insel Guam im West Pazifik bis auf die tiefste Stelle des Meeresbodens herab, den Marianengraben (den übrigens nicht ganz zufällig Harry Hess mit seinem Tiefenmesser entdeckt hatte). Knapp vier Stunden brauchten sie, dann waren sie in einer Tiefe von 10917 Metern angelangt. Der Druck betrug in dieser Tiefe zwar mehr als 1200 Kilogramm je Quadratzentimeter, zu ihrer Überraschung bemerkten sie aber gerade in dem Augenblick, als sie am Boden aufsetzten, einen flachen Fisch. Da sie keine Kameras mitführten, gibt es von dem Ereignis keine bildlichen Erinnerungen.
Nachdem sie sich nur 20 Minuten am tiefsten Punkt der Erde aufgehalten hatten, kehrten sie an die Oberfläche zurück. Es war das einzige Mal, dass Menschen in solche Tiefen vordrangen.
Mehr als 40 Jahre später stellt sich natürlich die Frage: Warum hat es ihnen seither niemand nachgemacht? Zunächst gab es einen wichtigen Gegner weiterer Tauchgänge: den Vizeadmiral Hyman G. Rickover, einen Mann mit lebhaftem Temperament und handfesten Ansichten, der über die Kassen des Ministeriums verfügte. Er hielt Tiefseeforschung für Geldverschwendung und betonte immer wieder, die Marine sei kein wissenschaftliches Institut. Außerdem waren die ganzen Vereinigten Staaten zu jener Zeit auf die Weltraumforschung fixiert: Man wollte einen Menschen auf den Mond bringen, und im Vergleich dazu wirkte die Erforschung der Tiefsee relativ unwichtig und altmodisch.
Entscheidend war aber die Erkenntnis, dass die Trieste im Grunde nicht viel erreicht hatte. Ein Beamter der Marine erklärte viele Jahre später: »Wir haben eigentlich nicht viel daraus gelernt, außer dass wir es können. Warum sollte man es noch einmal machen?«25 Es war, kurz gesagt, eine umständliche Methode, um einen Plattfisch zu finden, und eine teure noch dazu. Eine Wiederholung des Unternehmens würde heute Schätzungen zufolge mindestens 100 Millionen Dollar kosten.
Nachdem den Meeresforschern klar war, dass die Marine kein Interesse mehr hatte, das versprochene wissenschaftliche Programm weiter zu verfolgen, gab es einen Aufschrei des Entsetzens. Unter anderem um die Kritiker zu besänftigen, stellte die Navy deshalb Mittel für ein weiterentwickeltes Tauchboot zur Verfügung, das von der Woods Hole Oceanographic Institution in Massachusetts betrieben werden sollte. Das Gerät, das in etwas verkürzter Ehrung des Meeresforschers Allyn C. Vine auf den Namen Alvin getauft wurde, sollte ein vollständig manövrierbares Mini-U-Boot sein, das allerdings nicht annähernd so tief tauchen konnte wie die Trieste. Es gab dabei nur ein Problem: Die Planer fanden niemanden, der bereit war, es zu bauen.26 William J. Broad schreibt in seinem Buch The Universe Below. »Große Firmen wie General Dynamics, die U-Boote für die Marine produzierten, wollten kein Projekt übernehmen, das sowohl vom Bureau of Ships als auch von Admiral Rickover, den Schutzgöttern der Marine, abgelehnt wurde.« Am Ende wurde Alvin von dem Nahrungsmittelkonzern General Mills gebaut, und zwar in einer Fabrik, die sonst die Maschinen zur Herstellung von Frühstücksflocken produzierte.
Von dem, was sich sonst noch in der Tiefe der Meere verbergen mochte, hatte man tatsächlich wenig Ahnung. Bis weit in die fünfziger Jahre hinein stützten sich auch die besten Landkarten, die den Meeresforschern zur Verfügung standen, vorwiegend auf wenige Details aus vereinzelten Vermessungsprojekten, die bis 1929 zurückreichten, sowie auf ein weites Feld von Vermutungen. Die Marine besaß zwar ausgezeichnete Karten, mit deren Hilfe U-Boote zwischen unterseeischen Schluchten und Gebirgen manövrieren konnten, aber man wollte vermeiden, dass solche Informationen in sowjetische Hände fielen, und deshalb wurden die Unterlagen geheim gehalten. Die Wissenschaft musste mit bruchstückhaften, veralteten Vermessungsergebnissen auskommen oder sich auf wohl überlegte Vermutungen stützen. Selbst heute sind unsere Kenntnisse über den Meeresboden bemerkenswert wenig detailliert. Wer den Mond mit einem ganz normalen Amateurteleskop betrachtet, erkennt eine ganze Reihe von Kratern – Fracastorius, Blancanus, Zach, Planck und viele andere, die jedem Mondexperten vertraut sind, aber völlig unbekannt wären, wenn sie sich auf dem Meeresboden unseres eigenen Planeten befänden. Vom Mars besitzen wir bessere Landkarten als von den Gebieten unter unseren Ozeanen.
Auch an der Oberfläche waren die Untersuchungsmethoden ein wenig hemdsärmelig und improvisiert. Im Jahr 1994 wurden von einem koreanischen Frachtschiff während eines Sturms im Pazifik 34000 Eishockeyhandschuhe über Bord gespült.27 Die Handschuhe fanden sich später von Vancouver bis Vietnam überall wieder und trugen dazu bei, dass die Meeresforscher verschiedene Strömungen genauer verfolgen konnten als je zuvor.
Heute hat Alvin fast 40 Jahre auf dem Buckel, es ist aber nach wie vor Amerikas wichtigstes Forschungsschiff. Unterwasserfahrzeuge, die auch nur annähernd die Tiefe des Marianengrabens erreichen könnten, gibt es bis heute nicht, und nur fünf, unter ihnen Alvin, können bis zu dem normalen Tiefseeboden hinabtauchen, der mehr als die Hälfte der Erdoberfläche ausmacht. Der Betrieb eines typischen Tauchbootes kostet pro Tag über 20000 Euro. Deshalb lässt man solche Geräte nicht einfach aus einer Laune heraus ins Wasser, und noch weniger geht man damit auf Tauchfahrt nur in der unbestimmten Hoffnung, man werde zufällig auf etwas Interessantes stoßen. Das wäre so, als würden wir unsere Erfahrungen mit der Erdoberfläche auf die Arbeit von fünf Leuten stützen, die nach Einbruch der Dunkelheit mit Traktoren auf Erkundungsfahrt gehen. Nach Ansicht von Robert Kunzig haben Menschen vielleicht ein Millionstel oder ein Milliardstel der dunklen Meerestiefe genau erforscht, vielleicht aber auch viel weniger.28
Aber wenn Meeresforscher eine herausragende Eigenschaft haben, dann ist es ihr Fleiß. Mit ihren begrenzten Möglichkeiten haben sie eine ganze Reihe wichtiger Erkenntnisse gewonnen. Unter anderem machten sie 1977 eine der bedeutendsten und verblüffendsten biologischen Entdeckungen des 20. Jahrhunderts. In diesem Jahr fand Alvin rund um mehrere Tiefseeschlote vor den Galapagosinseln blühende Kolonien aus großen Lebewesen: mehr als drei Meter lange Röhrenwürmer, Muscheln von 30 Zentimetern Durchmesser, zahlreiche Krebse und gewundene Spaghettiwürmer.29 Ihr Dasein verdankten sie riesigen Bakterienkolonien, die ihrerseits Energie und Nährstoffe aus Schwefelwasserstoffverbindungen bezogen – diese Substanzen sind für die Lebewesen an der Oberfläche äußerst giftig und strömen ständig aus den Schloten. Es war eine ganz neue Welt, völlig unabhängig von Sonnenlicht, Sauerstoff und allem anderen, was man normalerweise mit Leben in Verbindung bringt. Grundlage dieser Lebenswelt war nicht die Photosynthese, sondern Chemosynthese – eine Tatsache, die den Biologen absurd erschienen wäre, hätte jemand die Fantasie besessen, sie sich auszumalen.
Aus den Schloten fließen gewaltige Wärme- und Energiemengen. Zwei Dutzend von ihnen produzieren gemeinsam ebenso viel Energie wie ein großes Kraftwerk, und in ihrer Umgebung herrscht ein ungeheures Temperaturgefälle. An der Ausströmstelle kann die Temperatur bis auf 400 Grad steigen, und wenige Meter weiter liegt sie nur zwei oder drei Grad über dem Gefrierpunkt. Genau an dieser Grenze lebt ein Wurm, der als Alvinellide bezeichnet wurde: An seinem Kopf ist das Wasser um rund 80 Grad wärmer als am Schwanz. Zuvor hatte man geglaubt, kein kompliziert gebautes Lebewesen könne eine Wassertemperatur von mehr als 55 Grad überleben30, und nun hatte man eines gefunden, das erheblich höhere Temperaturen und gleichzeitig auch extreme Kälte vertrug. Die Entdeckung bedeutete eine Umwälzung für unsere gesamte Vorstellung von den Voraussetzungen für Leben.
Gleichzeitig war damit auch eines der großen Rätsel der Meeresforschung gelöst, eine Frage, die vielen Menschen nicht einmal als Rätsel erschien: Warum nimmt der Salzgehalt der Ozeane nicht im Laufe der Zeit zu? Die Aussage mag banal erscheinen: Es gibt im Meer eine Menge Salz, genug, um alle trockenen Landflächen der Erde ungefähr 150 Meter hoch damit zu bedecken.31 Jeden Tag verdunsten aus den Ozeanen viele Millionen Liter Wasser, und das Salz bleibt zurück; logischerweise müsste das Meer also im Laufe der Jahre immer salziger werden, aber das geschieht nicht. Irgendetwas entfernt aus dem Wasser die gleiche Menge Salz, die auch hinzukommt. Lange Zeit hatte man keine Ahnung, was das für ein Mechanismus sein könnte. Nachdem Alvin die Tiefseeschlote gefunden hatte, kam man auf die Antwort. Geophysiker erkannten, dass die Schlote ganz ähnlich wirken wie die Filter in einem Fischbecken. Wenn Wasser in die Erdkruste eindringt, wird es vom Salz befreit, und durch die »Schornsteine« wird am Ende sauberes Wasser ausgestoßen. Das Ganze ist kein schneller Vorgang – bis ein Ozean gereinigt ist, können zehn Millionen Jahre vergehen –, aber solange man es nicht eilig hat, ist er äußerst wirksam.32
Vielleicht nichts anderes macht unsere innere Distanz zu den Tiefen der Ozeane so augenfällig deutlich wie das Hauptziel, das während des Internationalen Geophysikalischen Jahres 1957/58 für die Ozeanografie formuliert wurde: Man wollte untersuchen, ob sich die Tiefsee zur Entsorgung radioaktiver Abfälle nutzen ließ.33 Wohlgemerkt: Das war keineswegs eine geheime Verabredung, sondern eine stolze öffentliche Ankündigung. Auch wenn darüber nicht viel berichtet wurde, war die Versenkung radioaktiver Abfälle 1957/58 sogar schon seit über zehn Jahren im Gange, und das mit einem ziemlich entsetzlichen Nachdruck. Seit 1946 transportierten die Vereinigten Staaten den Atommüll in Fässern zu jeweils 45 Gallonen (knapp 200 Liter) auf die Farallon Islands etwa 50 Kilometer vor der kalifornischen Küste bei San Francisco, und dort wurden sie einfach über Bord geworfen.
Es war eine geradezu unglaubliche Achtlosigkeit. Meist handelte es sich um Fässer der gleichen Art, wie man sie auch in rostigem Zustand hinter Tankstellen oder auf Fabrikhöfen stehen sieht, irgendwelche Schutzummantelungen gab es nicht. Wenn sie im Wasser nicht untergingen, was häufig vorkam, schossen Marineschützen Löcher hinein, sodass Wasser eindringen konnte (wobei natürlich Plutonium, Uran und Strontium freigesetzt wurden).34 Bevor diese Praxis in den neunziger Jahren des 20. Jahrhunderts eingestellt wurde, hatten die Vereinigten Staaten an insgesamt 50 Stellen im Ozean mehrere 100000 Fässer versenkt, davon allein 50000 bei den Farallon Islands. Und die USA standen durchaus nicht allein. Weitere eifrige Atommüll-Entsorger waren Russland, China, Japan, Neuseeland und fast alle europäischen Staaten.
Welche Auswirkungen hatte das auf die Lebewesen im Meer? Nun, wir hoffen, dass sie gering sind, aber eigentlich haben wir keine Ahnung. Was das Leben in den Ozeanen angeht, sind wir von einer erstaunlichen, fröhlichen, selbstherrlichen Unkenntnis. Selbst über die bedeutendsten Meerestiere wissen wir häufig bemerkenswert wenig, so auch über das größte von allen, den gewaltigen Blauwal, ein Geschöpf von wahrhaft gigantischen Ausmaßen: Nach den Worten von David Attenborough »wiegt seine Zunge so viel wie ein Elefant, das Herz hat die Größe eines Autos, und manche Blutgefäße sind so breit, dass man in ihnen schwimmen könnte«. Er ist das gewaltigste Tier, das die Erde jemals hervorgebracht hat, größer noch als die massigsten Dinosaurier. Und doch liegt die Lebensweise der Blauwale für uns weitgehend im Dunkeln. Wir wissen nichts darüber, wo sie sich die meiste Zeit aufhalten, wohin sie sich zur Paarung begeben und auf welchen Wegen sie dorthin gelangen. Unsere wenigen Kenntnisse haben wir fast ausschließlich dadurch gewonnen, dass wir ihre Gesänge belauscht haben, aber auch die sind rätselhaft. Manchmal brechen Blauwale einen Gesang ab, um ihn sechs Monate später genau an derselben Stelle wieder aufzunehmen.35 Oder sie stimmen ein neues Lied an, das noch keiner ihrer Artgenossen gehört haben kann, und doch kennen es alle sofort. Wie sie das bewerkstelligen, ist nicht einmal ansatzweise geklärt. Und dabei handelt es sich um Tiere, die immer wieder zum Atmen an die Oberfläche kommen müssen.
Bei Arten, die ständig in der Tiefe bleiben können, sind die Rätsel häufig noch größer. Wir brauchen nur an die legendären Riesenkraken zu denken.36 Im Vergleich zum Blauwal sind sie zwar klein, aber es handelt sich dennoch um ansehnliche Tiere mit Augen so groß wie Fußbälle und Fangarmen, die bis zu 20 Meter lang werden können. Ein Riesenkrake wiegt fast eine Tonne und ist damit das größte wirbellose Tier der Erde. Würde man ihn in einen normalen Privatswimmingpool setzen, hätte kaum noch etwas anderes darin Platz. Dennoch hat kein Wissenschaftler – und, soweit wir wissen, überhaupt kein Mensch – jemals einen lebenden Riesenkraken gesehen. Manche Zoologen haben ihre gesamte Berufslaufbahn darauf verwendet, solche Tiere lebend zu fangen oder wenigstens zu Gesicht zu bekommen, aber sie sind immer gescheitert. Man kennt diese Geschöpfe nur deshalb, weil sie gelegentlich an Stränden angespült werden – aus unbekannten Gründen insbesondere auf der Südinsel Neuseelands. Es muss sie in großer Zahl geben, denn sie bilden die wichtigste Nahrung der Pottwale, und Pottwale brauchen viel Nahrung.*
Einer Schätzung zufolge könnte es in den Meeren bis zu 30 Millionen Tierarten geben, von denen die meisten noch nicht entdeckt sind.37 Erste Hinweise darauf, wie üppig das Leben in der Tiefsee ist, fand man erst in den sechziger Jahren des 20. Jahrhunderts nach der Erfindung des Epibenthos-Schlittens. Dieses Schleppgerät fängt nicht nur Lebewesen am Meeresboden oder knapp darüber, sondern auch solche, die sich im Sediment vergraben haben. Die Meeresforscher Howard Sandler und Robert Hessler von der Woods Hole Institution sammelten damit entlang des Kontinentalsockels in einer Tiefe von etwa 1500 Metern innerhalb einer Stunde mehr als 25000 Tiere, die zu 365 Arten gehörten – Würmer, Seesterne, Seegurken und viele andere. Selbst in einer Tiefe von 5000 Metern fanden sie noch 3700 Tiere aus fast 200 Arten.38 Aber der Schlitten hält nur Lebewesen fest, die so langsam oder so dumm sind, dass sie nicht aus dem Weg gehen können. Ende der sechziger Jahre kam der Meeresbiologe John Isaacs auf die Idee, eine Kamera mit einem daran befestigten Köder ins Wasser zu lassen, und damit fand er noch viele weitere Tiere, insbesondere große Gruppen der aalähnlichen, einfach gebauten Inger und lebhafte Schwärme von Grenadierfischen. Steht plötzlich eine gute Nahrungsquelle zur Verfügung – beispielsweise wenn ein Wal stirbt und zum Meeresboden sinkt –, tun sich bis zu 390 Arten von Meeresbewohnern daran gütlich. Interessanterweise stellte sich heraus, dass viele dieser Tiere von Tiefseeschloten kamen, die bis zu 1500 Kilometer entfernt sind. Unter anderem handelte es sich dabei um Muscheln, die kaum als große Wanderer bekannt sind. Heute nimmt man an, dass die Larven mancher Tiere sich so lange im Wasser treiben lassen, bis sie auf Grund unbekannter chemischer Signale merken, dass sich eine gute Gelegenheit zum Fressen bietet. Erst dann lassen sie sich nieder.
Wie kommt es, dass wir die Meere so leicht überfordern können, wo sie doch so riesig sind? Nun, zunächst einmal sind die Ozeane der Welt nicht gleichermaßen üppig besiedelt. Insgesamt gilt noch nicht einmal ein Zehntel aller Meere von Natur aus als produktiv.39 Die meisten Wasserbewohner ziehen geringere Tiefen vor, weil es dort heller und wärmer ist, sodass organisches Material in großer Menge zur Verfügung steht und die Nahrungskette in Gang setzen kann. Korallenriffe beispielsweise nehmen noch nicht einmal ein Prozent der gesamten Meeresfläche ein, beherbergen aber 25 Prozent aller Fische.
In anderen Regionen sind die Ozeane bei weitem nicht so reichhaltig. Ein gutes Beispiel ist Australien. Mit einer Küstenlinie von über 32000 Kilometern und mehr als 23 Millionen Quadratkilometern territorialer Gewässer verfügt es über mehr Ozeanfläche als jedes andere Land, aber wie Tim Flannery anmerkt, gehört es nicht einmal zu den 50 größten Fischereinationen.40 Australien muss sogar in großem Umfang Fische und Meeresfrüchte importieren. Der Grund: Wie der Kontinent selbst, so sind auch die australischen Gewässer zum größten Teil Wüste. (Eine wichtige Ausnahme ist allerdings das äußerst fruchtbare Great Barrier Reef vor Queensland.) Da der Boden so unfruchtbar ist, bringt er auch wenig Nährstoffe hervor, die ins Meer gespült werden könnten.
Aber auch wo das Leben blüht und gedeiht, reagiert es oft sehr empfindlich auf Störungen. In den siebziger Jahren des 20. Jahrhunderts entdeckten Fischer aus Australien und in geringerem Umfang auch aus Neuseeland große Schwärme einer kaum bekannten Fischart, die über ihrem Kontinentalsockel in einer Tiefe von rund 800 Metern zu Hause war. Die Fische wurden »Orange Roughy« genannt, schmeckten köstlich und waren in großer Zahl vorhanden. Schon nach kurzer Zeit holten die Fischereiflotten jedes Jahr 40000 Tonnen von ihnen aus dem Wasser. Aber dann machten Meeresbiologen eine Reihe beunruhigender Entdeckungen. Roughys sind sehr langlebig und wachsen langsam heran. Manche Exemplare dürften bis zu 150 Jahre alt sein; ein Roughy, der heute verzehrt wird, könnte durchaus zur Regierungszeit der Königin Victoria geboren worden sein. Diese sehr gemächliche Lebensweise konnten die Roughys sich zu Eigen machen, weil das Wasser, in dem sie leben, so wenig Ressourcen bietet. In einer solchen Umgebung laichen Fische während ihres ganzen Lebens nur einmal. Natürlich verträgt ein solcher Bestand keine tief greifenden Störungen, aber als man das erkannte, war die Population bereits stark dezimiert. Selbst bei sorgfältiger Bewirtschaftung wird es Jahrzehnte dauern, bis der Bestand sich wieder erholt – falls das überhaupt noch geschieht.
An anderen Stellen dagegen werden die Ozeane nicht nur unabsichtlich, sondern auch ganz gezielt missbraucht. Viele Fischer schneiden Haien die Flossen ab und werfen die Tiere dann wieder ins Wasser, wo sie zu Grunde gehen.41 Im Jahre 1998 wurden im Fernen Osten Haiflossen für mehr als 200 Euro das Kilo gehandelt. Eine Schale Haifischflossensuppe ging in Tokio für 90 Euro über den Tresen. Nach Schätzungen des World Wildlife Fund wurden im Jahr 1994 insgesamt zwischen 40 und 70 Millionen Haie getötet.
Im Jahre 1995 holten rund 37000 große Fischereischiffe sowie rund eine Million kleinere Boote insgesamt doppelt so viel Fische aus dem Meer wie noch 25 Jahre zuvor. Die Trawler haben heute manchmal die Ausmaße von Kreuzfahrtschiffen, und in den Netzen, die sie hinter sich herziehen, hätte ein Dutzend Jumbojets Platz.42 Manche fuhren sogar Flugzeuge mit, die Fischschwärme aus der Luft lokalisieren.
Nach Schätzungen besteht etwa ein Viertel dessen, was ein Fischnetz nach oben befördert, aus »Beifang« – Fische, die man nicht anlanden kann, weil sie zu klein sind, der falschen Art angehören oder zur falschen Jahreszeit gefangen wurden. Ein Experte sagte der Zeitschrift Economist: »Wir befinden uns noch im Mittelalter. Wir lassen einfach das Netz hinunter und warten ab, was ans Licht kommt.«43 »Bis zu 22 Millionen Tonnen solcher unerwünschten Fische werden jedes Jahr wieder ins Meer geworfen, und zwar meist in Form von Kadavern.44 Auf jedes Kilo gefangener Krabben kommen etwa vier Kilo Fische und andere Meereslebewesen, die zu Grunde gehen. In der Nordsee werden weite Teile des Meeresbodens bis zu siebenmal im Jahr mit Schleppnetzen regelrecht sauber gefegt, ein Eingriff, dem kein Ökosystem etwas entgegenzusetzen hat.45 Nach Schätzungen werden mindestens zwei Drittel der Tierarten in der Nordsee überfischt. Jenseits des Atlantiks sieht die Sache nicht besser aus. Den Heilbutt gab es vor der Küste Neuenglands früher in so gewaltigen Mengen, dass ein einziges Boot an einem Tag bis zu 9000 Kilo an Land bringen konnte. Heute ist er vor der amerikanischen Nordostküste so gut wie ausgestorben.
Aber nichts ist mit dem Schicksal des Kabeljaus zu vergleichen. Ende des 15. Jahrhunderts fand der Entdecker John Cabot diese Fische in unglaublicher Zahl vor der Ostküste Nordamerikas – es waren Flachwassergebiete, und die sind bei Fischen wie dem Kabeljau, die ihre Nahrung am Meeresboden suchen, besonders beliebt. Manche dieser Gebiete waren riesig: Die Georges Banks vor Massachusetts sind größer als der zugehörige Bundesstaat. Noch umfangreicher sind die Grand Banks vor der Küste Neufundlands, und dort wimmelte es jahrhundertelang immer von Kabeljauen.46 Die Bestände galten als unerschöpflich. Aber natürlich waren sie das bei weitem nicht.
Bis 1960 war der Bestand laichender Kabeljaue im Nordatlantik nach Schätzungen auf rund 1,6 Millionen Tonnen gesunken. Im Jahr 1990 waren nur noch 22000 Tonnen übrig.«
Unter kommerziellen Gesichtspunkten war der Kabeljau ausgestorben. Die Fischer hätten alle gefangen, schrieb Mark Kurlansky in seinem faszinierenden Buch Kabeljau.47 Im Westatlantik dürfte diese Fischart für immer verschwunden sein. Die Kabeljaufischerei wurde 1992 auf den Grand Banks völlig eingestellt, aber nach einem Bericht der Fachzeitschrift Nature war noch bis zum vergangenen Herbst keine Erholung der Bestände zu erkennen.48 Wie Kurlansky berichtet, bestanden Fischfilets und Fischstäbchen ursprünglich aus Kabeljau, dann trat Schellfisch an seine Stelle, später Rotbarsch und seit einiger Zeit der Pazifik-Pollack. Heutzutage, so stellt Kurlansky trocken fest, heiße alles »Fisch«, was noch übrig ist.49
Das Gleiche gilt für viele andere Meerestiere. Vor dem US-Bundesstaat Rhode Island wurden früher regelmäßig Hummer von rund neun Kilo gefangen, manchmal sogar Exemplare von 13 Kilo. Lässt man die Hummer in Ruhe, können sie mehrere Jahrzehnte alt werden – nach heutiger Kenntnis erreichen sie bis zu 70 Jahren –, und dabei hören sie nie auf zu wachsen. Heute wiegen nur noch die wenigsten Hummer beim Fang mehr als ein Kilo. Die New York Times berichtete: »Nach Schätzungen der Biologen werden 90 Prozent der Hummer innerhalb des ersten Jahres gefangen, nachdem sie das gesetzlich vorgeschriebene Mindestalter von sechs Jahren erreicht haben.«50 Trotz sinkender Erträge erhalten die Fischer Neuenglands nach wie vor steuerliche Anreize, die sie ermutigen und in manchen Fällen praktisch zwingen, immer größere Boote anzuschaffen und das Meer noch intensiver auszubeuten. In Massachusetts sind den Fischern heute nur noch die heimtückischen Inger übrig geblieben, für die es im Fernen Osten einen kleinen Markt gibt, aber auch deren Zahl geht mittlerweile zurück.
Über die Dynamik, der das Leben im Meer unterliegt, wissen wir bemerkenswert wenig. Während die Vielfalt heute in überfischten Regionen weitaus geringer ist als früher, beherbergen andere, von Natur aus weniger fruchtbare Gewässer weit mehr Lebewesen, als man jemals geglaubt hätte. Das Südpolarmeer rund um die Antarktis produziert nur drei Prozent der weltweiten Phytoplanktonmenge – viel zu wenig, so sollte man meinen, als dass sie zur Grundlage eines komplizierten Ökosystems werden könnte, und doch ist genau das der Fall. Von den Krabbenessern, einer Robbenart, haben vermutlich die wenigsten Menschen schon einmal etwas gehört, und doch dürften sie nach dem Menschen die zweithäufigste große Tierart auf Erden sein. Auf dem Packeis rund um die Antarktis leben wahrscheinlich bis zu 15 Millionen von ihnen.51 Außerdem gibt es vermutlich zwei Millionen Weddell-Robben, mindestens eine halbe Million Kaiserpinguine und vielleicht bis zu vier Millionen Adelie-Pinguine. Die Nahrungskette ist also hoffnungslos kopflastig, und doch funktioniert sie. Interessanterweise weiß niemand, wie.
Mit alledem möchte ich auf sehr ausführliche Weise meine Hauptaussage verdeutlichen: Über den größten Lebensraum der Erde wissen wir sehr wenig. Aber wie wir auf den verbleibenden Seiten noch genauer erfahren werden, gilt das ganz allgemein: Sobald wir über das Lebendige reden, ist noch vieles unbekannt. Wir wissen nicht einmal, wie es überhaupt in Gang kam.
* Die unverdaulichen Teile der Riesenkraken, insbesondere die Schnäbel, sammeln sich im Magen der Pottwale und bilden dort eine Substanz namens Ambra, die in Parfüme als Fixiermittel verwendet wird. Wer sich das nächste Mal mit Chanel No. 5 einsprüht, sollte vielleicht daran denken, dass sich darin das Destillat eines nie gesehenen Seeungeheuers befindet. zurück