17.
In die Troposphäre

Bloß gut, dass es die Atmosphäre gibt. Sie hält uns warm. Ohne sie wäre die Erde eine leblose Eiskugel mit einer Durchschnittstemperatur von minus 50 Grad.1 Außerdem verschluckt oder reflektiert die Atmosphäre auch kosmische Strahlung, geladene Teilchen, ultraviolettes Licht und Ähnliches. Insgesamt hat das Gas der Atmosphäre die gleiche Schutzwirkung wie eine viereinhalb Meter dicke Betonschicht, und ohne sie würden die unsichtbaren Einflüsse aus dem All in uns eindringen wie winzige Dolche.

Am auffälligsten an unserer Atmosphäre ist jedoch ihre geringe Größe. Sie erstreckt sich bis in eine Höhe von rund 200 Kilometern. Vom Boden aus betrachtet, mag das relativ üppig erscheinen, aber wenn man die Erde bis auf die Größe eines üblichen Globus verkleinert, wäre sie nur ungefähr so dick wie ein paar Lackschichten.

Aus Gründen der wissenschaftlichen Bequemlichkeit unterteilt man die Atmosphäre in vier ungleiche Schichten: Troposphäre, Stratosphäre, Mesosphäre und Ionosphäre (Letztere wird mittlerweile häufig auch Thermosphäre genannt). Besonders lieb und teuer ist uns die Troposphäre. Sie allein enthält so viel Wärme und Sauerstoff, dass wir existieren können, aber selbst sie wird bereits sehr schnell lebensfeindlich, wenn man in ihre höheren Schichten vordringt. Vom Boden bis zu ihrer Obergrenze misst die Troposphäre (die »Wendesphäre«) am Äquator rund 16 Kilometer, in den gemäßigten Breiten dagegen, wo die meisten Menschen leben, sind es nicht mehr als zehn oder elf Kilometer. 80 Prozent der Masse unserer Atmosphäre sowie praktisch das gesamte Wasser sind in dieser dünnen Schicht enthalten, und deshalb spielt sich in ihr auch der allergrößte Teil des Wettergeschehens ab. Zwischen uns und dem Tod liegt wirklich nicht viel.

Über der Troposphäre befindet sich die Stratosphäre. Wenn eine Gewitterwolke sich auf ihrer Oberseite in der typischen Ambossform abflacht, hat sie die Grenze zwischen Troposphäre und Stratosphäre erreicht. Dieser unsichtbare Grenzbereich, der auch als Tropopause bezeichnet wird, wurde 1902 von dem französischen Ballonfahrer Leon-Philippe Teisserenc de Bort entdeckt.2 Mit -pause ist in diesem Fall kein vorübergehendes Stehenbleiben gemeint, sondern ein endgültiges Ende; der Begriff hat die gleiche griechische Wurzel wie das Wort Menopause.3 Die Tropopause ist selbst in ihrer größten Ausdehnung nicht weit von uns entfernt. Mit einem schnellen Aufzug, wie er in modernen Wolkenkratzern zu finden ist, wären wir in rund 20 Minuten dort, es wäre allerdings sehr ratsam, auf eine solche Reise zu verzichten. Ein derart schneller Aufstieg ohne Druckausgleich würde mindestens zu schweren Gehirn- und Lungenödemen sowie zu einer gefährlichen Flüssigkeitsansammlung im Körpergewebe führen.4 Wenn die Türen sich an der Aussichtsplattform öffnen, wären wahrscheinlich alle in dem Aufzug bereits tot oder lägen im Sterben. Auch ein vorsichtigerer Aufstieg wäre von großen Unannehmlichkeiten begleitet. Die Temperatur liegt in zehn Kilometern Höhe häufig bei rund minus 60 Grad, und eine zusätzliche Sauerstoffversorgung wäre notwendig oder zumindest äußerst wünschenswert.5

Nachdem wir die Troposphäre verlassen haben, steigt die Temperatur schnell wieder auf rund vier Grad an. Ursache ist die Absorptionswirkung des Ozons (die de Bort ebenfalls 1902 bei seinem waghalsigen Aufstieg entdeckte). In der Mesophäre sinkt sie dann wieder auf bis zu minus 90 Grad, bevor sie in der zu Recht so bezeichneten, aber sehr wechselhaften Therrnosphäre auf bis zu 1500 Grad oder mehr in die Höhe schießt; in dieser Höhe kann die Temperatur zwischen Tag und Nacht um mehrere 1000 Grad schwanken – wobei man allerdings dazu sagen muss, dass »Temperatur« hier ein mehr oder weniger theretischer Begriff ist. Eigentlich ist die Temperatur ein Maß für die Bewegungen der Moleküle. Auf Meereshöhe sind die Gasmoleküle der Luft so eng benachbart, dass jedes einzelne von ihnen sich nur über winzige Entfernungen bewegen kann – genauer gesagt, ungefähr um einen Millionstel Zentimeter6 – und dann sofort mit einem anderen zusammenstößt. Da auf diese Weise ständig Billionen von Molekülen kollidieren, wird auch eine Menge Wärme ausgetauscht. In der Thermosphäre jedoch, in Höhen von 80 Kilometern und mehr, ist die Luft äußerst dünn: Hier sind zwei Moleküle im Durchschnitt mehrere Kilometer voneinander entfernt, sodass sie sich kaum einmal berühren. Obwohl also jedes einzelne Molekül sich sehr schnell bewegt und deshalb sehr »warm« ist, gibt es kaum Wechselwirkungen und damit auch kaum eine Wärmeübertragung. Für Satelliten und Raumschiffe ist das sehr nützlich, denn bei einem stärkeren Wärmeaustausch würde jeder von Menschen hergestellte Gegenstand, der in solchen Höhen um die Erde kreist, in Flammen aufgehen.

Dennoch müssen Raumschiffe in der äußeren Atmosphäre große Vorsicht walten lassen. Das gilt insbesondere für die Rückkehr zur Erde – dies machte die Raumfähre Columbia im Februar 2003 auf tragische Weise deutlich. Die Atmosphäre ist zwar sehr dünn, aber wenn das Raumschiff in einem zu steilen Winkel – mehr als ungefähr sechs Grad – oder zu schnell in sie eintritt, trifft es auf so viele Moleküle, dass es sich durch den Luftwiderstand stark aufheizt. Ist der Eintrittswinkel in die Thermosphäre dagegen zu klein, kann das Raumschiff auch abprallen und wieder in den Weltraum fliegen wie ein Kiesel, den man flach über das Wasser wirft.7

Aber man muss sich nicht bis an den Rand der Atmosphäre begeben, wenn man daran erinnert werden will, wie hoffnungslos wir an den Erdboden gefesselt sind. Das weiß jeder, der sich einmal eine Zeit lang in einer hoch gelegenen Stadt aufgehalten hat: Man braucht sich nur wenige 1000 Meter von der Meereshöhe zu entfernen, und schon protestiert der Organismus. Selbst erfahrene Bergsteiger, die über ausreichende Fitness, Übung und Sauerstoffflaschen verfügen, neigen in großer Höhe zu Verwirrungszuständen, Übelkeit, Erschöpfung, Erfrierungen, Unterkühlung, Migräne, Appetitlosigkeit und vielen anderen körperlichen Fehlfunktionen. Unser Organismus erinnert uns auf hunderterlei Weise nachdrücklich daran, dass er nicht dazu konstruiert ist, so weit oberhalb der Meereshöhe zu funktionieren.

Über die Bedingungen auf dem Gipfel des Mount Everest schrieb der Bergsteiger Peter Habeler: »Selbst unter den günstigsten Umständen erfordert jeder Schritt in dieser Höhe eine ungeheure Willensanstrengung. Man muss sich zu jeder Bewegung zwingen, nach jedem Haltepunkt greifen. Ständig ist man durch eine bleierne, tödliche Müdigkeit bedroht.« Und der britische Bergsteiger und Filmemacher Matt Dickinson berichtet in seinem Buch The Other Side of Everest, wie Howard Somervell bei einer britischen Everest-Expedition im Jahr 1924 »fast erstickt wäre, weil ein Stück infiziertes Fleisch sich gelöst hatte und seine Luftröhre verstopfte«.8 Mit ungeheurer Anstrengung gelang es Somervell, den Brocken auszuhusten. Wie sich herausstellte, handelte es sich um »die gesamte Schleimhaut seines Kehlkopfes«.

Die körperlichen Beeinträchtigungen in Höhen von mehr als 7500 Metern sind berüchtigt – dieser Bereich ist bei Bergsteigern als »Todeszone« bekannt. Viele Menschen sind aber auch schon in Höhen von nur 5000 Metern stark geschwächt oder sogar gefährlich krank. Die Anfälligkeit für diese Höhenkrankheit hat kaum etwas mit der Fitness zu tun. Manchmal machen Großmütter in hoch gelegenen Gebieten noch Luftsprünge, während ihre durchtrainierten Nachkommen als hilflose Häufchen Elend in geringere Höhen zurückkehren müssen.

Die absolute Obergrenze für Höhen, in denen Menschen dauerhaft leben können, scheint bei rund 5500 Metern zu liegen,9 aber auch wer an solche Bedingungen gewöhnt ist, erträgt sie nicht über längere Zeit. Wie Frances Ashcroft in Am Limit. Leben und Überleben in Extremsituationen berichtet, liegen manche Schwefelbergwerke in den Anden 5800 Meter hoch, aber die Arbeiter ziehen es vor, jeden Abend bis auf eine Höhe von 460 Metern hinunterzufahren und am folgenden Tag wieder aufzusteigen, statt ständig in dieser Höhenlage zu leben. Bei den Bewohnern hoch gelegener Gebiete hat sich häufig im Laufe mehrerer 1000 Jahre ein besonders großer Brustkorb mit entsprechend vergrößerter Lunge entwickelt, und die Dichte der Sauerstoff transportierenden roten Blutzellen liegt um fast ein Drittel höher als bei anderen. Allerdings verträgt der Kreislauf eine solch erhöhte Zellzahl nur bis zu einer gewissen Grenze. Außerdem können auch gut angepasste Frauen in Höhen über 5500 Metern einen heranwachsenden Fetus nicht mehr so gut mit Sauerstoff versorgen, dass sie die Schwangerschaft zu Ende bringen könnten.10

Als man in den achtziger Jahren des 18. Jahrhunderts in Europa die ersten experimentellen Ballonflüge unternahm, war man unter anderem überrascht, weil es in großer Höhe so eisig kalt wurde. Die Temperatur sinkt mit 1000 Metern Höhenunterschied jeweils um rund fünf Grad. Eigentlich wäre es logisch, dass man umso mehr Wärme empfindet, je näher man der Wärmequelle kommt. Die Erklärung liegt zum Teil darin, dass man sich der Sonne in größerer Höhe nicht nennenswert annähert. Unser Zentralgestirn ist 150 Millionen Kilometer von uns entfernt. Ihm um ein paar 1000 Meter näher zu kommen, ist das Gleiche, als würde man in Bayern einen Schritt in Richtung eines Buschfeuers in Australien gehen und dann damit rechnen, dass man den Rauch riecht. Von viel größerer Bedeutung ist deshalb die Dichte der Moleküle in der Atmosphäre. Sonnenlicht überträgt Energie auf die Atome. Es verstärkt ihre ungeordneten Bewegungen, und in diesem aktivierten Zustand stoßen sie zusammen, sodass Wärme frei wird. Wenn wir an einem Sommertag die warme Sonne im Rücken spüren, nehmen wir in Wirklichkeit angeregte Atome wahr. Je höher man klettert, desto weniger Moleküle sind vorhanden, und entsprechend geringer ist auch die Zahl ihrer Kollisionen.

Luft ist ein trügerischer Stoff. Selbst auf Meereshöhe erscheint sie uns in der Regel nicht greifbar und nahezu gewichtslos. In Wirklichkeit hat sie ziemlich viel Masse, und die macht sich auch häufig bemerkbar. Der Meeresforscher Wyville Thomson schrieb schon vor über 100 Jahren: »Wenn wir morgens aufstehen, stellen wir manchmal fest, dass das Barometer um einen Zoll gestiegen ist und dass sich demnach über Nacht in aller Stille eine halbe Tonne über uns aufgetürmt hat, und doch empfinden wir kein Unwohlsein, sondern ein Gefühl der Freude und Leichtigkeit, erfordert es doch etwas weniger Anstrengung, unseren Körper in dem dichteren Medium zu bewegen.«11 Dass wir unter dem zusätzlichen Druck von einer halben Tonne nicht zusammengequetscht werden, hat den gleichen Grund, aus dem unser Körper auch den Druck tief unter Wasser aushält: Er besteht zum größten Teil aus Flüssigkeit, die sich nicht zusammendrücken lässt, sondern einen Gegendruck ausübt, sodass der Druck innen und außen ausgeglichen ist.

Gerät die Luft aber in Bewegung, beispielsweise in einem Wirbelsturm oder auch nur in einer steifen Brise, so werden wir schnell daran erinnert, dass sie eine beträchtliche Masse hat. Insgesamt sind wir von rund 5200 Millionen Millionen Tonnen Luft umgeben – etwa zehn Millionen Tonnen über jedem Quadratkilometer der Erdoberfläche, und dieses Volumen bleibt nicht ohne Wirkung. Wenn Millionen Tonnen Luft mit 50 oder 60 Stundenkilometern an uns vorüberrauschen, ist es nicht verwunderlich, dass Zweige abbrechen und Dachziegel davonfliegen. Nach Angaben von Anthony Smith besteht eine typische Schlechtwetterfront aus 750 Millionen Tonnen kalter Luft, die unter einer Milliarde Tonnen wärmerer Luft festgehalten werden.12 Da ist es kein Wunder, dass die Folgen manchmal meteorologisch durchaus aufregend sind.

An Energie herrscht in der Welt über unseren Köpfen mit Sicherheit kein Mangel. Berechnungen zufolge enthält ein einziges Gewitter so viel davon, dass es den gesamten Elektrizitätsbedarf der Vereinigten Staaten vier Tage lang decken könnte.13 Unter geeigneten Voraussetzungen können Gewitterwolken sich zu einer Höhe von zehn bis 15 Kilometern auftürmen. Die Auf- und Abwinde in ihrem Inneren erreichen Geschwindigkeiten von 150 Stundenkilometern, und das häufig dicht nebeneinander – deshalb fliegen Piloten nicht gern hindurch. Außerdem nehmen die Teilchen in einem solchen Wirbel elektrische Ladungen auf. Aus nicht ganz geklärten Gründen werden leichtere Teilchen dabei eher positiv geladen, und die Luftströmungen tragen sie zur Oberseite der Wolken.

Schwerere Partikel bleiben weiter unten und sammeln negative Ladungen an. Diese negativ geladenen Teilchen haben das starke Bestreben, zum positiv geladenen Erdboden zu gelangen, und dann ist alles, was sich ihnen in den Weg stellt, auf Gedeih und Verderb seinem Schicksal ausgeliefert. Ein Blitz pflanzt sich mit über 400000 Stundenkilometern fort und heizt die Luft in seiner Umgebung auf bis zu 28000 Grad auf, ein Mehrfaches der Temperatur auf der Sonnenoberfläche. Rund um die Erde toben in jedem Augenblick rund 1800 Gewitter – an einem ganzen Tag sind es etwa 40000.14 Tag und Nacht schlagen auf unserem Planeten in jeder Sekunde rund 100 Blitze ein. Am Himmel geht es wirklich lebhaft zu.

Unsere Kenntnisse über die Vorgänge dort oben sind zu einem beträchtlichen Teil noch erstaunlich jungen Datums.15 Die Jetstreams, Luftströmungen in Höhen von 9000 bis 11000 Metern, rasen mit bis zu 300 Stundenkilometern dahin und beeinflussen das Wetter ganzer Kontinente, und doch hatte man von ihrer Existenz keine Ahnung, bis im Zweiten Weltkrieg die ersten Piloten in solche Höhen vordrangen. Auch heute ist ein großer Teil der Phänomene in der Atmosphäre noch kaum erforscht. Auf Flugreisen erlebt man manchmal eine Abwechslung in Form wellenförmiger Bewegungen, die unter dem Namen Turbulenzen bei klarer Luft bekannt sind. Jedes Jahr sind rund 20 solche Vorfälle so schwerwiegend, dass ein Bericht darüber gefertigt werden muss. Sie stehen nicht im Zusammenhang mit Wolkenstrukturen oder irgendetwas anderem, das zu sehen oder mit dem Radar wahrzunehmen wäre. Es sind einfach Bereiche mit plötzlichen Turbulenzen in ansonsten ruhiger Luft. Bei einem typischen derartigen Vorfall sackte ein Flugzeug auf dem Weg von Singapur nach Sydney über Zentralaustralien bei ruhigem Wetter plötzlich um 100 Meter ab, genug, dass nicht angeschnallte Passagiere gegen die Kabinendecke geschleudert wurden. Zwölf Menschen wurden verletzt, einer davon schwer. Wie solche unruhigen Luftregionen entstehen, weiß niemand.

Angetrieben werden die Luftbewegungen in der Atmosphäre durch den gleichen Mechanismus, der auch den Motor im Inneren unseres Planeten in Bewegung hält: durch Konvektion. Feuchte, warme Luft aus der Äquatorregion steigt auf, trifft auf die Barriere der Tropopause und verteilt sich in waagerechter Richtung. Sie entfernt sich vom Äquator, wird kühler und sinkt wieder ab. Am Boden angelangt, füllt ein Teil der abgesunkenen Luft die Tiefdruckgebiete auf und wandert wieder zum Äquator, sodass der Kreis geschlossen ist.

Am Äquator ist die Konvektion in der Regel ein stabiler Vorgang, sodass man ständig mit gutem Wetter rechnen kann. In den gemäßigten Klimazonen dagegen sind die Abläufe weit mehr von Jahreszeiten, örtlichen Bedingungen und vom Zufall abhängig, und das führt zu einem endlosen Konflikt zwischen Hoch- und Tiefdruckgebieten. Ein Tief entsteht durch aufsteigende Luft, die Wassermoleküle in große Höhen befördert, wo sie dann Wolken bilden und als Regen wieder zur Erde fallen. Warme Luft nimmt mehr Feuchtigkeit auf als kalte – das ist der Grund, warum im Sommer und in den Tropen die heftigsten Unwetter toben. Tiefdruckgebiete sind deshalb in der Regel mit Wolken und Regen verbunden, ein Hoch dagegen verspricht meist Sonnenschein und schönes Wetter. Wo zwei solche Systeme aufeinander treffen, bilden sich häufig auffällige Wolken. Stratuswolken zum Beispiel – diese unbeliebten, konturlosen Wolken, denen wir den bedeckten Himmel verdanken – entstehen, wenn eine mit Feuchtigkeit beladene Aufwärtsströmung nicht genügend Kraft hat, um eine darüber liegende, stabilere Luftschicht zu durchdringen, und sich stattdessen seitlich ausbreitet wie Rauch an einer Zimmerdecke. Eine recht gute Vorstellung von diesem Vorgang kann man sich verschaffen, wenn man einen Raucher beobachtet und zusieht, wie der Zigarettenrauch in einem geschlossenen Raum nach oben steigt. Zunächst bewegt er sich in gerader Linie aufwärts (wer Eindruck machen will, kann hier von laminarer Strömung sprechen), um sich anschließend als unscharfe, wellenförmige Schicht auszubreiten. Wie diese Wellen im Einzelnen geformt sein werden, lässt sich auch mit dem größten Supercomputer der Welt und genauen Messungen in einer sorgfältig kontrollierten Umgebung nicht voraussagen. Man kann sich also vorstellen, mit welchen Schwierigkeiten die Meteorologen zu kämpfen haben, wenn sie derartige Bewegungen auf unserem rotierenden, windigen, riesigen Erdball prophezeien wollen.

Eines aber wissen wir: Da die Sonnenwärme sich ungleichmäßig über unseren Planeten verteilt, entstehen Luftdruckunterschiede. In dem Bestreben, sie auszugleichen, gerät die Luft in Bewegung. Wind entsteht schlichtweg dadurch, dass die Luft das Gleichgewicht wieder herstellen will. Sie fließt stets von Bereichen mit hohem zu solchen mit niedrigerem Druck (was auch nicht anders zu erwarten ist; man braucht sich nur vorzustellen, wie Luft in einem Ballon oder einer Pressluftflasche unter Druck steht – sie hat immer das Bestreben, zu entweichen), und je größer der Unterschied ist, desto höher wird die Windgeschwindigkeit.

Nebenbei bemerkt: Wie die meisten angehäuften Dinge, so wächst auch die Windenergie exponentiell mit der Windgeschwindigkeit. Wenn der Wind mit 200 Stundenkilometern weht, ist er also nicht zehnmal so stark wie ein Wind von 20 Stundenkilometern, sondern er hat die hundertfache Kraft, und entsprechend größer ist seine Zerstörungswirkung.16 Da es sich um viele Millionen Tonnen Luft handelt, können die Folgen verheerend sein. Ein tropischer Wirbelsturm setzt in 24 Stunden so viel Energie frei, wie ein reicher, mittelgroßer Staat – beispielsweise Großbritannien oder Frankreich – in einem Jahr verbraucht.17

Dass die Atmosphäre bestrebt ist, Ausgleich zu schaffen, vermutete schon der allgegenwärtige Edmond Halley.18 Verfeinert wurden seine Vorstellungen im 18. Jahrhundert von seinem Landsmann, dem Briten George Hadley: Er erkannte, dass steigende und absinkende Luftsäulen so genannte »Zellen« entstehen lassen, die seither als »Hadley-Zellen« bekannt sind. Hadley war zwar Anwalt von Beruf, er interessierte sich aber brennend für das Wetter (schließlich war er Engländer) und äußerte auch bereits die Vermutung, zwischen seinen Zellen, der Erddrehung und den offenkundigen Luftströmungen der Passatwinde könne ein Zusammenhang bestehen. Die Einzelheiten dieser Wechsel-Wirkungen wurden jedoch 1835 von Gustave-Gaspard de Coriolis aufgeklärt, einem Professor für Ingenieurwesen an der Pariser École Polytechnique, und deshalb sprechen wir seither vom Coriolis-Effekt. (Außerdem verschaffte Coriolis sich an seiner Hochschule einen besonderen Ruf, indem er dort offensichtlich die Wasserkühler einführte, die noch heute als Corios bekannt sind.19) Die Erde rotiert am Äquator mit flotten 1674 Stundenkilometern, aber je mehr man sich den Polen nähert, desto geringer wird diese Geschwindigkeit, und beispielsweise in London und Paris liegt sie nur noch bei knapp 1000 Stundenkilometern. Der Grund liegt auf der Hand, wenn man genauer darüber nachdenkt. Wenn wir am Äquator stehen, muss die rotierende Erde uns über eine Entfernung von rund 40000 Kilometern transportieren, bis wir wieder am gleichen Punkt ankommen. Stehen wir dagegen am Nordpol, brauchen wir uns nur wenige Meter fortzubewegen, um eine Umdrehung zu vollenden; dennoch dauert es in beiden Fällen 24 Stunden, bis wir wieder am Ausgangspunkt sind. Deshalb muss die Rotationsgeschwindigkeit umso größer sein, je näher man dem Äquator kommt.

Der Coriolis-Effekt ist auch die Erklärung für ein anderes Phänomen: Ein Gegenstand, der sich in gerader Linie rechtwinklig zur Erddrehung durch die Luft bewegt, scheint bei Betrachtung aus ausreichend großer Entfernung auf der Nordhalbkugel eine Rechts- und auf der Südhalbkugel eine Linkskurve zu beschreiben, weil die Erde sich unter ihm dreht. Um diesen Effekt zu verdeutlichen, stellt man sich in der Regel vor, dass man in der Mitte eines großen Karussells steht und jemandem am Rand einen Ball zuwirft. Bis der Ball an der Außenseite ankommt, scheint sich das Ziel weiterbewegt zu haben, und der Ball fliegt hinter ihm vorbei. Aus der Sicht der Zielperson hat der Ball sich in einer Kurve entfernt. Das ist der Coriolis-Effekt, der die Wettersysteme rotieren lässt und Hurrikane wie einen Kreisel in Drehung versetzt.20 Ebenso hat der Coriolis-Effekt zur Folge, dass die Kanonen von Kriegsschiffen nicht genau auf das Ziel, sondern ein wenig weiter nach links oder rechts eingestellt werden müssen) eine Granate, die 25 Kilometer weit fliegt, würde sonst den gewünschten Punkt um rund 100 Meter verfehlen und unverrichteter Dinge ins Meer stürzen.

Wenn man bedenkt, welche praktische und psychologische Bedeutung das Wetter für nahezu alle Menschen hat, ist es eigentlich verwunderlich, dass die Meteorologie erst kurz vor Beginn des 19. Jahrhunderts zu einer richtigen Wissenschaft wurde. (Den Begriff selbst gibt es allerdings schon seit 1626, als ein gewisser T. Granger ihn in einem Buch über Logik erstmals verwendete.)

Eine große Schwierigkeit bestand anfangs darin, dass Meteorologie sehr genaue Temperaturmessungen erfordert, und die Herstellung von Thermometern war lange Zeit erheblich problematischer, als man es sich heute oft vorstellt. Um eine genaue Ablesung zu ermöglichen, musste man ein Glasrohr mit gleichmäßigem Innendurchmesser herstellen, und das war nicht einfach. Der Erste, der das Problem löste, war der niederländische Instrumentenbauer Daniel Gabriel Fahrenheit. Er stellte 1717 ein genaues Thermometer her. Aus nicht geklärten Gründen eichte er sein Instrument jedoch so, dass der Gefrierpunkt des Wassers bei 32 und der Siedepunkt bei 212 Grad lag. Diese eigenartigen Zahlen galten von Anfang an vielfach als störend, und im Jahr 1742 schlug der schwedische Astronom Anders Celsius eine andere Skala vor. Wie als Beweis für die Behauptung, dass Erfinder nur selten alles richtig machen, legte Celsius den Siedepunkt auf Null und den Gefrierpunkt auf 100 Grad, aber das wurde schon wenig später umgedreht.21

Als Vater der modernen Meteorologie wird meist der englische Apotheker Luke Howard genannt, der Anfang des 19. Jahrhunderts bekannt wurde. In Erinnerung blieb er vor allem, weil er 1803 den verschiedenen Wolkentypen ihren Namen gab.22 Howard war zwar ein aktives, angesehenes Mitglied der Linnaean Society und bediente sich in seinem System auch deren Prinzipien, aber als Forum, vor dem er seine neue Einteilung bekannt gab, wählte er die eher zweifelhafte Askesian Society. (Wie in einem früheren Kapitel bereits erwähnt wurde, gaben sich die Angehörigen dieser Gesellschaft besonders gern den Freuden des Stickoxids hin. Wir können also nur hoffen, dass sie Howards Vortrag mit der nüchternen Aufmerksamkeit verfolgten die er verdiente. In diesem Punkt schweigen sich die Fachleute die sich mit Howard beschäftigen, in der Regel aus.)

Howard teilte die Wolken in drei Gruppen ein: Stratus- oder Schichtwolken, Cumulus- oder Haufenwolken und Cirrus- oder Federwolken – das sind die zarten, sehr hohen Wolkenformationen, die in der Regel kühleres Wetter ankündigen. Später nahm er als vierte Kategorie noch die Nimbus- oder Regenwolken hinzu. Das Schöne an Howards System war, dass man die Grundbegriffe beliebig kombinieren und damit jede Wolke nach Form und Größe beschreiben konnte: Stratocumulus, Cirrostratus, Cumulocongestus und so weiter.23 Die Einteilung setzte sich sofort durch, und das nicht nur in England. Auch Johann Wolfgang von Goethe war davon so angetan, dass er Howard vier Gedichte widmete.

Howards Einteilung wurde im Laufe der Jahre stark erweitert: Der dicke, allerdings selten gelesene International Cloud Atlas umfasst zwei Bände, aber interessanterweise haben sich fast alle Wolkentypen, die erst nach Howard eingeführt wurden – Mammatus, Pileus, Nebulosis, Spissatus, Floccus, Mediocris und andere – außerhalb der Meteorologenkreise nie durchgesetzt, und auch dort sind sie, wie ich gehört habe, nicht sonderlich beliebt. Übrigens teilte die erste, viel dünnere Ausgabe des Atlas, die 1896 erschien, die Wolken in zehn Grundtypen ein, und die dickste, die am ehesten wie ein Kissen aussah, war die Cumulonimbuswolke mit der Nummer Neun.* Dies war offensichtlich der Grund, warum man nach einem geflügelten Wort im Englischen »auf Wolke neun« schwebt (im Deutschen schweben wir allerdings eher auf Wolke sieben).24

In den ambossförmigen Gewitterwolken geht es manchmal wild und turbulent zu, aber in der Regel sind Wolken eigentlich etwas Gutartiges und erstaunlich Körperloses. Eine flauschige sommerliche Cumuluswolke mit einer Ausdehnung von mehreren 100 Metern enthält unter Umständen nicht mehr als 100 Liter Wasser – nach Angaben von James Trefil ungefähr so viel, dass man eine Badewanne damit füllen könnte.25 Ein Gespür für die Materielosigkeit von Wolken kann man sich verschaffen, wenn man durch Nebel geht – der ist letztlich nichts anderes als eine Wolke, die nicht aufsteigen will. Oder, um noch einmal Trefil zu zitieren: »Wenn man 100 Meter durch typischen Nebel geht, kommt man nur mit knapp zehn Kubikzentimetern Wasser in Berührung – nicht einmal genug für einen anständigen Drink.« Entsprechend sind Wolken keine großen Wasserspeicher. Nur rund 0,03 Prozent aller Süßwasservorräte der Erde schweben über uns in der Luft.26

Das weitere Schicksal eines Wassermoleküls kann sehr unterschiedlich aussehen, je nachdem, wo es zu Boden fällt.27 Landet es auf fruchtbarem Boden, wird es von den Pflanzen aufgenommen, oder es verdunstet innerhalb weniger Stunden oder Tage wieder. Findet es aber den Weg ins Grundwasser, kommt es unter Umständen viele Jahre lang nicht wieder ans Tageslicht – aus großer Tiefe taucht es oft sogar erst nach Jahrtausenden wieder auf. Wenn wir an einem See stehen, betrachten wir eine Ansammlung von Molekülen, die sich im Durchschnitt seit ungefähr zehn Jahren dort befinden. Im Ozean liegt die Verweildauer vermutlich eher bei 100 Jahren. Insgesamt kehren nach einem Regen etwa 60 Prozent der Wassermoleküle innerhalb von ein bis zwei Tagen wieder in die Atmosphäre zurück. Nach dem Verdunsten bleiben sie meist nur eine Woche – Drury spricht von zwölf Tagen – in der Luft und fallen dann erneut als Niederschlag herab.

Verdunstung ist ein schneller Vorgang – das erkennt man sofort, wenn man an einem Sommertag die Pfützen betrachtet, Selbst ein so großes Gewässer wie das Mittelmeer würde innerhalb von 1000 Jahren austrocknen, wenn es keine Zuflüsse hätte.28 Genau das geschah vor knapp sechs Millionen Jahren; die Folge war die »messinische Salinitätskrise«, wie sie in der Wissenschaft genannt wird.29 Zuvor hatte sich durch die Bewegung der Kontinente die Straße von Gibraltar geschlossen. Das verdunstete Wasser aus dem Mittelmeer fiel als Niederschlag in andere Meere und verursachte eine geringfügige Verminderung ihres Salzgehalts – das Wasser wurde gerade so stark verdünnt, dass größere Flächen zufrieren konnten. Die Eisflächen reflektierten mehr Sonnenwärme, und auf der Erde setzte eine Eiszeit ein. Soweit jedenfalls die Theorie.

Eines aber ist nach heutiger Kenntnis gesichert: Schon eine kleine Veränderung in den dynamischen Abläufen auf der Erde kann Auswirkungen haben, die alle unsere Fantasien übersteigen. Wie wir in Kürze noch genauer erfahren werden, sind wahrscheinlich auch wir selbst durch ein solches Ereignis entstanden.

Der eigentliche Motor für die Vorgänge an der Erdoberfläche sind die Ozeane. In der Meteorologie betrachtet man Meere und Atmosphäre mittlerweile sogar immer stärker als ein einziges System, und deshalb müssen wir uns hier auch mit ihnen ein wenig beschäftigen. Wasser kann Wärme hervorragend festhalten und transportieren. Die Wärmemenge, die der Golfstrom jeden Tag nach Europa trägt, ist ebenso groß wie jene, die auf der ganzen Erde im Laufe von zehn Jahren durch Verbrennung von Kohle erzeugt wird,30 und sie ist der Grund, warum der Winter in Großbritannien und Irland im Vergleich zu Kanada und Russland so mild ist.

Aber Wasser erwärmt sich auch langsam – deshalb sind Seen und Swimmingpools selbst an heißen Tagen noch kühl. Aus dem gleichen Grund besteht in der Regel eine Diskrepanz zwischen dem offiziellen, astronomischen Beginn einer Jahreszeit und dem Eindruck, dass diese Jahreszeit tatsächlich angefangen hat.31 Der Frühling beispielsweise beginnt auf der Nordhalbkugel eigentlich im März, aber in den meisten Regionen hat man frühestens im April diesen Eindruck.

Die Ozeane sind keine einheitliche Wassermasse. Temperatur, Salzgehalt, Tiefe, Dichte und andere Eigenschaften schwanken stark; diese Unterschiede haben große Auswirkungen auf den Wärmetransport, und der wiederum beeinflusst das Klima. Der Atlantik enthält beispielsweise mehr Salz als der Pazifik, und das ist auch gut so. Da Wasser bei höherem Salzgehalt dichter ist, sinkt es nach unten. Ohne den zusätzlichen Salzballast würden die Meeresströmungen aus dem Atlantik sich bis in das Nordpolargebiet fortsetzen, und Europa müsste auf die angenehme Wärme verzichten. Die wichtigste Triebkraft des Wärmetransports auf der Erde ist der so genannte thermohaline Kreislauf, der seinen Ursprung in den langsamen Tiefenströmungen weit unter der Meeresoberfläche hat, ein Vorgang, den der Wissenschaftler und Abenteurer Graf von Rumford 1792 entdeckte.** Wenn das Oberflächenwasser in die Nähe des europäischen Kontinents gelangt, wird es dichter und sinkt in größere Tiefen ab, wo es dann langsam wieder in Richtung der Südhalbkugel wandert. In der Antarktis angekommen, wird es durch die antarktische Zirkumpolarströmung eingefangen und weiter in den Pazifik getrieben. Das Ganze läuft sehr langsam ab – bis das Wasser vom Nordatlantik in die Mitte des Pazifiks gelangt ist, können 1500 Jahre vergehen –, aber dabei sind beträchtliche Wasser- und Wärmemengen in Bewegung, sodass sich ein gewaltiger Einfluss auf das Klima ergibt.

(Natürlich stellt sich die Frage, wie man herausfinden kann, wie lange ein Tropfen Wasser von einem Ozean in den anderen braucht. Die Antwort: Man kann im Wasser die Konzentration der Fluorchlorkohlenwasserstoffe und andere Verbindungen messen und dann den Zeitraum berechnen, seit sie zum letzten Mal in der Luft waren. Durch Vergleich zahlreicher Messungen aus unterschiedlichen Tiefen und Regionen erhält man dann ein recht zuverlässiges Bild von den Bewegungen des Wassers.32)

Durch den thermohalinen Kreislauf wird nicht nur Wärme transportiert, sondern die aufsteigenden und absinkenden Strömungen wirbeln auch Nährstoffe auf, sodass ein größeres Volumen des Ozeans für Fische und andere Meereslebewesen bewohnbar wird. Leider reagiert der Kreislauf aber anscheinend auch sehr empfindlich auf Veränderungen. Glaubt man den Computersimulationen, bringt schon eine geringfügige Verringerung des Salzgehalts in den Weltmeeren – beispielsweise durch das Abbauen der Eiskappe in Grönland – den Kreislauf auf verheerende Weise durcheinander.

Das Meer tut uns noch einen anderen großen Gefallen. Es nimmt riesige Mengen an Kohlenstoff auf und räumt ihn auf diese Weise aus dem Weg. Es gehört zu den seltsamen Eigenschaften unseres Sonnensystems, dass die Sonne heute um rund 25 Prozent heller leuchtet als in der Frühzeit der Planeten. Dies müsste eigentlich dazu geführt haben, dass die Erde heute viel wärmer ist. Der englische Geologe Aubrey Manning meinte sogar: »Dieser ungeheuer große Wandel müsste eigentlich katastrophale Auswirkungen auf die Erde gehabt haben, und doch sieht es aus, als habe er unsere Welt kaum beeinflusst.«

Was also hält die Erde so stabil und kühl?

Die Antwort: das Leben. Billionen und Aberbillionen winzige Meereslebewesen, von denen die meisten Menschen noch nie etwas gehört haben – Foraminiferen, Kokkolithen und Kalkalgen –, fangen den Kohlenstoff aus der Atmosphäre in Form von Kohlendioxid ein, wenn er mit dem Regen ins Meer fällt, und nutzen ihn (in Verbindung mit anderen Materialien) zum Aufbau ihrer winzigen Gehäuse. Auf diese Weise gebunden, kann der Kohlenstoff nicht wieder durch Verdunstung in die Atmosphäre gelangen, wo er sich sonst in gefährlichem Umfang als Treibhausgas ansammeln würde. All die winzigen Foraminiferen, Kokkolithen und so weiter sterben am Ende ab und sinken auf den Meeresboden, wo sie zu Kalkstein zusammengepresst werden. Es ist ein bemerkenswerter Gedanke: Wenn man ein Naturwunder wie die weißen Klippen bei Dover in England betrachtet, hat man in Wirklichkeit nichts anderes vor Augen als winzige Meereslebewesen längst vergangener Zeiten. Noch bemerkenswerter ist aber die riesige Kohlenstoffmenge, die sie gebunden haben. Ein Kalksteinwürfel aus Dover mit einer Kantenlänge von 15 Zentimetern enthält weit über 1000 Liter zusammengepresstes Kohlendioxid, das für uns sonst alles andere als nützlich wäre. Insgesamt ist im Gestein der Erde rund 20000-mal so viel Kohlenstoff gebunden wie in der Atmosphäre.33 Große Teile des Kalksteins verbrennen schließlich in Vulkanen, und dann kehrt der Kohlenstoff in die Atmosphäre zurück, um erneut mit dem Regen zur Erde zu fallen – das ist der Grund, warum man den ganzen Vorgang als langfristigen Kohlenstoffzyklus bezeichnet. Langfristig ist er wirklich: Um ihn zu durchlaufen, braucht ein Kohlenstoffatom im Durchschnitt eine halbe Million Jahre. Solange störende Einflüsse fehlen, trägt er bemerkenswert stark dazu bei, das Klima stabil zu halten.

Leider neigen die Menschen aber in ihrer Achtlosigkeit dazu, diesen Zyklus zu beeinträchtigen: Wir setzen zusätzlich große Kohlenstoffmengen in die Atmosphäre frei, ohne uns darum zu kümmern, ob die Foraminiferen sie bewältigen können. Seit 1850 sind auf diese Weise nach Schätzungen rund 100 Milliarden Tonnen Kohlenstoff zusätzlich in die Luft gelangt, und diese Menge wächst derzeit jedes Jahr um rund sieben Milliarden Tonnen an. Insgesamt ist das eigentlich nicht besonders viel. Auf natürlichem Wege nimmt die Atmosphäre – vor allem durch Vulkane und verwesende Pflanzen – jährlich rund 200 Milliarden Tonnen Kohlenstoff auf, fast das Dreißigfache dessen, was wir mit unseren Autos und Fabriken produzieren. Aber wir müssen uns nur den Smog ansehen, der so häufig über unseren Städten hängt, dann wissen wir, welche Bedeutung unser Beitrag hat.

Aus sehr alten Eisproben wissen wir, dass die »natürliche« Kohlendioxidkonzentration in der Atmosphäre – das heißt die Konzentration vor Beginn unserer industriellen Aktivität – ungefähr 280 Parts per Million betrug. Im Jahr 1958, als Wissenschaftler sich erstmals mit dem Thema beschäftigten, war sie bereits auf 315 Parts per Million angestiegen. Heute liegt sie bei über 360 Parts per Million, und sie steigt immer noch um rund ein Viertelprozent im Jahr. Gegen Ende des 21. Jahrhunderts wird sie Voraussagen zufolge einen Wert von 560 Parts per Million erreichen.

Bisher ist es der Erde mit ihren Ozeanen und Wäldern (die ebenfalls eine Menge Kohlenstoff beseitigen) gelungen, uns vor uns selbst zu schützen, aber Peter Cox vom britischen Wetterdienst meint: »Es gibt eine kritische Schwelle. Oberhalb davon schützt die natürliche Biosphäre uns nicht mehr vor den Auswirkungen unserer Emissionen, sondern sie verstärkt sie sogar.«

Man fürchtet, dass es dann zu einer plötzlichen, unkontrollierten Beschleunigung der globalen Erwärmung kommt. Viele Bäume und andere Pflanzen, die sich nicht so schnell anpassen können, würden dann absterben, den in ihnen gespeicherten Kohlenstoff freisetzen und damit das Problem weiter verschärfen. Solche Kreisläufe sind in entfernter Vergangenheit hin und wieder auch ohne Zutun des Menschen abgelaufen. Das Gute dabei ist, dass die Natur sich immer wieder selbst hilft. Mit ziemlicher Sicherheit würde der Kohlenstoffzyklus sich am Ende einpendeln, und die Erde würde in eine Situation angenehmer Stabilität zurückkehren. Als so etwas das letzte Mal geschah, dauerte es nur 60.000 Jahre.

* An den Cumuluswolken fallen besonders die scharfen, gut abgegrenzten Ränder auf, im Gegensatz zu den verwaschenen Konturen anderer Wolken. Dies liegt daran, dass es bei Cumuluswolken eine klare Grenze zwischen dem feuchten Inneren der Wolke und der äußeren, trockenen Luft gibt. Jedes Wassermolekül, das in den Bereich außerhalb der Wolke gerät, wird sofort von der trockenen Luft aufgenommen, sodass die Wolke ihre scharfen Kanten behält. Die viel höheren Cirruswolken dagegen bestehen aus Eis, und hier ist die Zone zwischen dem Rand der Wolke und der Luft in ihrer Umgebung nicht so klar definiert; deshalb sind ihre Ränder eher verschwommen. zurück

** Der Begriff hat offenbar mehrere Bedeutungen. Im November 2002 veröffentlichte Carl Wunsch vom Massachusetts Institute of Technology in der Fachzeitschrift Science einen Bericht mit dem Titel »What Is the Thermohaline Circulation?« (»Was ist der thermohaline Kreislauf?«) Darin stellte er fest, dass der Ausdruck in führenden Fachzeitschriften auf mindestens sieben unterschiedliche Phänomene angewandt wird (Kreislauf in großer Tiefe, Kreislauf der durch Dichteunterschiede angetrieben wird, »meridionale Masseumwälzung«, und so weiter), Allerdings haben alle mit den Kreisläufen im Ozean und dem Wärmetransport zu tun, und in diesem unbestimmten, umfassenden Sinn verwende auch ich ihn hier. zurück