Es war eine von Einsteins letzten beruflichen Tätigkeiten: Kurz bevor er 1955 starb, verfasste er ein kurzes, aber leidenschaftliches Vorwort zu dem Buch Earth ’s Shifting Crust. A Key to Some Basic Problems of Earth Science von Charles Hapgood. Dieser machte in dem ganzen Buch die Idee nieder, die Kontinente seien in Bewegung. Der Ton sollte den Leser dazu einladen, mit Hapgood in ein nachsichtiges Kichern einzustimmen: Ein paar leichtgläubige Geister, so meinte er, hätten »eine scheinbare Entsprechung in der Form einiger Kontinente gefunden«. Es sehe so aus, »als passe Südamerika zu Afrika, und so weiter … Man behauptet sogar, die Gesteinsformationen beiderseits des Atlantiks entsprächen einander«.1
Mr. Hapgood tat solche Vorstellungen brüsk ab und verwies darauf, die Geologen K. E. Caster und J. C. Mendes hätten durch umfangreiche Freilandforschung auf beiden Seiten des Atlantiks zweifelsfrei nachgewiesen, dass es solche Ähnlichkeiten nicht gebe. Weiß der Himmel, welche Gesteinsaufschlüsse die Herren Caster und Mendes untersuchten: In Wirklichkeit sind viele Gesteinsformationen auf beiden Seiten des Atlantiks tatsächlich gleich – nicht nur ähnlich, sondern genau gleich.
Aber auf diese Idee kamen Mr. Hapgood und viele andere Geologen seiner Zeit einfach nicht. Die Theorie, auf die er anspielte, wurde erstmals 1908 von dem amerikanischen Amateurgeologen Frank Bursley Taylor vorgelegt. Taylor stammte aus einer wohlhabenden Familie, verfügte über ausreichende Mittel und war frei von den Einschränkungen des akademischen Lebens, sodass er auch unkonventionelle Gedankengänge verfolgen konnte. Wie andere war er verblüfft über die ähnliche Form der gegenüberliegenden Küsten Afrikas und Südamerikas, und aus dieser Beobachtung leitete er die Vorstellung ab, dass die Kontinente hin und her gewandert waren. Er äußerte – wie sich herausstellen sollte, viel zu früh – die Vermutung, durch das Zusammenpressen der Kontinente könnten die Gebirge der Erde in die Höhe gestiegen sein. Allerdings konnte er kaum handfeste Belege beibringen, und die Theorie galt als so abwegig, dass man ihr keine ernsthafte Aufmerksamkeit schenkte.
Nur in Deutschland wurde Taylors Idee aufgegriffen und von einem Theoretiker namens Alfred Wegener mehr oder weniger vereinnahmt. Wegener, ein Meteorologe der Universität Marburg, erforschte an Pflanzen und Fossilien die vielen Anomalien, die sich nicht ohne weiteres mit dem üblichen Modell der Erdgeschichte vertrugen, und dabei erkannte er, dass ihre konventionelle Deutung kaum einen Sinn ergab. Immer wieder wurden Fossilien von Tieren beiderseits eines Ozeans gefunden, der offensichtlich durch Schwimmen nicht zu überwinden war. Wie, so fragte er sich beispielsweise, gelangten die Beuteltiere von Südamerika nach Australien? Wie konnte man in Skandinavien und Neuengland die gleichen Schnecken finden? Und wie schließlich waren Kohleflöze und andere halb tropische Überreste an eisigen Stellen wie Spitzbergen 700 Kilometer nördlich von Norwegen zu erklären, wenn sie nicht irgendwie aus wärmeren Klimazonen dorthin gewandert waren?
Wegener entwickelte eine Theorie, wonach die Kontinente der Erde früher eine einzige zusammenhängende Landmasse gebildet hatten, die er Pangäa nannte. Dort konnten Tier- und Pflanzenwelt sich vermischen, bevor die Kontinente auseinander brachen und an ihre heutigen Positionen wanderten. Seine Vorstellungen formulierte er in einem Buch mit dem Titel Die Entstehung der Kontinente und Ozeane, das 1912 auf Deutsch und drei Jahre später – obwohl inzwischen der Erste Weltkrieg ausgebrochen war – auch auf Englisch erschien.
In den Kriegswirren schenkte man Wegeners Theorie anfangs kaum Aufmerksamkeit, aber als er 1920 eine überarbeitete, erweiterte Auflage seines Buches herausbrachte, wurde es schnell zum Gegenstand hitziger Diskussionen. Alle waren sich einig, dass die Kontinente sich bewegen – aber nicht in seitlicher Richtung, sondern nach oben und unten. Die senkrechten Bewegungen, Isostasie genannt, waren schon seit Generationen ein Grundstein des geologischen Denkens gewesen, obwohl niemand eine gute theoretische Begründung dafür hatte, wie oder warum sie sich abspielen. Eine Idee, die sich noch bis in meine Schulzeit in den Lehrbüchern erhielt, hatte der Österreicher Eduard Suess kurz vor der Jahrhundertwende formuliert. Sie war als »Bratapfel-Theorie« bekannt und sagte, die geschmolzene Erde sei beim Abkühlen wie ein Bratapfel geschrumpft und runzelig geworden, sodass Ozeanbecken und Gebirge entstanden. Und das, obwohl James Hutton schon lange zuvor nachgewiesen hatte, dass eine solche unbewegliche Anordnung letztlich zu einer gleichförmigen Kugel führen muss, weil die Erosion alle Vorsprünge einebnet und Vertiefungen auffüllt. Auf ein weiteres Problem hatten Rutherford und Soddy schon zu Beginn des Jahrhunderts hingewiesen: Die Bausteine der Erde enthalten große Wärmereserven – viel zu viel, als dass es zu der Abkühlung und Schrumpfung kommen könnte, die Suess sich vorgestellt hatte. Und wenn seine Theorie stimmen würde, müssten die Gebirge sich außerdem gleichmäßig über die Erdoberfläche verteilen und mehr oder weniger gleich alt sein, was eindeutig nicht der Fall ist; schon Anfang des 19. Jahrhunderts wusste man, dass manche Gebirgszüge, beispielsweise der Ural und die Appalachen, mehrere 100 Millionen Jahre älter sind als andere wie die Alpen oder die Rocky Mountains. Die Zeit war eindeutig reif für eine neue Theorie. Aber leider war Alfred Wegener nicht der Mann, von dem die Geologen sie sich gewünscht hätten.
Zunächst einmal stellten seine radikalen Gedanken die Grundlagen ihres ganzen Fachgebietes in Frage, und das ist selten der richtige Weg, wenn man bei einem Publikum freundlich aufgenommen werden möchte. Eine solche Herausforderung wäre selbst dann schmerzlich genug gewesen, wenn sie von einem Geologen gekommen wäre, aber Wegener verfügte nicht über eine Ausbildung in Geologie. Um Himmels willen, er war Meteorologe. Ein Wetterfrosch – und dann auch noch aus Deutschland. Das waren unverzeihliche Mängel.
Also unternahmen die Geologen alle nur denkbaren Anstrengungen, um seine Belege unglaubwürdig zu machen und seine Gedanken zu schmähen. Um das Problem der Fossilverteilung zu umgehen, postulierten sie immer da, wo es ihnen notwendig erschien, frühere »Landbrücken«.2 Stellte sich heraus, dass ein Urpferd namens Hipparion zur gleichen Zeit in Frankreich und Florida gelebt hatte, zeichneten sie schnell eine Landbrücke über den Atlantik. Als man erkannte, dass prähistorische Tapire zur gleichen Zeit in Südamerika und Südostasien zu Hause waren, unterstellte man auch dort eine Landbrücke. Es dauerte nicht lange, dann waren die Landkarten der prähistorischen Meere voller hypothetischer Landbrücken – von Nordamerika nach Europa, von Brasilien nach Afrika, von Südostasien nach Australien, von Australien in die Antarktis. Diese Verbindungswege sollten nicht nur nach Belieben überall da aufgetaucht sein, wo eine Art der Lebewesen von einer Landmasse zur anderen wandern musste, sondern sie waren angeblich auch stets wieder verschwunden, ohne die geringsten Spuren zu hinterlassen. Natürlich wurde nichts davon auch nur durch den Hauch tatsächlicher Befunde gestützt – das ist bei derart falschen Vorstellungen nicht möglich –, und doch sollte es während der nächsten 50 Jahre zur Lehrmeinung der Geologie werden.
Aber manches war selbst mit Landbrücken nicht zu erklären.3 Eine Trilobitenart, die man aus Europa gut kannte, wurde auch in Neufundland gefunden – aber nur auf einer Seite. Niemand konnte überzeugend erklären, wie es diesen Tieren gelungen war, mehr als 3000 Kilometer lebensfeindlichen Ozean zu überwinden, obwohl sie es doch angeblich nicht geschafft hatten, auf die andere Seite einer 300 Kilometer breiten Insel zu gelangen. Noch seltsamer war, dass man eine andere Trilobitenart in Europa und im Nordwestpazifik gefunden hatte, aber nirgendwo dazwischen – das hätte nicht nur eine Landbrücke erfordert, sondern sogar eine Flugreise. Trotz alledem behauptete die Encyclopedia Britannica noch 1964 in ihrer Beschreibung verschiedener konkurrierender Theorien, Wegeners Vorstellungen seien »mit zahlreichen schwer wiegenden theoretischen Schwierigkeiten« verbunden.4
Sicher, Wegener machte auch Fehler. Er behauptete, Grönland treibe um ungefähr eineinhalb Kilometer im Jahr nach Westen, was eindeutig Unsinn ist (die Geschwindigkeit liegt eher bei einem Zentimeter). Vor allem aber hatte er keine überzeugende Begründung dafür, warum die Landmassen sich bewegen. Wer an seine Theorie glauben wollte, musste sich mit der Vorstellung anfreunden, dass riesige Kontinente sich irgendwie durch die feste Erdkruste schieben wie ein Pflug durch den Boden, ohne aber hinter sich die geringste Furche zurückzulassen. Was diese gewaltigen Bewegungen antreibt, war mit dem Wissen jener Zeit nicht plausibel zu erklären.
Einen möglichen Mechanismus formulierte Arthur Holmes, der englische Geologe, der auch so viel zur Altersbestimmung der Erde beitrug. Er begriff als Erster, dass Radioaktivität im Erdinneren zu Erwärmung und damit zu Konvektionsströmungen führen kann. Theoretisch können diese Strömungen so stark sein, dass sie die Kontinente auf der Oberfläche verschieben. In seinem beliebten, einflussreichen Lehrbuch Principles of Physical Geology, das 1944 erstmals erschien, legte Holmes eine Theorie der Kontinentalverschiebung dar, die in ihren Grundgedanken bis heute Gültigkeit hat. Zu jener Zeit war sie immer noch ein radikales Gedankengebäude, und sie wurde allgemein kritisiert, insbesondere in den Vereinigten Staaten, wo der Widerstand gegen die Kontinentalverschiebung sich länger hielt als irgendwo sonst. Ein amerikanischer Rezensent giftete offensichtlich ohne den geringsten Anflug von Ironie, Holmes habe seine Argumente so klar und überzeugend dargelegt, dass Studenten versucht sein könnten, sie tatsächlich zu glauben.5
In anderen Ländern jedoch fand die neue Theorie immer stärkere, wenn auch vorsichtige Anerkennung. Im Jahr 1950 zeigte eine Abstimmung auf der Jahrestagung der British Association for the Advancement of Science, dass ungefähr die Hälfte der Anwesenden sich mittlerweile die Vorstellung von der Kontinentalverschiebung zu Eigen gemacht hatte.6 (Wenig später zitierte Hapgood diese Zahl als Beweis, auf welch tragische Weise die britischen Geologen mittlerweile in die Irre gegangen seien.) Seltsamerweise wurde Holmes selbst hin und wieder in seinen Überzeugungen schwankend. Im Jahr 1953 räumte er ein: »Es ist mir nie gelungen, mich ganz von einem quälenden Vorurteil gegen die Kontinentalverschiebung frei zu machen; ich spüre sozusagen in meinen Geologenknochen, dass diese Hypothese allzu fantastisch ist.«7
Auch in den Vereinigten Staaten blieb der Theorie der Kontinentalverschiebung die Unterstützung nicht völlig versagt. Reginald Daly von der Harvard University setzte sich dafür ein, aber wie bereits erwähnt wurde, hatte er auch die Vermutung geäußert, der Mond sei durch den Einschlag eines Himmelskörpers entstanden; seine Ideen galten deshalb als interessant und sogar seriös, aber ihnen haftete auch ein Hauch des Übertriebenen an, sodass ihnen die ernsthafte Auseinandersetzung versagt blieb. Deshalb hielten die meisten amerikanischen Wissenschaftler an der Überzeugung fest, die Kontinente hätten sich zu allen Zeiten in ihren heutigen Positionen befunden, und ihre Oberflächenmerkmale seien nicht auf eine Seitwärtsbewegung zurückzuführen, sondern auf etwas anderes.
Interessanterweise wussten die Geologen der Ölkonzerne schon seit vielen Jahren, dass man nur dann Öl finden kann, wenn man genau die Oberflächenbewegungen unterstellt, die sich aus der Plattentektonik ergeben.8 Aber Geologen von Ölkonzernen schreiben keine wissenschaftlichen Abhandlungen; sie finden nur Öl.
Es gab im Zusammenhang mit Theorien über die Erde noch ein weiteres Problem, für das niemand auch nur ansatzweise eine Lösung kannte: Was geschieht mit den Sedimenten? Die Flüsse der Erde transportieren Jahr für Jahr ein riesiges Volumen an Erosionsmaterial ins Meer – unter anderem allein 500 Millionen Tonnen Calcium. Multipliziert man diese Menge mit der Zahl der Jahre, seit der Vorgang schon abläuft, gelangt man zu einer beunruhigenden Summe: Der Meeresboden müsste ungefähr 20 Kilometer hoch mit Sedimenten bedeckt sein – oder anders ausgedrückt: Der Ozeanboden müsste weit höher liegen als der Meeresspiegel. Im Umgang mit diesem Widerspruch wählten die Wissenschaftler den Weg des geringsten Widerstandes – sie ignorierten ihn. Aber schließlich war man an einem Punkt angelangt, an dem man nicht mehr darüber hinwegsehen konnte.
Im Zweiten Weltkrieg übertrug man dem Mineralogen Harry Hess den Befehl über die USS Cape Johnson, ein Transportschiff der Kriegsmarine. An Bord befand sich ein Sonar, ein hochmoderner neuer Tiefenmesser, der bei Landungsoperationen die Manöver in Küstennähe erleichtern sollte.9 Wie Hess jedoch sehr schnell erkannte, war das Gerät ebenso gut auch für wissenschaftliche Zwecke zu gebrauchen, und deshalb schaltete er es selbst auf hoher See oder im Gefecht niemals aus. Dabei entdeckte er etwas völlig Unerwartetes. Wenn der Meeresboden so alt war, wie alle annahmen, müsste er dick mit Sedimenten bedeckt sein wie der Boden eines Flusses oder Sees mit seiner Schlammschicht. Dagegen konnte Hess an seinen Messwerten ablesen, dass der Meeresboden nichts von der glitschigen Glätte alten Schlicks hatte. Stattdessen gab es dort überall Schluchten, Gräben und Felsspalten, und er war mit Vulkankegeln übersät, die er nach Arnold Guyot, einem früheren Geologen der Princeton University, als Guyots bezeichnete.10 Der Befund war ein großes Rätsel, aber Hess musste sich am Krieg beteiligen und drängte solche Gedanken in seinen Hinterkopf ab.
Nach dem Krieg nahm Hess in Princeton seine Lehrtätigkeit wieder auf, aber die Geheimnisse des Meeresbodens fesselten seine Gedanken nach wie vor. In den fünfziger Jahren stellten die Ozeanografen immer umfangreichere, genauere Vermessungen des Meeresbodens an. Dabei erlebten sie eine noch größere Überraschung: Das gewaltigste, umfangreichste Gebirge der Erde liegt – jedenfalls zum größten Teil – unter Wasser. Es zieht sich als ununterbrochene Bergkette über die Meeresböden der Erde, ganz ähnlich wie die Naht an einem Baseball. Geht man von Island aus, kann man es in der Mitte des Atlantiks nach Süden verfolgen; von dort verläuft es um die Südspitze Afrikas quer durch den Indischen Ozean und das Südpolarmeer, südlich an Australien vorüber und dann schräg über den Pazifik in Richtung der Halbinsel Baja California, von wo aus es dann in nördlicher Richtung parallel zur Westküste der Vereinigten Staaten schließlich Alaska erreicht. Seine höchsten Gipfel ragen hier und da über die Oberfläche und bilden Inseln oder Inselgruppen: die Azoren und die Kanarischen Inseln im Atlantik, Hawaii im Pazifik, und andere. Zum größten Teil liegt es aber, unerkannt und unerwartet, unter vielen tausend Metern Salzwasser. Mit allen Verzweigungen summiert sich die Länge dieser Bergkette auf über 75000 Kilometer.
Zu einem ganz geringen Teil war das schon seit einiger Zeit bekannt. Als man Mitte des 19. Jahrhunderts die ersten Kabel am Meeresboden verlegte, konnte man an ihrem Verlauf ablesen, dass sich in der Mitte des Atlantiks eine gebirgige Erhebung befinden muss, aber dass die Kette ununterbrochen ist und derart gewaltige Ausmaße hat, war eine völlige Überraschung. Außerdem besitzt sie anormale physikalische Eigenschaften, die sich nicht erklären ließen. In der Mitte des mittelatlantischen Rückens verläuft auf seiner gesamten Länge von über 19000 Kilometern eine Schlucht, die bis zu 20 Kilometer breit ist. Dies legte die Vermutung nahe, dass die Erde an ihren Nahtstellen aufplatzt wie eine NUSS, die man aus ihrer Umhüllung holt. Es war eine absurde, nervtötende Vorstellung, aber die Belege ließen sich nicht wegdiskutieren.
In den sechziger Jahren konnte man dann an Bohrkernen ablesen, dass der Meeresboden am mittelatlantischen Rücken recht jung ist, nach Osten und Westen mit zunehmender Entfernung von ihm aber immer älter wird. Harry Hess erkannte, dass es für diese Beobachtung nur eine Erklärung gibt: Beiderseits der Schlucht in der Mitte muss sich ständig neue ozeanische Kruste bilden, die dann durch nachrückende Krustenteile zur Seite geschoben wird. Der Atlantikboden besteht eigentlich aus zwei großen Förderbändern: Das eine transportiert die Erdkruste in Richtung Nordamerika, das andere in Richtung Europa. Dieser Vorgang wurde als Ausbreitung des Meeresbodens bekannt.
Ist die Kruste nach ihrer Wanderung schließlich an der Begrenzung der Kontinente angelangt, taucht sie durch einen als Subduktion bezeichneten Vorgang wieder in das Erdinnere ein. Nun wusste man, wo die Sedimente bleiben. Sie kehren in die Eingeweide der Erde zurück. Ebenso war erklärt, warum der Meeresboden überall vergleichsweise jung ist. Man hatte niemals einen Abschnitt gefunden, der älter als rund 175 Millionen Jahre war – ein Rätsel angesichts der Tatsache, dass Gestein auf den Kontinenten häufig mehrere Milliarden Jahre alt ist. Hess wusste jetzt, warum. Das Gestein in den Meeren bleibt nur so lange erhalten, bis es seinen Weg zur Küste zurückgelegt hat. Es war eine wunderschöne Theorie, die vieles erklärte. Hess legte seine Gedanken in einem wichtigen Aufsatz dar, der aber fast nirgendwo zur Kenntnis genommen wurde. Manchmal ist die Welt einfach noch nicht reif genug für eine gute Idee.
Zur gleichen Zeit machten zwei Wissenschaftler unabhängig voneinander einige verblüffende Beobachtungen. Sie waren dabei von einer seltsamen Tatsache der Erdgeschichte ausgegangen, die man schon mehrere Jahrzehnte zuvor entdeckt hatte. Wie der französische Physiker Bernard Brunhes bereits 1906 feststellte, kehrt das Magnetfeld der Erde sich von Zeit zu Zeit um, und dieser Wechsel hinterlässt in manchen Gesteinsarten, die zu dem jeweiligen Zeitpunkt entstehen, dauerhafte Spuren. Genauer gesagt, orientieren sich winzige Eisenerzkörner im Gestein in die Richtung, in der sich die Magnetpole zur Zeit ihrer Ablagerung befunden haben, und wenn das Gestein dann abkühlt und fest wird, bleiben sie in dieser Position liegen. Eigentlich »erinnern« sie sich also daran, wo die Magnetpole sich zum Zeitpunkt ihrer Entstehung befunden haben. Jahrelang sah man darin wenig mehr als eine Kuriosität, aber als Patrick Blackett von der Londoner Universität und S. K. Runcorn von der Universität Newcastle in den fünfziger Jahren die in britischem Gestein eingefrorenen magnetischen Verhältnisse untersuchten, waren sie, gelinde gesagt, verblüfft: Nach ihren Feststellungen hatte sich Großbritannien irgendwann in entfernter Vergangenheit um seine Achse gedreht und war ein ganzes Stück nach Norden gewandert, als hätte es sich irgendwie aus einer Vertäuung gelöst. Wie sie außerdem entdeckten, kann man eine Landkarte mit der Verteilung der Magnetfelder in Europa neben eine entsprechende Karte Amerikas aus der gleichen Zeit legen, und dann passen beide zusammen wie die Hälften eines zerrissenen Briefes. Es war geradezu gespenstisch.
Auch diese Befunde wurden nicht zur Kenntnis genommen.
Zwei Wissenschaftlern der Universität Cambridge – dem Geophysiker Drummond Matthews und seinem Doktoranden Fred Vine – blieb es schließlich überlassen, alle Stränge der Geschichte zusammenzuführen. Im Jahr 1963 wiesen sie mit Magnetfelduntersuchungen des Atlantikbodens schlüssig nach, dass der Meeresboden sich genau so ausbreitet, wie Hess es vermutet hatte, und dass auch die Kontinente in Bewegung sind. Ein unglückseliger kanadischer Geologe namens Lawrence Morley gelangte zur gleichen Zeit zu derselben Schlussfolgerung, fand aber niemanden, der seinen Aufsatz veröffentlicht hätte. Die Abfuhr, die er vom Redakteur des Journal of Geophysical Research erhielt, wurde später berühmt: »Solche Spekulationen sind ein interessantes Gesprächsthema für Cocktailpartys, aber sie gehören nicht zu den Dingen, die unter ernsthaften wissenschaftlichen Vorzeichen veröffentlicht werden sollten.« Ein Geologe bezeichnete den Aufsatz später als »vermutlich wichtigsten Artikel in den Geowissenschaften, dem jemals die Veröffentlichung verweigert wurde«.11
Jedenfalls war die Zeit nun endlich reif für die Vorstellung, dass die Erdkruste beweglich ist. In London kamen 1964 unter der Schirmherrschaft der Royal Society zahlreiche wichtige Vertreter des Fachgebietes zusammen, und plötzlich, so schien es, waren alle bekehrt. Die Versammlung erklärte übereinstimmend, die Erde sei ein Mosaik untereinander verbundener Teile, deren gewaltige Zusammenstöße zu einem großen Teil für das Verhalten der Oberfläche unseres Planeten verantwortlich sind.
Nachdem man erkannt hatte, dass nicht nur die Kontinente in Bewegung sind, sondern die gesamte Erdkruste, gab man den Begriff »Kontinentalverschiebung« schnell auf. Es dauerte aber einige Zeit, bis sich ein Name für die einzelnen Abschnitte durchgesetzt hatte. Anfangs sprach man von »Krustenblöcken« oder manchmal auch von »Pflastersteinen«. Erst Ende 1968, als im Journal of Geophysical Research ein Aufsatz von drei amerikanischen Seismologen erschien, erhielten die Krustenteile den Namen, unter dem sie seither bekannt sind: Platten. In demselben Artikel wurde die neue Wissenschaft als Plattentektonik bezeichnet.
Aber alte Vorstellungen halten sich hartnäckig, und nicht alle machten sich eilig die spannende neue Theorie zu Eigen. Bis weit in die siebziger Jahre hinein behauptete der altehrwürdige Harold Jeffreys in seinem weit verbreiteten, einflussreichen geologischen Lehrbuch The Earth, die Plattentektonik sei physikalisch unmöglich – das Gleiche hatte schon 1924 in der ersten Auflage des Werks gestanden.12 Ebenso tat er die Konvektion und die Ausbreitung des Meeresbodens ab. Und in seinem 1980 erschienenen Buch Basin and Range bemerkte John McPhee, noch immer glaube jeder achte amerikanische Geologe nicht an die Plattentektonik.13
Heute wissen wir, dass die Erdoberfläche aus acht bis zwölf großen (je nachdem, wie man »groß« definiert) und rund 20 kleineren Platten besteht, die sich alle mit unterschiedlicher Geschwindigkeit in verschiedene Richtungen bewegen.14 Manche Platten sind groß und vergleichsweise wenig aktiv, andere kleiner, aber voller Energie. Zu den Landmassen, die über ihnen liegen, stehen sie nur in weitläufiger Beziehung. Die nordamerikanische Platte beispielsweise ist viel größer als der Kontinent, dessen Namen sie trägt. Im Westen folgt ihre Grenze zwar ungefähr der Westküste des Kontinents (die wegen der Kollisionen und Schwankungen an der Plattengrenze seismisch sehr aktiv ist), sie erstreckt sich aber über die Ostküste hinaus bis in die Mitte des Atlantiks zum mittelatlantischen Rücken. Island ist in der Mitte gespalten und gehört demnach tektonisch halb zu Amerika und halb zu Europa. Neuseeland ist Teil der riesigen indisch-ozeanischen Platte, obwohl es sich nicht einmal in der Nähe des Indischen Ozeans befinden. Ähnliches gilt auch für die meisten anderen Platten.
Wie sich herausstellte, bestehen zwischen den heutigen Landmassen und denen der Vergangenheit weitaus kompliziertere Zusammenhänge, als irgendjemand es sich hätte träumen lassen.15 Kasachstan beispielsweise hing früher mit Norwegen und Neuengland zusammen. Eine Ecke von Staten Island – aber wirklich nur eine Ecke – ist ebenso europäischen Ursprungs wie ein Teil von Neufundland. Ein Kiesel, den man an einem Strand in Massachusetts aufliest, hat seinen nächsten Verwandten in Afrika. Das schottische Hochland und große Teile Skandinaviens gehören eigentlich zu Amerika. Und das Shackleton-Gebirge in der Antarktis dürfte nach heutiger Kenntnis früher zu den Appalachen im Osten der USA gehört haben. Oder kurz gesagt: Gestein kommt weit herum.
Die ständigen Umwälzungen verhindern, dass die Platten sich zu einem einzigen, unbeweglichen Block vereinigen. Wenn man davon ausgeht, dass die derzeitige Entwicklung sich im Wesentlichen fortsetzt, wird der Atlantik immer breiter werden, bis er eines Tages größer ist als der Pazifik. Große Teile Kaliforniens werden sich lösen und zu einer Art pazifischem Madagaskar werden. Afrika wird sich nach Norden in Richtung Europa schieben und das Mittelmeer zusammenquetschen, bis es nicht mehr existiert, und dann wird sich eine Gebirgskette von der majestätischen Größe des Himalaya auffalten, die sich von Paris bis Kalkutta erstreckt. Australien wird die Inseln in seinem Norden schlucken und sich durch eine Art nabelschnurartige Landenge mit Asien verbinden. Das alles sind zukünftige Ergebnisse, aber keine zukünftigen Prozesse. Die Vorgänge spielen sich schon jetzt ab. Während wir hier sitzen, treiben die Kontinente weiter wie Blätter auf einem Teich. Mit Hilfe des Global Positioning System erkennen wir, dass Europa und Nordamerika auseinander weichen, und zwar mit der gleichen Geschwindigkeit, mit der auch ein Fingernagel wächst: etwa zwei Meter während eines Menschenlebens.16 Man braucht nur lange genug zu warten, dann kann man sich auf diese Weise von Los Angeles bis nach San Francisco mitnehmen lassen. Dass wir die Veränderungen nicht richtig einschätzen können, liegt nur an der Kürze unseres eigenen Lebens. Das heutige Bild der Erde ist eigentlich eine Momentaufnahme: Ihre heutige Position hatten die Kontinente nur während eines Prozents der gesamten Erdgeschichte.17
Die Erde ist unter den Gesteinsplaneten der Einzige, auf dem es eine Plattentektonik gibt, und die Gründe sind ein wenig rätselhaft. An Größe oder Dichte allein kann es nicht liegen – die Venus gleicht in beiden Eigenschaften fast genau der Erde, und doch gibt es dort keine tektonische Aktivität. Man glaubt – und mehr als ein Glaube ist es wirklich nicht –, dass die Tektonik ein wichtiger Aspekt für das organische Wohlbefinden des Planeten ist.18 Der Physiker und Autor James Trefil formuliert es so: »Es wäre kaum vorstellbar, dass die ständige Bewegung der tektonischen Platten keine Folgen für die Entwicklung des Lebens auf der Erde hat.« Nach seiner Vermutung waren die Schwierigkeiten, welche die Tektonik aufwarf – beispielsweise Klimaveränderungen – ein wichtiger Impuls für die Entwicklung der Intelligenz. Andere nehmen an, dass die Bewegungen der Kontinente zumindest einige der großen Aussterbe-Ereignisse auf der Erde ausgelöst haben könnten. In einem Bericht, den Tony Dickson von der Universität Cambridge im November 2002 in dem Fachblatt Science veröffentlichte, äußerte er nachdrücklich die Vermutung, es könne durchaus einen Zusammenhang zwischen der Geschichte der Gesteine und der Geschichte des Lebendigen geben.19 Dickson hatte nachgewiesen, dass die chemische Zusammensetzung der Weltmeere sich während der letzten halben Milliarde Jahre sehr plötzlich und tief greifend geändert hat und dass diese Veränderungen häufig mit wichtigen Ereignissen der biologischen Geschichte zusammenfallen – beispielsweise mit der gewaltigen Vermehrung winziger Lebewesen, aus denen an der englischen Südküste die Kalkklippen entstanden, mit dem plötzlichen Auftauchen von Kalkgehäusen bei den Meereslebewesen während des Kambriums, und so weiter. Warum sich die chemische Zusammensetzung der Ozeane hin und wieder so dramatisch veränderte, weiß niemand; es könnte daran gelegen haben, dass Risse im Meeresboden sich öffneten und schlossen.
So oder so bietet die Plattentektonik nicht nur Erklärungen für die Dynamik an der Erdoberfläche – beispielsweise für die Frage, wie ein vorzeitliches Hipparion von Frankreich nach Florida gelangte –, sondern auch für viele Vorgänge im Erdinneren.
Erdbeben, die Entstehung von Inselketten, der Kohlenstoffzyklus, die Lage der Gebirge, die Entstehung von Eiszeiten, der Ursprung des Lebens – es gab kaum ein Thema, auf das die bemerkenswerte neue Theorie nicht unmittelbare Auswirkungen hatte. Die Geologen waren plötzlich in der Schwindel erregenden Lage, dass »die ganze Erde einen Sinn zu haben schien«, wie McPhee es formulierte.20
Allerdings nur bis zu einer gewissen Grenze. Über die Lage der Kontinente zu früheren Zeiten weiß man weit weniger gut Bescheid, als die meisten Menschen außerhalb der Geophysikerkreise annehmen. In den Lehrbüchern findet man zwar scheinbar gesicherte Darstellungen vorzeitlicher Landmassen mit Namen wie Laurasia, Gondwana, Rodinia und Pangäa, aber solche Bilder stützen sich in manchen Fällen auf Schlussfolgerungen, die alles andere als stichhaltig sind. Wie George Gaylord Simpson in seinem Buch Fossilien erläutert, hatten die Pflanzen- und Tierarten der Vorzeit die unangenehme Gewohnheit, plötzlich unerwartet aufzutauchen und an Stellen auszusterben, wo man mit ihrem Überleben gerechnet hätte.21
Als man die Umrisse des früheren Riesenkontinents Gondwana zeichnete, zu dem Australien, Afrika, die Antarktis und Südamerika gehörten, stützte man sich zu einem großen Teil auf die Verteilung einer vorzeitlichen Farngattung namens Glossopteris, die man überall an den richtigen Stellen gefunden hatte. Viel später jedoch entdeckte man Glossopteris auch in Gebieten, die nach unserer Kenntnis keine Verbindung zu Gondwana hatten. Dieser beunruhigende Widerspruch wurde – und wird bis heute – weit gehend nicht zur Kenntnis genommen. Ähnlich ging es mit Lystrosaurus, einem Reptil aus dem Trias: Es wurde von der Antarktis bis nach Asien überall gefunden, was für die angenommene frühere Verbindung zwischen den beiden Kontinenten sprach, aber in Südamerika und Australien entdeckte man es nie, obwohl beide zur gleichen Zeit ebenfalls zu demselben Kontinent gehört haben sollen.
Auch viele Eigenschaften der Erdoberfläche lassen sich mit der Plattentektonik nicht erklären.22 Nehmen wir als Beispiel die amerikanische Stadt Denver: Sie liegt rund 1600 Meter über dem Meeresspiegel, aber diese Erhebung ist relativ jungen Datums. Als die Dinosaurier über die Erde streiften, lag die Region am Meeresboden, also mehrere 1000 Meter tiefer. Aber das Gestein, auf dem Denver sich heute befindet, ist nicht gebrochen oder verformt, wie man es erwarten würde, wenn es durch die Kollision von Platten in die Höhe gehoben wurde, und ohnehin ist Denver so weit von den Rändern der Platten entfernt, dass es durch ihre Tätigkeit nicht beeinflusst wird. Es ist, als würde man auf den Rand eines Teppichs drücken, um damit am anderen Ende eine Falte zu erzeugen. Rätselhafterweise steigt das Gebiet von Denver anscheinend seit Jahrmillionen in die Höhe wie Brot im Backofen. Das Gleiche gilt für große Teile Südafrikas: Hier ist eine Region mit einem Durchmesser von 1600 Kilometern in 100 Millionen Jahren ohne erkennbare tektonische Aktivität rund 1600 Meter in die Höhe gestiegen. Australien dagegen kippt zur Seite und sinkt gleichzeitig ab. Während es in den letzten 100 Millionen Jahren nach Norden in Richtung Asien trieb, ist seine Vorderkante um rund 180 Meter abgesunken. Es sieht so aus, als ob Indonesien sehr langsam im Meer versinkt und Australien mit sich zieht. Für all das gibt es in der Theorie der Plattentektonik keine Erklärung.
Alfred Wegener erlebte die Bestätigung seiner Gedanken nicht mehr.23 Im Jahr 1930 machte er sich auf einer Grönlandexpedition an seinem 50. Geburtstag allein auf den Weg, um ein Nachschubdepot zu überprüfen. Er kam nie zurück. Ein paar Tage später fand man ihn erfroren auf dem Eis. Er wurde an Ort und Stelle begraben und liegt dort bis heute, allerdings rund einen Meter näher an Nordamerika als zur Zeit seines Todes.
Auch Einstein lebte nicht lange genug, um zu erkennen, dass er aufs falsche Pferd gesetzt hatte. Er starb 1955 in Princeton in New Jersey, noch bevor Charles Hapgoods Verriss der Kontinentalverschiebungstheorien überhaupt erschienen war.
Harry Hess, der in der Entstehung der Theorie der Plattentektonik die zweite Hauptrolle gespielt hatte, befand sich zu jener Zeit ebenfalls in Princeton und blieb auch während seiner restlichen Laufbahn dort. Einer seiner Studenten, ein begabter junger Bursche namens Walter Alvarez, sollte die Welt der Wissenschaft später auf ganz andere Weise verändern.24
Was die Geologie anging, so hatten die Umwälzungen gerade erst begonnen, und dazu leistete der junge Alvarez einen beträchtlichen Beitrag.