Ein Lebewesen zu sein, ist nicht einfach. Soweit wir bis heute wissen, gibt es nur einen einzigen Ort, einen unscheinbaren Außenposten der Milchstraße mit Namen Erde, der uns am Leben erhalten kann, und auch das oft nur äußerst widerwillig.
Die Zone, die fast sämtliche bekannten Lebensformen beherbergt, vom Boden des tiefsten Tiefseegrabens bis zum Gipfel der höchsten Berge, ist nur rund 20 Kilometer dick – nicht viel im Vergleich zur gewaltigen Ausdehnung des Kosmos.
Wir Menschen sind noch schlechter dran: Zufällig gehören wir zu dem Teil der Lebewesen, der vor 400 Millionen Jahren den eiligen, waghalsigen Beschluss fasste, aus dem Meer zu kriechen, an Land zu leben und Sauerstoff zu atmen. Deshalb sind uns, was das Volumen angeht, einer Schätzung zufolge nicht weniger als 99,5% der gesamten bewohnbaren Räume auf der Erde grundsätzlich – und in der Praxis vollständig – verschlossen.1
Es liegt nicht nur daran, dass wir im Wasser nicht atmen können. Wir könnten dort auch den Druck nicht aushalten. Wasser ist rund 1300-mal schwerer als Luft,2 und deshalb steigt der Druck mit zunehmender Tiefe schnell an: Er wird alle zehn Meter um eine Atmosphäre größer. Steigt man an Land auf eine l50 Meter hohe Spitze – beispielsweise auf den Kölner Dom oder das Washington Monument –, ist der Druckunterschied so gering, dass man ihn überhaupt nicht bemerkt. Unter Wasser jedoch würden in gleicher Tiefe die Venen zusammenfallen, und die Lunge würde ungefähr auf die Ausmaße einer Coladose zusammengepresst.3 Erstaunlicherweise tauchen Menschen freiwillig und ohne Atemgerät in solche Tiefen, einfach weil sie Spaß an einem Sport namens Free Diving haben. Das Erlebnis, dass die inneren Organe schwer verformt werden, gilt offenbar als amüsant (noch amüsanter ist es allerdings vermutlich, wenn sie beim Auftauchen wieder ihre ursprüngliche Form annehmen). Um solche Tiefen zu erreichen, müssen die Taucher sich allerdings sehr flott von Gewichten hinunterziehen lassen. Der Mensch, der ohne solche Hilfsmittel die größte Tiefe erreichte und überlebte, sodass er noch darüber reden konnte, war der Italiener Umberto Pelizzari: Er tauchte 1992 bis auf ungefähr 70 Meter, blieb einen kurzen Augenblick dort und schoss dann wieder zurück zur Oberfläche. An Land sind 70 Meter nur wenig mehr als die Länge eines Häuserblocks in New York. Selbst mit unseren kühnsten Kunststücken können wir also kaum behaupten, wir seien die Herrscher der Tiefe.
Andere Lebewesen kommen natürlich mit dem Druck unter Wasser zurecht, auch wenn es in manchen Fällen ein Rätsel ist, wie sie das schaffen. Die tiefste Stelle der Weltmeere ist der Marianengraben im Pazifik. Dort, in rund elf Kilometern Tiefe, herrscht ein Wasserdruck von 1125 Kilogramm pro Quadratzentimeter. Ein einziges Mal ist es Menschen gelungen, in einem dickwandigen Tauchboot bis in diese Tiefe vorzudringen, ansonsten ist sie die Domäne großer Kolonien der Flohkrebse, krabbenähnlicher Tiere, die aber durchsichtig sind und dort ohne jeden Schutz überleben. Die meisten Ozeane sind natürlich weitaus flacher, aber selbst bei der durchschnittlichen Meerestiefe von rund 4000 Metern herrscht noch ein Druck, als würde man von 14 voll beladenen Zementlastwagen zusammengedrückt.4
Fast alle, auch die Autoren mehrerer populärwissenschaftlicher Bücher über Ozeanografie, gehen davon aus, dass der menschliche Körper unter dem ungeheueren Druck der Tiefsee einfach in sich zusammenschrumpfen würde. In Wirklichkeit stimmt das offenbar nicht. Da wir vorwiegend aus Wasser bestehen und da Wasser sich praktisch nicht komprimieren lässt, herrscht in unserem Körper, so Frances Ashcroft von der Universität Oxford, der gleiche Druck wie im umgebenden Wasser, sodass er in der Tiefe nicht zusammengequetscht wird.5 Probleme entstehen jedoch durch die Gase im Organismus, insbesondere in der Lunge. Sie werden tatsächlich zusammengedrückt, aber von welchem Punkt an diese Kompression tödlich ist, weiß niemand. Bis vor kurzem glaubte man, jeder Taucher müsse in einer Tiefe von rund 100 Metern qualvoll sterben, weil die Lunge unter dem Brustkorb in sich zusammenfällt, aber mittlerweile haben Taucher, die ohne Geräte unterwegs waren, mehrfach das Gegenteil bewiesen. Nach Ashcrofts Angaben sieht es so aus, als ähnelten die Menschen den Walen und Delfinen stärker, als man erwartet hatte.6
Aber auch vieles andere kann schief gehen. Im Zeitalter der Taucheranzüge, die über einen langen Schlauch mit der Oberfläche in Verbindung standen, erlebten die Taucher manchmal ein gefürchtetes Phänomen, das als Barotrauma oder »Squeeze« bezeichnet wurde. Es trat ein, wenn die Pumpen an der Oberfläche ausfielen, sodass es in dem Anzug zu einem katastrophalen Druckverlust kam. Die Luft entwich mit solcher Gewalt aus dem Anzug, dass der unglückselige Taucher buchstäblich in den Helm und den Luftschlauch hineingesaugt wurde. Zog man ihn dann an die Oberfläche, »waren in dem Anzug nur noch die Knochen und einige Fleischfetzen übrig«, so der Biologe J. B. S. Haldane 1947; und für standhafte Zweifler fügte er hinzu: »Dies ist tatsächlich vorgekommen.«7
(Übrigens: Der erste Taucherhelm, den der Engländer Charles Deane 1823 konstruierte, war ursprünglich nicht zum Tauchen gedacht, sondern zur Brandbekämpfung. Man nannte ihn auch »Rauchhelm«, aber da er aus Metall bestand, war er schwerfällig, und außerdem wurde er heiß; wie Deane schon bald bemerkte, waren Feuerwehrleute nicht sonderlich darauf erpicht, brennende Gebäude mit irgendeiner Form von Schutzkleidung zu betreten, insbesondere aber nicht mit Ausrüstungsgegenständen, die sich wie ein Kochkessel aufheizten und sie obendrein noch unbeweglich machten. Um seine Investition zu retten, probierte Deane den Helm unter Wasser aus, und dabei stellte sich heraus, dass er sich ideal für Rettungsarbeiten eignete.)
Der wahre Schrecken der Tiefe jedoch ist die Taucherkrankheit – nicht so sehr, weil sie unangenehm ist, sondern weil sie sich mit so viel größerer Wahrscheinlichkeit einstellt. Luft besteht zu 80 Prozent aus Stickstoff. Wirkt auf den menschlichen Organismus ein äußerer Druck ein, verwandelt sich dieser Stickstoff in winzige Bläschen, die in Blut und Gewebe wandern. Verändert sich der Druck zu schnell – beispielsweise wenn ein Taucher sehr rasch zur Oberfläche schwimmt –, sprudeln die Bläschen im Körper ganz ähnlich wie in einer gerade geöffneten Sektflasche; sie verstopfen kleine Blutgefäße, schneiden die Zellen von der Sauerstoffversorgung ab und verursachen derart quälende Schmerzen, dass die Betroffenen sich zusammenkrümmen.
Für Schwamm- und Perlentaucher war die Taucherkrankheit seit jeher ein Berufsrisiko, aber im Abendland wurde man eigentlich erst im 19. Jahrhundert auf sie aufmerksam. Auch dann beschäftigten sich vorwiegend jene damit, die sich selbst überhaupt nicht nass machten (oder zumindest nicht sehr nass und nicht oberhalb der Fußgelenke). Betroffen waren die Caisson-Arbeiter. Ein Caisson oder Senkkasten ist eine geschlossene, trockene Kammer, die man am Boden eines Flusses errichtet, um den Bau von Brückenpfeilern zu erleichtern. Die Senkkästen waren mit Pressluft gefüllt, und wenn die Arbeiter nach längerer Tätigkeit unter diesem erhöhten Druck wieder an die Oberfläche kamen, spürten sie leichte Symptome, beispielsweise ein Prickeln oder Jucken auf der Haut. Einige wenige jedoch bekamen hartnäckige Gliederschmerzen und brachen gelegentlich sogar vor Qual zusammen. Manche standen nie wieder auf.
Das alles war höchst rätselhaft. Manche Arbeiter fühlten sich beim Zubettgehen völlig wohl, und wenn sie am nächsten Morgen aufwachten, waren sie gelähmt. Manchmal wachten sie auch überhaupt nicht mehr auf. Ashcroft berichtet von den Konstrukteuren eines neuen Tunnels unter der Themse, die kurz vor der Fertigstellung des Bauwerks ein Festessen veranstalteten.8 Zu ihrer Verblüffung sprudelte der Champagner nicht, als sie ihn in der Pressluft des Tunnels entkorkten. Als sie sich schließlich wieder in die frischer Londoner Nachtluft begaben, sorgten die Bläschen jedoch sofort für sehr viel Schaum und trugen auf denkwürdige Weise zur Verdauung bei.
Wenn man eine Umgebung mit hohem Luftdruck nicht völlig vermeiden kann, ist die Taucherkrankheit nur mit zwei Methoden zuverlässig zu verhindern. Die erste besteht darin, dass man sich der Druckveränderung nur für sehr kurze Zeit aussetzt. Aus diesem Grund können die bereits erwähnten Freitaucher bis in 150 Meter Tiefe vordringen, ohne unangenehme Wirkungen zu spüren. Sie bleiben nicht so lange unter Wasser, dass der Stickstoff in ihrem Körper sich im Gewebe lösen könnte. Die zweite Methode besteht darin, vorsichtig und stufenweise an die Oberfläche zurückzukehren. Dann können sich die Stickstoffbläschen verteilen und auflösen, ohne Schaden anzurichten.
Viele unserer Kenntnisse über das Überleben in Extremsituationen verdanken wir einem außergewöhnlichen Gespann von Vater und Sohn: den beiden Wissenschaftlern John Scott und J. B. S. Haldane. Sie waren selbst nach den anspruchsvollen Maßstäben britischer Intellektueller ausgesprochene Exzentriker. Haldane der Ältere wurde 1860 als Sohn einer schottischen Adelsfamilie geboren (sein Bruder war der Viscount Haldane), während eines großen Teils seiner Berufslaufbahn bekleidete er jedoch eine relativ bescheidene Stellung als Professor für Physiologie in Oxford. Er war für seine Zerstreutheit berühmt. Einmal schickte seine Frau ihn ins Schlafzimmer, wo er sich für eine Abendgesellschaft umziehen sollte. Er kam aber nicht zurück, und schließlich fand sie ihn, mit seinem Pyjama bekleidet, schlafend im Bett. Als sie ihn weckte, erklärte Haldane, er habe sich ausgezogen und deshalb geglaubt, es sei an der Zeit, zu Bett zu gehen.9 Unter einem Urlaub stellte er sich vor, nach Cornwall zu reisen und dort bei Bergarbeitern die Hakenwürmer zu untersuchen. Aldous Huxley, Romanschriftsteller und Enkelsohn von T. H. Huxley, wohnte eine Zeit lang bei dem Ehepaar Haldane und parodierte ihn in seinem Buch Kontrapunkt des Lebens ein wenig unbarmherzig als Wissenschaftler Edward Tantamount.
Als Beitrag zum Tauchen ermittelte Haldane die Länge der Ruhepausen, die notwendig sind, damit man ohne Taucherkrankheit aus größerer Tiefe wieder aufsteigen kann. Sein Interessensgebiet umfasste aber die gesamte Physiologie von der Höhenkrankheit bei Bergsteigern bis zum Hitzschlag in Wüstengebieten.10 Insbesondere faszinierten ihn die Wirkungen giftiger Gase auf den menschlichen Organismus. Um genauer herauszufinden, warum Bergarbeiter durch ausströmendes Kohlenmonoxid ums Leben kommen, vergiftete er sich selbst systematisch, während er sich ständig Blutproben entnahm und analysierte. Er hörte erst auf, als er die Kontrolle über seine Muskeln fast völlig verloren hatte und sein Blut zu 56 Prozent mit dem Gas gesättigt war11 – ein Prozentsatz, mit dem er dem Tod gefährlich nahe war, so jedenfalls Trevor Norton in seinem Buch In unbekannte Tiefen. Taucher, Abenteurer, Pioniere, einer unterhaltsamen Geschichte des Tauchens.
Haldanes Sohn Jack, der Nachwelt mit seinen Initialen J. B. S. bekannt, war ein bemerkenswerter Sprössling, der sich fast vom Säuglingsalter an für die Arbeit des Vaters interessierte. Als er drei Jahre alt war, hörte jemand zufällig mit an, wie er missmutig von seinem Vater wissen wollte: »Aber ist es nun Oxyhämoglobin oder Carboxyhämoglobin?«12 Während seiner gesamten Jugendzeit assistierte er seinem Vater bei den Experimenten. Als er ein junger Mann war, erprobten die beiden häufig gemeinsam Gase und Gasmasken, wobei sie abwechselnd die Zeit maßen, bis der andere ohnmächtig wurde.
Obwohl J. B. S. Haldane nie ein naturwissenschaftliches Examen ablegte (er studierte in Oxford alte Sprachen), wurde er zu einem ausgezeichneten Wissenschaftler. Vorwiegend war er in Cambridge tätig. Der Biologe Peter Medawar, der während seines ganzen Lebens andere Geistesgrößen um sich hatte, bezeichnete ihn einmal als »den klügsten Mann, den ich jemals kennen gelernt habe«.13 Huxley parodierte auch Haldane den Jüngeren in seinem Roman Narrenreigen, nutzte seine Gedanken über die genetische Manipulation von Menschen aber auch in seinem berühmtesten Werk Schöne neue Welt. Neben vielen anderen Leistungen war Haldane maßgeblich daran beteiligt, Darwins Evolutionsprinzipien mit Gregor Mendels genetischen Entdeckungen zu verbinden und das zu erreichen, was unter Genetikern als »moderne Synthese« bezeichnet wird.
Vielleicht als einziger Mensch überhaupt hielt Haldane der Jüngere den Ersten Weltkrieg für ein sehr erfreuliches Erlebnis, und er räumte freimütig ein, »dass ihm die Möglichkeit, Menschen zu töten, gefiel …«.14 Selbst wurde er zweimal verwundet. Nach dem Krieg wurde er zu einem erfolgreichen populärwissenschaftlichen Autor: Er schrieb insgesamt 23 Bücher (und daneben 400 Fachaufsätze). Seine Bücher sind noch heute durchaus lesbar und lehrreich, in vielen Fällen findet man sie aber kaum noch. Außerdem wurde er zu einem begeisterten Marxisten. Vielfach wurde die nicht nur zynische Vermutung geäußert, er sei dies aus reinem Widerspruchsgeist geworden, und wenn er in der Sowjetunion aufgewachsen wäre, hätte er sich vielleicht zu einem leidenschaftlichen Monarchisten entwickelt. Jedenfalls erschienen seine Artikel meist zunächst in dem kommunistischen Blatt Daily Worker.
Während sich das Hauptinteresse seines Vaters auf Bergarbeiter und Vergiftungen richtete, war Haldane der Jüngere besessen von der Idee, Taucher und Unterwasserarbeiter vor den unangenehmen Folgen ihrer Tätigkeit zu schützen. Mit Geldern der Admiralität ließ er eine Dekompressionskammer bauen, die er als »Drucktopf« bezeichnete. In diesem luftdicht verschließbaren Metallzylinder konnte er an drei Personen gleichzeitig die unterschiedlichsten Versuche anstellen, die ausnahmslos schmerzhaft und fast immer gefährlich waren. Die Freiwilligen mussten beispielsweise in Eiswasser sitzen und eine »abweichende Atmosphäre« einatmen, oder sie wurden raschen Druckveränderungen ausgesetzt. In einem Experiment simulierte Haldane an sich selbst einen gefährlich schnellen Aufstieg aus tiefem Wasser, weil er wissen wollte, was dabei geschah. Das Ergebnis: Seine Zahnfüllungen explodierten. »Einmal gab einer seiner verplombten Zähne einen hohen Ton von sich, und die Füllung flog heraus, da sich eine darunter befindliche Lufttasche nicht schnell genug dem Druck hatte anpassen können«, schreibt Norton.15 Die Kammer war praktisch schalldicht, sodass die Insassen sich bei Unwohlsein oder Schmerzen nur dadurch bemerkbar machen konnten, dass sie hartnäckig gegen die Wand der Kammer klopften oder Notizen vor ein kleines Fenster hielten. Ein anderes Mal hatte Haldane sich mit einer erhöhten Sauerstoffmenge vergiftet; dabei bekam er einen so schweren Krampfanfall, dass er sich mehrere Wirbel brach. Eine zusammengefallene Lunge gehörte noch zu den kleineren Gefahren. Auch Löcher im Trommelfell kamen häufig vor, aber in einem seiner Aufsätze schrieb Haldane beruhigend: »Im Allgemeinen heilt das Trommelfell wieder; und wenn darin ein Loch bleibt, ist man zwar ein wenig schwerhörig, aber dafür kann man Tabakrauch aus dem fraglichen Ohr blasen, und das ist eine soziale Errungenschaft.«16
Das Ungewöhnliche daran war nicht, dass Haldane bereit war, sich im Dienste der Wissenschaft solchen Gefahren und Unannehmlichkeiten auszusetzen, sondern dass er ohne zu zögern auch Kollegen und Angehörige überredete, in die Kammer zu klettern. Seine Frau hatte während eines simulierten Tauchganges einmal einen Krampfanfall, der 13 Minuten dauerte. Als sie schließlich nicht mehr auf den Boden schlug, half er ihr auf die Füße und schickte sie nach Hause, wo sie das Abendessen machen sollte. Vergnügt spannte Haldane jeden ein, der sich zufällig in der Nähe befand, einmal bei einer denkwürdigen Gelegenheit sogar den früheren spanischen Premierminister Juan Négrin. Dieser klagte später über ein leichtes Prickeln und ein »seltsam pelziges Gefühl auf den Lippen«, aber ansonsten kam er offenbar unbeschadet davon. Damit hatte er großes Glück: Haldane selbst hatte nach einem ähnlichen Experiment mit Sauerstoffentzug sechs Jahre lang im Gesäß und unteren Rücken kein Gefühl mehr.17
Zu Haldanes vielen Einzelinteressen gehörte auch die Stickstoffvergiftung. Aus Gründen, die man bis heute nicht ganz versteht, wird Stickstoff in Tiefen von mehr als rund 30 Metern zu einem sehr wirksamen Gift. Unter seinem Einfluss boten Taucher bekanntermaßen ihre Luftschläuche vorüberkommenden Fischen an, oder sie entschlossen sich, erst einmal eine Zigarettenpause einzulegen. Außerdem verursacht das Gas starke Stimmungsschwankungen.18 In einem Versuch, so Haldane, »wechselte die Versuchsperson zwischen Depression und gehobener Stimmung. Im einen Augenblick verlangte er, dekomprimiert zu werden, weil er sich ›einfach entsetzlich‹ fühlte, in der nächsten Minute lachte er und versuchte, die Geschicklichkeitsprüfung seiner Kollegen zu stören.« Um bei einer Versuchsperson die Beeinträchtigung zu messen, musste ein Wissenschaftler sich mit dem Freiwilligen in die Kammer begeben, wo dieser einfache mathematische Aufgaben lösen sollte. Aber wie Haldane später berichtete, »war der Prüfer nach wenigen Minuten in der Regel ebenso vergiftet wie der Geprüfte, und dann vergaß er häufig, den Knopf seiner Stoppuhr zu drücken oder ausreichende Notizen zu machen«.19 Warum es zu der Vergiftung kommt, ist bis heute ein Rätsel.20 Man vermutet, dass sie dem gleichen Mechanismus folgt wie ein Alkoholrausch, aber da man auch dessen Ursache nicht genau kennt, sind wir damit nicht klüger. Jedenfalls kann man schnell in Schwierigkeiten geraten, wenn man sich unter die Wasseroberfläche begibt, ohne dabei größte Vorsicht walten zu lassen.
Womit wir wieder (nun ja, fast) bei unserer Beobachtung wären, dass es eigentlich gar nicht einfach ist, auf der Erde ein Lebewesen zu sein, auch wenn sie der einzige Ort ist, an dem es überhaupt geht. Nur ein kleiner Teil ihrer Oberfläche ist so trocken, dass man darauf stehen kann, und überraschend große Flächen sind zu heiß, zu kalt, zu trocken, zu steil oder zu hoch gelegen, als dass sie uns von großem Nutzen sein könnten. Allerdings müssen wir zugeben, dass dies zum Teil unsere eigene Schuld ist. Was die Anpassungsfähigkeit angeht, sind Menschen verblüffend unnütze Wesen. Wie die meisten Tiere mögen wir heiße Gegenden eigentlich nicht, aber da wir stark schwitzen und leicht einen Hitzschlag bekommen, sind wir in dieser Hinsicht besonders empfindlich. Im schlimmsten Fall – wenn wir zu Fuß und ohne Wasser in der Wüste unterwegs sind – stellt sich bei den meisten Menschen schon nach sechs bis sieben Stunden das Delirium ein, und dann fallen sie um, um nie wieder aufzustehen. Nicht weniger hilflos sind wir auch in der Kälte. Wie alle Säugetiere kann der Mensch gut Wärme erzeugen, aber da wir fast unbehaart sind, hält unser Körper sie nur schlecht fest. Selbst bei recht mildem Wetter fließt die Hälfte der Kalorien, die wir verbrennen, in die Aufrechterhaltung der Körperwärme.21
Natürlich machen wir solche Schwächen zu einem großen Teil durch die Nutzung von Kleidung und Unterkünften wett, aber trotz alledem können oder wollen wir nur auf einem wahrhaft bescheidenen Teil der Erdoberfläche leben: auf zwölf Prozent der gesamten Landfläche oder nur vier Prozent der Erdoberfläche, wenn man die Meere mitrechnet.22
Betrachtet man allerdings die Bedingungen an anderen Orten im bekannten Universum, dann staunt man eigentlich nicht darüber, dass wir nur einen so kleinen Teil unseres Planeten nutzen; viel verwunderlicher ist es, dass wir überhaupt einen Planeten gefunden haben, von dem wir einen solchen Teil nutzen können. Man muss sich nur in unserem eigenen Sonnensystem umsehen – oder übrigens auch auf der Erde zu bestimmten Zeiten ihrer Vergangenheit –, dann erkennt man, dass die meisten Gebiete weitaus unwirtlicher und lebensfeindlicher sind als unser milder, blauer, von Wasser bedeckter Globus.
Die Weltraumforschung hat bisher rund 70 Planeten außerhalb unseres Sonnensystems entdeckt, insgesamt dürfte es aber rund 10 Milliarden Billionen von ihnen geben. Wir Menschen können also kaum behaupten, wir seien zu begründeten Aussagen in der Lage, aber nach bisheriger Kenntnis muss man offenbar unglaubliches Glück haben, wenn man auf einen Planeten treffen will, der sich für das Leben eignet, und je höher dieses Leben entwickelt ist, desto größer muss das Glück sein. Verschiedene Autoren haben ungefähr zwei Dutzend besonders nützliche Umstände genannt, die uns auf der Erde geholfen haben, aber in diesem Schnellüberblick wollen wir uns auf die wichtigsten vier beschränken. Das sind folgende:
Hervorragende Lage. Wir befinden uns fast gespenstisch genau in der richtigen Entfernung vom richtigen Stern – er ist immerhin so groß, dass er eine Menge Energie abgibt, aber auch nicht so riesig, dass er schnell ausbrennen würde. Hätte unsere Sonne die zehnfache Masse, wäre sie nicht nach zehn Milliarden, sondern schon nach zehn Millionen Jahren erschöpft gewesen, und es gäbe uns heute nicht.23 Auch mit unserer Umlaufbahn haben wir Glück. Läge sie näher an der Sonne, würde alles auf der Erde verbrennen. Ein Stück weiter entfernt, und alles wäre eingefroren.
Im Jahr 1978 kam der Astrophysiker Michael Hart nach einer Reihe von Berechnungen zu dem Schluss, die Erde müsse unbewohnbar sein, wenn ihre Entfernung von der Sonne nur um ein Prozent größer oder um fünf Prozent geringer wäre. Das ist nicht viel, und es reicht auch in der Tat nicht aus. Die Zahlen wurden seither verfeinert, und mittlerweile sind wir ein wenig großzügiger: Als zutreffende Grenzen gelten heute eine um fünf Prozent geringere und 15 Prozent größere Entfernung. Aber auch das ist noch ein sehr schmaler Streifen.*
Wenn wir uns klar machen wollen, wie schmal er wirklich ist, brauchen wir uns nur die Venus anzusehen. Sie steht der Sonne nur rund 40 Millionen Kilometer näher als wir, und die Wärmestrahlung erreicht sie ganze zwei Minuten früher.24 In Größe und Zusammensetzung gleicht die Venus fast völlig der Erde, aber der kleine Unterschied im Abstand der Umlaufbahn war für die Folgen von entscheidender Bedeutung. Nach heutiger Kenntnis war es auf der Venus in der Frühzeit des Sonnensystems nur geringfügig wärmer als auf der Erde, und vermutlich gab es dort auch Ozeane.25 Aber wegen dieses Unterschiedes von wenigen Grad konnte die Venus ihr Oberflächenwasser nicht festhalten, und das hatte verheerende Folgen für das Klima. Das Wasser verdunstete, die Wasserstoffatome verflüchtigten sich in den Weltraum, und die Sauerstoffatome verbanden sich mit Kohlenstoff zu einer dichten Atmosphäre aus dem Treibhausgas CO 2. Auf der Venus herrschten nun erstickende Verhältnisse. Der eine oder andere in meinem Alter erinnert sich vielleicht noch an eine Zeit, als die Astronomen hofften, unter den Wolkenbergen der Venus könnte sich Leben und vielleicht sogar eine Art tropischer Vegetation verbergen, aber wie wir heute wissen, sind die Umweltverhältnisse dort für jede Lebensform, wie wir uns vernünftigerweise vorstellen können, völlig ungeeignet. Die Oberflächentemperatur liegt bei sengenden 470 Grad, genug, um Blei schmelzen zu lassen, und der Atmosphärendruck an der Oberfläche ist 90-mal so hoch wie auf der Erde26 – mehr, als ein menschlicher Organismus aushalten könnte. Uns fehlen die technischen Mittel zur Herstellung von Schutzanzügen oder auch nur Raumschiffen, die uns einen Besuch erlauben würden. Unsere Kenntnisse über die Oberfläche der Venus stützen sich auf Radar-Fernerkundung und einige hilflose Signale einer unbemannten sowjetischen Raumsonde, die man 1972 voller Hoffnung in die Wolken fallen ließ; sie funktionierte eine knappe Stunde und gab dann endgültig den Geist auf.
So sieht es also aus, wenn man sich um zwei Lichtminuten näher an der Sonne befindet. Entfernen wir uns weiter von ihr, wird nicht die Wärme, sondern die Kälte zum Problem, das lässt der Mars auf eisige Weise erkennen. Auch dort herrschten früher viel angenehmere Verhältnisse, aber er konnte seine nutzbare Atmosphäre nicht festhalten und verwandelte sich in eine gefrorene Wüste.
Aber die richtige Entfernung von der Sonne kann allein nicht alles sein, denn sonst würde auch der Mond liebliche Wälder tragen, und das ist eindeutig nicht der Fall. Vielmehr müssen noch weitere Voraussetzungen gegeben sein:
Der richtige Planet. Würde man Geophysiker nach den wichtigsten Vorteilen unseres Planeten befragen, so würden nach meiner Vermutung nur die wenigsten in ihre Liste auch das geschmolzene Innere aufnehmen. In Wirklichkeit aber ist es so gut wie sicher, dass es uns ohne die großen, kreisenden Magmamengen nicht gäbe. Neben vielem anderen lieferte das aktive Erdinnere sowohl die Gase, die zum Aufbau einer Atmosphäre beitrugen, als auch das Magnetfeld, das uns vor der kosmischen Strahlung schützt. Außerdem macht es die Plattentektonik möglich, die für eine ständige Erneuerung und Umwälzung der Oberfläche sorgt. Wäre die Erde völlig glatt, läge ihre gesamte Oberfläche vier Kilometer tief unter Wasser begraben. In diesem eintönigen Ozean könnte es zwar Lebewesen geben, aber sicher keine menschlichen Errungenschaften.
Neben diesen nützlichen Auswirkungen des Erdinneren stehen uns auch die richtigen chemischen Elemente in genau den richtigen Mengenanteilen zur Verfügung. Wir sind ganz buchstäblich aus dem richtigen Stoff gemacht. Das ist für unser Wohlergehen so entscheidend, dass wir uns in Kürze noch genauer damit befassen werden. Zunächst aber müssen wir die beiden restlichen Faktoren betrachten, und dabei beginnen wir mit einem, der ebenfalls häufig übersehen wird:
Wir leben auf einem Doppelplaneten. Den Mond betrachten wir in der Regel nicht als Begleitplaneten, aber eigentlich ist er das. Die meisten Monde sind im Vergleich zu ihrem Planeten winzig. So haben beispielsweise die Marsbegleiter Phobos und Deimos nur einen Durchmesser von rund zehn Kilometern. Unser Mond dagegen besitzt mehr als ein Viertel des Erddurchmessers, und damit ist unser Planet der einzige im Sonnensystem, dessen Mond in seiner Größe mit ihm selbst vergleichbar ist (abgesehen von Pluto, aber der zählt eigentlich nicht, weil er selbst so klein ist). Für uns ist das von allergrößter Bedeutung.
Ohne den stabilisierenden Einfluss des Mondes würde die Erde wackeln wie ein Kreisel kurz vor dem Umfallen. Welche Auswirkungen das für Klima und Wetter hätte, ist überhaupt nicht abzusehen. Die stetige Schwerkraft des Mondes sorgt dafür, dass die Erde mit der richtigen Geschwindigkeit und dem richtigen Winkel rotiert, und das verleiht ihr die Stabilität, die für die langfristige, erfolgreiche Entwicklung des Lebendigen notwendig ist. Allerdings wird es nicht immer so weitergehen: Der Mond entgleitet uns mit einer Geschwindigkeit von rund dreieinhalb Zentimetern im Jahr.27 In zwei Milliarden Jahren wird er so weit von uns entfernt sein, dass er die Erde nicht mehr stabilisiert. Dann wird man sich eine andere Lösung einfallen lassen müssen, aber vorerst sollten wir in ihm nicht nur eine angenehme Erscheinung am Nachthimmel sehen.
Lange hatten die Astronomen angenommen, Mond und Erde seien entweder gemeinsam entstanden, oder die Erde habe den Mond eingefangen, als er vorübertrieb. Von der heutigen Vorstellung war in einem früheren Kapitel bereits die Rede: Danach prallte vor rund 4,5 Milliarden Jahren ein Objekt von der Größe des Mars gegen die Erde und schlug so viel Material los, dass der Mond aus den Trümmern entstehen konnte. Das war für uns natürlich sehr vorteilhaft – insbesondere weil es sich vor so langer Zeit ereignete. Wäre es 1896 oder letzten Mittwoch geschehen, würden wir uns darüber natürlich bei weitem nicht so freuen. Womit wir bei unserer vierten und in vielerlei Hinsicht entscheidenden Überlegung wären:
Zeitlicher Ablauf. Im Universum geht es erstaunlich launenhaft und ereignisreich zu. Dass wir darin überhaupt existieren, ist ein Wunder. Wäre eine lange, unvorstellbar komplizierte Abfolge von Ereignissen nicht über 4,6 Milliarden Jahre hinweg zu ganz bestimmten Zeitpunkten auf ganz bestimmte Weise abgelaufen – wären beispielsweise, um nur ein nahe liegendes Beispiel zu nennen, die Dinosaurier nicht gerade damals von einem Meteor hinweggefegt worden –, dann wären wir jetzt vermutlich 15 Zentimeter groß, hätten Schnurrhaare und einen Schwanz und würden dieses Buch in einem unterirdischen Bau lesen.
Aber auch das wissen wir eigentlich nicht mit Sicherheit, denn wir haben nichts, womit wir unser eigenes Dasein vergleichen könnten. Eines aber scheint auf der Hand zu liegen: Wenn am Ende eine einigermaßen fortgeschrittene, denkende Gesellschaft stehen soll, muss davor eine sehr lange Kette von Zwischenergebnissen liegen, mit längeren Phasen der Stabilität, zwischen denen immer wieder Belastungen und Herausforderungen genau im richtigen Umfang eingestreut waren (Eiszeiten sind in dieser Hinsicht anscheinend besonders hilfreich). Gleichzeitig muss eine wirkliche Katastrophe völlig ausgeblieben sein. Wie wir auf den noch vor uns liegenden Seiten sehen werden, haben wir großes Glück gehabt, dass wir uns genau in dieser Lage befinden.
Vor diesem Hintergrund wollen wir uns nun kurz mit den Elementen befassen, aus denen wir bestehen.
In der Natur kommen auf der Erde 92 chemische Elemente vor, und rund 20 weitere hat man im Labor hergestellt. Einige davon können wir aber sofort beiseite lassen – das tun meist sogar die Chemiker. Über eine beträchtliche Zahl der chemischen Substanzen auf der Erde wissen wir erstaunlich wenig. Das Astatin zum Beispiel ist praktisch unerforscht. Es hat einen Namen und einen Platz im Periodensystem (gleich neben Marie Curies Polonium), aber sonst auch fast nichts. Das hat weniger mit wissenschaftlicher Gleichgültigkeit zu tun als vielmehr mit seinem seltenen Vorkommen. Es gibt auf der Erde nicht besonders viel Astatin. Am schwersten unter allen Elementen ist aber wahrscheinlich das Francium dingfest zu machen: Es ist so selten, dass auf der gesamten Erde nach heutiger Kenntnis wahrscheinlich zu jedem beliebigen Zeitpunkt noch nicht einmal 20 Franciumatome existieren.28 Insgesamt sind nur ungefähr 30 natürlich vorkommende Elemente auf der Erde weit verbreitet, und knapp ein halbes Dutzend davon ist für das Leben von zentraler Bedeutung.
Wie vielleicht nicht anders zu erwarten, ist der Sauerstoff das häufigste Element: Er macht knapp 50 Prozent der Erdkruste aus, aber dahinter sind die Mengenverhältnisse häufig eine Überraschung. Wer hätte beispielsweise angenommen, dass das Silicium das zweithäufigste Element auf der Erde ist und dass das Titan an zehnter Stelle steht? Die Häufigkeit hat kaum etwas damit zu tun, ob ein Element uns vertraut ist oder einen Nutzen bringt. Viele relativ unbekannte Elemente sind sogar häufiger als die besser bekannten. Es gibt auf der Erde mehr Cer als Kupfer, mehr Neodym oder Lanthan als Kobalt oder Stickstoff. Das Zinn schafft es gerade eben in die obersten 50, wird aber von Exoten wie Praseodym, Samarium, Gadolinium und Dysprosium in den Schatten gestellt.
Auch mit der Frage, wie einfach ein Element nachzuweisen ist, hat die Häufigkeit wenig zu tun. Aluminium ist das vierthäufigste Element auf der Erde: Es macht fast ein Zehntel von allem aus, was sich unter unseren Füßen befindet. Dennoch ahnte man nichts von seiner Existenz, bis Humphry Davy es im 19. Jahrhundert entdeckte, und noch lange danach galt es als seltene, kostbare Substanz. Der US-Kongress hätte an der Spitze des Washington Monument fast eine glänzende Verkleidung aus Aluminiumfolie anbringen lassen, um zu zeigen, was für eine großartige, wohlhabende Nation die Vereinigten Staaten geworden waren, und die französische Kaiserfamilie warf zur gleichen Zeit das staatliche Silbergeschirr weg und ersetzte es durch Gerätschaften aus Aluminium.29 Es war das Modernste, was man haben konnte.
Ebenso besteht kein zwangsläufiger Zusammenhang zwischen Häufigkeit und Bedeutung. Kohlenstoff steht, was seinen Anteil angeht, nur an 15. Stelle und macht bescheidene 0,48 Prozent der Erdkruste aus,30 aber ohne ihn würden wir nicht existieren. Die Besonderheit des Kohlenstoffatoms besteht darin, dass es schamlose Promiskuität betreibt. Es ist der Partylöwe in der Welt der Atome und geht Bindungen zu vielen anderen Atomen (auch zu seinesgleichen) ein, an denen es dann eisern festhält. So entstehen molekulare Menschenketten von handfester Widerstandskraft – genau das ist der Kunstgriff der Natur, der den Aufbau von Proteinen und DNA erst möglich macht. Oder, wie Paul Davies schrieb: »Ohne Kohlenstoff wäre Leben, wie wir es kennen, unmöglich. Wahrscheinlich wäre auch jede andere Art von Leben ausgeschlossen.«31 Aber selbst im menschlichen Organismus, der so entscheidend darauf angewiesen ist, macht der Kohlenstoff keinen sonderlich großen Anteil aus. Von jeweils 200 Atomen in unserem Körper sind 120 Wasserstoff, 51 Sauerstoff und nur 19 Kohlenstoff.** 32
Andere Elemente sind nicht für die Entstehung des Lebens unentbehrlich, aber für seine Erhaltung. Wir brauchen Eisen, um Hämoglobin bilden zu können, und wenn es fehlt, gehen wir zu Grunde. Kobalt ist notwendig für die Entstehung von Vitamin B12, Kalium und sehr wenig Natrium sind im wahrsten Sinne des Wortes gut für die Nerven. Molybdän, Mangan und Vanadium tragen dazu bei, dass die Enzyme reibungslos funktionieren. Und Zink – gelobt sei es – oxidiert den Alkohol.
Wir haben uns in der Evolution so entwickelt, dass wir solche Dinge nutzen oder zumindest ertragen können – ansonsten wären wir wohl kaum hier. Unsere Toleranzgrenzen sind allerdings eng. Selen ist für jeden Menschen lebenswichtig, aber man braucht nur ein wenig zu viel davon zu nehmen, dann ist es das Letzte, was man in seinem Leben getan hat. In welchem Umfang ein Lebewesen bestimmte Elemente verbraucht oder verträgt, ergibt sich aus seiner jeweiligen Evolution.33 Schafe und Rinder grasen heute nebeneinander, haben aber einen sehr unterschiedlichen Mineralstoffbedarf. Moderne Rinder brauchen viel Kupfer, weil ihre Evolution sich in Teilen Europas und Afrikas abgespielt hat, wo dieses Element in großen Mengen vorkommt. Die Schafe dagegen sind in den kupferarmen Gebieten Kleinasiens entstanden. In der Regel – und darüber braucht man sich eigentlich nicht zu wundern – ist unsere Toleranz für einzelne Elemente unmittelbar proportional zu ihrer Häufigkeit der Erdkruste. Auf Grund unserer Evolution erwarten wir die winzigen Mengen seltener Elemente, die sich in unserer Nahrung ansammeln, und in manchen Fällen brauchen wir sie sogar. Erhöht man aber die Dosis in manchen Fällen nur geringfügig, überschreitet man schon bald einen Grenzwert. Viele dieser Zusammenhänge sind bisher nur unvollständig erforscht. So weiß beispielsweise niemand, ob Arsen in winzigen Mengen für unser Wohlbefinden notwendig ist oder nicht. Manche Fachleute sagen ja, andere nein. Sicher ist nur eines: zu viel ist tödlich.
Noch seltsamer werden die Eigenschaften der Elemente, wenn sie sich verbinden. Sauerstoff und Wasserstoff beispielsweise sind zwei der verbrennungsfreudigsten Elemente überhaupt, aber gemeinsam bilden sie das unbrennbare Wasser.*** Noch seltsamer verhält sich die Kombination zwischen Natrium, einem der instabilsten Elemente, und Chlor, das so giftig ist wie kaum ein anderes. Wirft man ein kleines Stück Natrium in ganz gewöhnliches Wasser, explodiert es mit solcher Kraft dass es tödlich wirken kann.34 Die Gefährlichkeit von Chlor ist noch berüchtigter. In geringer Konzentration ist es zwar nützlich, weil es Mikroorganismen abtötet (es verleiht der Chlorbleichlauge ihren Geruch), in größeren Mengen jedoch wirkt es tödlich. Deshalb war es erste Wahl für viele Giftgase des Ersten Weltkrieges. Und wie so mancher Schwimmer mit roten Augen bestätigen kann, ist es für Menschen selbst in äußerst stark verdünnter Form nicht bekömmlich. Aber dann verbinden sich diese beiden unangenehmen Elemente, und was kommt heraus? Natriumchlorid – ganz gewöhnliches Kochsalz.
Generell kann man sagen: Wenn ein Element von Natur aus nicht seinen Weg in unseren Organismus findet – beispielsweise weil es nicht wasserlöslich ist –, vertragen wir es meist auch nicht. Mit Blei können wir uns vergiften, weil wir ihm nie ausgesetzt waren, bevor es zum Bestandteil von Konservendosen und Wasserleitungen wurde. (Nicht ganz zufällig kommt Pb, das chemische Symbol für Blei, von dem lateinischen plumbum, von dem sich das englische Wort plumbing für eine Wasserleitung ableitet.) Die Römer aromatisierten auch ihren Wein mit Blei,35 und das dürfte einer der Gründe gewesen sein, warum ihnen im Laufe der Zeit die Kräfte verloren gingen. Wie wir an anderer Stelle bereits erfahren haben, lässt uns unsere geringe Toleranz für Blei (von Quecksilber, Cadmium und vielen anderen industriellen Schadstoffen, die wir tagtäglich aufnehmen, gar nicht zu reden) kaum Spielraum für Unachtsamkeit. Für Elemente, die von Natur aus auf der Erde nicht vorkommen, hat sich beim Menschen auch keine Toleranz entwickelt, und deshalb sind sie für uns in der Regel äußerst giftig – ein gutes Beispiel ist das Plutonium. Unsere Toleranz für Plutonium liegt bei Null: Auch eine noch so geringe Menge haut uns um.
Jetzt habe ich weit ausgeholt, um eine einfache Aussage zu verdeutlichen: Dass die Erde uns so wunderbar angenehm erscheint, liegt zu einem großen Teil daran, dass wir uns im Laufe der Evolution entsprechend ihren Bedingungen entwickelt haben. Wir staunen eigentlich nicht darüber, dass sie sich für Leben eignet, sondern dass sie sich für unser Leben eignet – und das ist wirklich kein Wunder. Viele Dinge, die uns so großartig erscheinen – eine wohlproportionierte Sonne, ein liebevoller Mond, der bindungsfreudige Kohlenstoff, mehr Magma, als wir uns vorstellen können, und alles andere –, erscheinen einfach deshalb so großartig, weil wir gerade von ihnen auf Grund unserer Geburt abhängig sind. Wieweit das gilt, weiß niemand ganz genau.
Andere Welten könnten Wesen beherbergen, die dankbar für silbrige Quecksilberseen und treibende Ammoniakwolken sind. Sie freuen sich vielleicht darüber, dass ihr Planet sie nicht mit seinen schiebenden Platten durchschüttelt oder ein Durcheinander von Lavaklumpen in die Landschaft schleudert, sondern ohne Tektonik in stetiger Ruhe verharrt. Jeder Besucher, der von weither zur Erde kommt, wäre mit ziemlicher Sicherheit verblüfft darüber, dass wir in einer Atmosphäre aus Stickstoff leben, einem ausgesprochen trägen Gas, das keine Neigung hat, mit irgendetwas anderem zu reagieren, während der ebenfalls darin enthaltene Sauerstoff die Verbrennung so stark begünstigt, dass wir in unseren Städten eine Feuerwehr brauchen, um uns vor seinen augenfälligsten Effekten zu schützen. Aber selbst wenn unsere Besucher Sauerstoff atmen und auf zwei Beinen gehen würden, wenn sie eine Vorliebe für Einkaufspassagen und Actionfilme hätten, wäre die Erde für sie wahrscheinlich kein geeigneter Ort. Wir könnten ihnen nicht einmal etwas zu essen geben, denn alle unsere Lebensmittel enthalten Spuren von Mangan, Selen, Zink und anderen Bestandteilen, von denen zumindest manche für sie giftig wären. Ihnen wird die Erde wahrscheinlich nicht gerade wie ein wundersames Paradies vorkommen.
Der Physiker Richard Feynman machte gern einen Witz über im Nachhinein gewonnene Erkenntnisse, oder Schlussfolgerungen a posteriori, wie man sie auch nennt. So sagte er zum Beispiel: »Sehen Sie, heute Abend ist mir etwas wirklich Erstaunliches passiert. Auf dem Weg zu dieser Vorlesung bin ich über den Parkplatz spaziert, und – Sie werden es nicht glauben: Ich entdeckte ein Auto mit dem Kennzeichen ARW 357. Stellen Sie sich das einmal vor! Wie groß war die Wahrscheinlichkeit, von den Millionen Nummernschildern in diesem Staat ausgerechnet dieses zu sehen? Wirklich, höchst erstaunlich!«36 Natürlich ging es ihm darum, dass man aus jeder alltäglichen Situation etwas Ungewöhnliches machen kann, wenn man sie als schicksalhaft betrachtet.
Möglicherweise sind also die Ereignisse und Bedingungen, die zum Aufstieg des Lebens auf der Erde geführt haben, überhaupt nicht so außergewöhnlich, wie wir gern glauben. Immerhin waren sie aber doch ungewöhnlich, und eines ist sicher: Wir werden damit auskommen müssen, bis wir etwas Besseres finden.
* Nachdem man in den siedenden Schlammtümpeln des Yellostone-Nationalparks die Extremophilen entdeckt hatte, wurde den Wissenschaftlern klar, dass irgendwelche Lebensformen in einem sehr viel größeren Bereich existieren könnten, vielleicht sogar unter der eisigen Außenhaut des Pluto. Gemeint sind hier die Voraussetzungen für einigermaßen kompliziert gebaute Lebewesen, die an der Oberfläche eines Planeten leben. zurück
** Unter den restlichen vier sind drei Stickstoff, das letzte verteilt sich auf alle anderen Elemente. zurück
*** Sauerstoff selbst ist nicht brennbar, aber er erleichtert die Verbrennung anderer Substanzen. Im Endeffekt ist das auch gut so: Wäre Sauerstoff brennbar, würde die Luft jedes Mal in Flammen aufgehen, wenn wir ein Streichholz anzünden. Wasserstoffgas dagegen ist äußerst feuergefährlich; das zeigte sich sehr deutlich am 6. Mai 1937, als das wasserstoffbetriebene Luftschiff Hindenburg in Lakehurst in New Jersey explodierte. Bei dem Unfall kamen 36 Menschen ums Leben. zurück