13.
Peng!

Dass mit der Erde unter Manson, Iowa, etwas nicht stimmte, wusste man schon lange. Im Jahr 1912 berichtete ein Arbeiter, der für die städtische Wasserversorgung einen Brunnen bohrte, es seien zahlreiche seltsam geformte Steine zum Vorschein gekommen – »kristalline Trümmerbrekzien mit geschmolzener Matrix« und »umgewälztes flaches Auswurfgestein«, wie ein offizieller Bericht es später nannte.1 Auch das Wasser war eigenartig – fast so weich wie Regenwasser. Natürliche Vorkommen von weichem Wasser hatte man in Iowa bis dahin noch nie gefunden.

Die ungewöhnlichen Steine und das seidenweiche Wasser von Manson erregten zwar Neugier, aber es sollten noch 41 Jahre vergehen, bis eine Arbeitsgruppe der University of Iowa sich aufraffte und der Gemeinde im Nordwesten des Bundesstaates, die mittlerweile eine Kleinstadt mit ungefähr 2000 Einwohnern war, einen Besuch abstattete. Im Jahr 1953, nach einer Serie von Versuchsbohrungen, gelangten die Geologen der Universität übereinstimmend zu der Ansicht, es handle sich in der Tat um eine Anomalie. Die Verformung des Gesteins führte man auf eine vorzeitliche, nicht näher beschriebene Vulkantätigkeit zurück. Damit befanden sich die Wissenschaftler in Übereinstimmung mit der Lehrmeinung ihrer Zeit, aber es war ungefähr so falsch, wie eine geologische Aussage überhaupt nur sein kann.

Die große Umwälzung in der geologischen Vergangenheit von Manson hatte ihren Ursprung nicht im Erdinneren, sondern mindestens 150 Millionen Kilometer davon entfernt. Irgendwann in sehr ferner Vergangenheit, als das Gebiet sich am Rande eines flachen Meeres befand, raste ein Gesteinsbrocken von ungefähr zweieinhalb Kilometern Durchmesser und einem Gewicht von zehn Milliarden Tonnen mit etwa 200-facher Schallgeschwindigkeit durch die Atmosphäre und schlug ganz plötzlich mit nahezu unvorstellbarer Gewalt auf der Erde ein. An der Stelle, wo sich heute Manson befindet, tat sich ein Loch von fünf Kilometern Tiefe und mehr als 30 Kilometern Durchmesser auf. Der Kalkstein, dem Iowa ansonsten sein hartes, kalkhaltiges Wasser verdankt, wurde hinweggefegt, und an seine Stelle trat das erschütterte Muttergestein, das dem Bohrarbeiter 1912 so rätselhaft erschien.

Der Einschlag von Manson war das Größte, was sich jemals auf dem Gebiet der heutigen Vereinigten Staaten ereignete. Das Größte überhaupt. Zu allen Zeiten. Er hinterließ einen so gewaltigen Krater, dass man von seinem Rand aus nur bei klarem Wetter gerade eben die gegenüberliegende Seite sehen konnte. Der Grand Canyon sieht daneben klein und unbedeutend aus. Pech für sensationshungrige Schaulustige: In den darauf folgenden 2,5 Millionen Jahren füllten Eisschichten durch ihr Kommen und Gehen den Manson-Krater bis zum Rand mit Gletscherschutt und schliffen ihn glatt, sodass die Landschaft in Manson und im Umkreis von vielen Kilometern heute flach wie eine Tischplatte ist. Das ist natürlich der Grund, warum niemand etwas vom Manson-Krater wusste.

In der Bibliothek der Kleinstadt zeigt man dem Besucher mit Vergnügen eine Sammlung von Zeitungsartikeln und eine Kiste voller Bohrkerne aus einem Forschungsprojekt von 1991/92. Wenn man sie sehen will, muss man zwar fragen, aber dann werden sie auch mit großem Eifer herausgeholt. Ständig ausgestellt ist nichts, und nirgendwo in der Stadt gibt es irgendeinen historischen Anhaltspunkt.

Für die meisten Bewohner von Manson war das größte Ereignis aller Zeiten ein Tornado, der 1979 die Hauptstraße verwüstete und das Geschäftsviertel in Trümmer legte. Die flache Landschaft hat unter anderem den Vorteil, dass man Gefahren schon lange im Voraus kommen sieht. Praktisch die ganze Stadt versammelte sich an einem Ende der Hauptstraße und sah eine halbe Stunde lang zu, wie der Tornado näher kam. Alle hofften, er werde abdrehen, und als das nicht geschah, brachten sie sich klugerweise in Sicherheit.2 Aber vier Menschen waren leider nicht schnell genug und kamen ums Leben. Heute werden in Manson jedes Jahr im Juni eine Woche lang die »Crater Days« gefeiert – dies hatte man sich einfallen lassen, damit die Menschen den unglückseligen Jahrestag vergessen. Mit dem Krater haben sie in Wirklichkeit nichts zu tun. Wie man Kapital aus einer Einschlagstelle ziehen soll, die man nicht sehen kann, hat noch niemand herausgefunden.

»Ganz selten kommen Leute und fragen, wohin sie fahren sollen, um den Krater zu sehen. Wir müssen ihnen erklären, dass es nichts zu sehen gibt«, sagt Anna Schlapkohl, die freundliche städtische Bibliothekarin.3 »Dann reisen sie wieder ab und sind ein wenig enttäuscht.« Aber die meisten Menschen, auch der größte Teil der Bewohner Iowas, haben nie etwas von dem Krater in Manson gehört. Selbst den Geologen ist er kaum eine Fußnote wert. Nur während einer kurzen Zeit in den achtziger Jahren des 20. Jahrhunderts war Manson, geologisch betrachtet, der aufregendste Ort der Welt.

Die Geschichte beginnt Anfang der fünfziger Jahre, als ein begabter junger Geologe namens Eugene Shoemaker den Meteor Crater in Arizona besichtigte. Heute ist dieser Krater die berühmteste Einschlagstelle der Erde und eine beliebte Touristenattraktion. Damals jedoch zog er nur wenige Besucher an, und nach dem wohlhabenden Bergbauingenieur Daniel M. Barringer, der dort 1903 seine Claims abgesteckt hatte, wurde er häufig auch als Barringer-Krater bezeichnet. Barringer glaubte, der Krater sei durch einen Meteor von zehn Millionen Tonnen entstanden, der viel Eisen und Nickel mitbrachte, und er rechnete zuversichtlich damit, er könne mit der Förderung dieser Metalle ein Vermögen verdienen. Da er nicht wusste, dass der Meteor und alle seine Bestandteile bei dem Einschlag verdampft sein mussten, vergeudete er riesige Geldbeträge und die nächsten 26 Jahre mit dem Graben von Stollen, die nichts zu Tage brachten.

Nach heutigen Maßstäben war die Kraterforschung zu Beginn des 20. Jahrhunderts noch nicht sonderlich hoch entwickelt, um es vorsichtig auszudrücken. Der führende Fachmann jener Frühzeit, G. K. Gilbert von der Columbia University, ahmte die Auswirkungen von Einschlägen nach, indem er Glasmurmeln in eine Schüssel mit Haferflocken fallen ließ.4 (Aus Gründen, über die ich keine näheren Angaben machen kann, führte Gilbert diese Experimente nicht in einem Labor an der Universität durch, sondern in einem Hotelzimmer.5) Aus den Ergebnissen zog er irgendwie den Schluss, die Mondkrater seien tatsächlich durch Einschläge entstanden – schon das zu jener Zeit eine radikale Idee –, die auf der Erde aber nicht. Noch nicht einmal so weit mochten die meisten Wissenschaftler gehen. In ihren Augen waren die Mondkrater ein Beleg für alte Vulkane und sonst gar nichts. Die wenigen Krater, die auf der Erde noch zu erkennen waren (die meisten waren durch Erosion verschwunden), führte man in der Regel auf andere Ursachen zurück, oder man betrachtete sie als seltene Zufallserscheinungen.

Als Shoemaker nach Arizona kam, galt der Meteor Crater allgemein als das Ergebnis einer unterirdischen Dampfexplosion. Shoemaker hatte keine Ahnung von unterirdischen Dampfexplosionen – das war auch nicht möglich, denn es gibt sie nicht –, aber dafür wusste er alles über die Auswirkungen oberirdischer Detonationen. Nach dem College war es eine seiner ersten beruflichen Tätigkeiten gewesen, auf dem Nukleartestgelände von Yucca Flats in Nevada die Explosionsringe zu untersuchen. In Arizona gelangte er wie vor ihm schon Barringer zu der Erkenntnis, dass nichts am Meteor Crater auf Vulkantätigkeit schließen ließ; dafür gab es aber große Mengen anderen Materials – vor allem ungewöhnlich feinkörnige Silikat- und Magnetitmineralien –, die auf den Einschlag eines Himmelskörpers hindeuteten. Er war fasziniert und beschäftigte sich von nun an in seiner Freizeit mit dem Thema.

Zusammen mit seinem Mitarbeiter David Levy sowie zunächst mit seiner Kollegin Eleanor Helin und später mit seiner Frau Carolyn machte Shoemaker sich an eine systematische Übersichtsuntersuchung des inneren Sonnensystems. Jeden Monat verbrachten sie eine Woche am Palomar-Observatorium in Kalifornien und suchten nach Objekten – insbesondere Asteroiden –, die auf ihren Bahnen die Umlaufbahn der Erde kreuzen mussten.

»Als wir anfingen, hatte man in der gesamten Geschichte der Astronomie nur wenig mehr als ein Dutzend solcher Dinger entdeckt«, berichtete Shoemaker einige Jahre später in einem Fernsehinterview.6 Dann fügte er hinzu: »Im 20. Jahrhundert hatten die Astronomen das Sonnensystem im Wesentlichen aufgegeben. Ihre Aufmerksamkeit richtete sich nur noch auf die Sterne und die Galaxien.«

Shoemaker und seine Kollegen stellten fest, dass es dort draußen mehr – viel mehr – Gefahren gibt, als man sich jemals hätte träumen lassen.

Wie allgemein bekannt ist, sind Asteroiden nichts anderes als Gesteinsbrocken, die in lockerer Anordnung in einem Gürtel zwischen Mars und Jupiter um die Sonne kreisen. In Zeichnungen werden sie immer dicht gedrängt dargestellt, in Wirklichkeit ist das Sonnensystem aber recht geräumig, und jeder Asteroid hat im Durchschnitt rund eineinhalb Millionen Kilometer Abstand von seinem nächsten Nachbarn. Wie viele Asteroiden durch den Weltraum taumeln, kann niemand auch nur annähernd angeben, aber vermutlich liegt ihre Zahl nicht unter einer Milliarde. Nach heutiger Kenntnis sind sie wahrscheinlich Planeten, die es nie ganz geschafft haben, weil die ungeheuer starke Gravitation des Jupiter sie daran gehindert hat und bis heute hindert, sich zu größeren Objekten zusammenzulagern.

Als die Asteroiden im 19. Jahrhundert entdeckt wurden – den ersten fand der Sizilianer Giuseppe Piazzi am ersten Tag des Jahrhunderts –, hielt man sie für Planeten, und die beiden ersten taufte man auf die Namen Ceres und Pallas. Erst der Astronom William Herschel wies mit mehreren geistreichen Gedankengängen nach, dass sie nicht einmal annähernd die Größe von Planeten erreichen. Deshalb bezeichnete er sie als Asteroiden – das lateinische Wort bedeutet »sternähnlich«7. Es ist eigentlich ein unglücklich gewählter Begriff, denn Asteroiden sind alles andere als Sterne. Heute spricht man zutreffender manchmal auch von Planetoiden.

Das Aufspüren von Asteroiden wurde seit 1800 zu einer beliebten Tätigkeit, und am Ende des 19. Jahrhunderts kannte man etwa 1000 solcher Objekte. Das Problem war nur, dass niemand sie systematisch erfasste. Anfang des 20. Jahrhunderts konnte man in vielen Fällen nicht mehr wissen, ob man einen neuen Asteroiden im Visier hatte, oder ob er früher schon einmal beobachtet wurde und dann in Vergessenheit geraten war. Mittlerweile war auch die Astrophysik so weit vorangekommen, dass kaum noch ein Astronom sein Leben den profanen, steinernen Planetoiden widmen wollte. Nur wenige, unter ihnen insbesondere der in den Niederlanden geborene Gerard Kuiper, nach dem der Kuiper-Kometengürtel benannt ist, interessierten sich überhaupt noch für das Sonnensystem. Durch seine Arbeiten am McDonald Observatory in Texas, die später von anderen am Minor Planet Center in Cincinnati und am Spacewatch-Projekt in Arizona fortgeführt wurden, schrumpfte die lange Liste der verlorenen Asteroiden allmählich, bis man am Ende des 20. Jahrhunderts nur noch für einen bekannten Asteroiden keine Erklärung hatte. Das Objekt mit dem Namen 719 Albert war im Oktober 1911 das letzte Mal beobachtet worden und dann 89 Jahre lang aus dem Blickfeld verschwunden, bis man es im Jahr 2000 schließlich wieder dingfest machen konnte.8

Was die Asteroidenforschung angeht, war das 20. Jahrhundert also eigentlich nur eine Übung in Buchhalterei. Erst seit wenigen Jahren sind die Astronomen damit beschäftigt, auch die übrige Asteroidengemeinschaft zu beobachten und zu zählen. Im Juni 2001 hatte man 26000 derartige Objekte benannt und identifiziert, die Hälfte davon erst in den vorangegangenen zwei Jahren.9 Da es insgesamt bis zu einer Milliarde sind, hat das Zählen gerade erst begonnen.

In gewisser Hinsicht ist das aber auch bedeutungslos. Ein Asteroid wird durch die Identifizierung nicht ungefährlich. Selbst wenn man jedem Asteroiden im Sonnensystem einen Namen gegeben hätte und über seine Umlaufbahn Bescheid wüsste, könnte niemand etwas darüber aussagen, welche Störungen ihn möglicherweise in unserer Richtung ablenken. Schon die Bewegungen des Gesteins auf der Oberfläche unseres eigenen Planeten können wir nicht voraussagen. Über das Verhalten von Objekten, die im Weltraum treiben, sind nicht einmal begründete Vermutungen möglich. Selbst wenn wir einem Asteroiden einen Namen gegeben haben, sind wir höchstwahrscheinlich nicht zu weiteren Aussagen über ihn in der Lage.

Man kann sich die Erdumlaufbahn als eine Art Autobahn vorstellen, auf der unser Planet das einzige Fahrzeug ist; häufig gehen aber Fußgänger über die Straße, die nicht wissen, dass man sich umsehen muss, bevor man die Fahrbahn betritt. Mindestens 90 Prozent dieser Fußgänger kennen wir nicht. Wir wissen nicht, wo sie wohnen, wie ihr Tagesablauf aussieht, wie oft sie uns in die Quere kommen. Nur eines ist klar: Irgendwann, in nicht genau bekannten Abständen, trotten sie über die Straße, auf der wir mit mehr als 100000 Stundenkilometern dahinrasen.10 Oder, wie Steven Ostro vom Jet Propulsion Laboratory es formulierte: »Angenommen, man könnte auf einen Knopf drücken und damit alle Asteroiden erleuchten, die größer als etwa zehn Meter sind und die Umlaufbahn der Erde kreuzen – dann würde man am Himmel mehr als 100 Millionen solcher Objekte sehen.« Kurz gesagt, würden wir dann am Himmel nicht ein paar 1000 weit entfernte, blinzelnde Sterne erkennen, sondern Millionen und Abermillionen Objekte, die uns viel näher sind und auf zufälligen Bahnen wandern – »und alle können mit der Erde zusammenstoßen, alle wandern mit unterschiedlicher Geschwindigkeit und auf geringfügig unterschiedlichen Bahnen über den Himmel. Es wäre zutiefst beunruhigend.«11 Nun ja, wir sollten beunruhigt sein, weil es so ist. Wir sehen es nur nicht.

Insgesamt glaubt man – und das ist wirklich nur eine Vermutung, die sich aus der Fortschreibung der Kraterbildung auf dem Mond ergibt –, dass rund 2000 Asteroiden, die mit ihrer Größe unser zivilisiertes Dasein gefährden könnten, regelmäßig unsere Umlaufbahn kreuzen. Aber schon ein kleineres Objekt, das beispielsweise so groß wie ein Haus ist, kann eine ganze Stadt zerstören. Die Zahl dieser Winzlinge, deren Bahn die unsere kreuzt, geht mit ziemlicher Sicherheit in die Hunderttausende und vielleicht sogar in die Millionen. Ihnen auf der Spur zu bleiben, ist so gut wie unmöglich.

Den ersten entdeckte man erst 1991, und das, nachdem er bereits vorübergezogen war. Er erhielt den Namen 1991 BA, und man bemerkte ihn, als er in einem Abstand von rund 170000 Kilometern an uns vorüberzog – nach kosmischen Maßstäben entspricht das einer Gewehrkugel, die den Ärmel durchschlägt, ohne den Arm zu treffen. Zwei Jahre später verfehlte uns ein anderer, etwas größerer Asteroid um nur 150000 Kilometer – es war die nächste Begegnung, die bisher aufgezeichnet wurde. Auch ihn sah man erst, als er bereits vorübergeflogen war, das heißt, er wäre ohne Vorwarnung gekommen. Glaubt man einem Artikel von Timothy Ferris im New Yorker, ereignen sich solche Beinahe-Zusammenstöße vermutlich zwei- bis dreimal in der Woche, und immer bleiben sie unbemerkt.12

Ein Objekt von 100 Metern Durchmesser wird von erdgebundenen Teleskopen erst wenige Tage vor dem Einschlag erfasst, und auch das nur, wenn das Teleskop zufällig darauf ausgerichtet ist – was wahrscheinlich nicht der Fall sein wird, weil selbst heute nur eine bescheidene Zahl von Fachleuten nach solchen Objekten sucht. Nach einem interessanten Vergleich ist die Zahl der Menschen, die auf der ganzen Welt aktiv nach Asteroiden suchen, kleiner als die Belegschaft eines typischen McDonalds-Restaurants. (In Wirklichkeit ist sie heute ein wenig höher, allerdings nur geringfügig.)

Während Gene Shoemaker bestrebt war, die Menschen für die potenziellen Gefahren des inneren Sonnensystems zu sensibilisieren, nahm in Italien eine andere Entwicklung ihren Lauf, die auf den ersten Blick nichts damit zu tun hatte. Auslöser waren die Arbeiten eines jungen Geologen vom Lamont Doherty Laboratory an der Columbia University. Anfang der siebziger Jahre arbeitete Walter Alvarez im Freiland, und zwar in der malerischen Bottaccione-Schlucht nicht weit von dem Bergstädtchen Gubbio in Umbrien. Dort interessierte er sich besonders für ein schmales Band aus rötlichem Lehm, das zwei alte Kalksteinschichten trennte, die eine aus der Kreidezeit, die andere aus dem Tertiär. Diese Trennlinie, die in der Geologie KT-Grenze genannt wird, kennzeichnet den Zeitpunkt vor 65 Millionen Jahren, als die Dinosaurier und ungefähr die Hälfte aller anderen Tierarten der Erde sehr plötzlich aus den Fossilfunden verschwanden. Alvarez fragte sich, ob die dünne, etwa einen halben Zentimeter dicke Lehmschicht vielleicht einen Hinweis darauf enthielt, was die Ursache dieses dramatischen erdgeschichtlichen Augenblickes gewesen sein könnte.

Was das Aussterben der Dinosaurier anging, war die herkömmliche Lehrmeinung zu jener Zeit noch die gleiche wie ein Jahrhundert zuvor, in den Tagen von Charles Lyell: Danach waren die Dinosaurier im Laufe von mehreren Millionen Jahren verschwunden. Die geringe Dicke der Lehmschicht legte jedoch die Vermutung nahe, dass zumindest in Umbrien ein abrupteres Ereignis im Spiel war. Leider gab es in den siebziger Jahren noch keine Methoden, mit denen man hätte feststellen können, wie lange die Ablagerung eines solchen Sediments dauert.

Wäre alles normal verlaufen, hätte Alvarez die Frage sicher auf sich beruhen lassen müssen, aber glücklicherweise verfügte er über konkurrenzlos gute Beziehungen zu jemandem außerhalb seines Fachgebiets, der ihm helfen konnte. Dieser Jemand war sein Vater Luis, ein angesehener Kernphysiker, der ein Jahrzehnt zuvor den Physik-Nobelpreis erhalten hatte. Er war der Begeisterung seines Sohnes für Gestein immer ein wenig spöttisch begegnet, aber diese Fragestellung faszinierte ihn. Ihm kam die Idee, Staub aus dem Weltraum könnte die Antwort bringen.

Jedes Jahr sammeln sich auf der Erde rund 30000 Tonnen »sphärische Partikel aus dem Kosmos« – man kann auch einfach Weltraumstaub sagen.13 Auf einen Haufen zusammengefegt, wäre das eine ganze Menge, aber wenn man es auf dem gesamten Erdball verteilt, ist es unendlich wenig. In diesem dünnen Staubschleier befinden sich auch exotische chemische Elemente, die auf der Erde nur in sehr geringen Mengen vorkommen. Eines davon ist das Iridium, das im Weltraum in tausendmal größerer Menge vorhanden ist als in der Erdkruste (vermutlich weil der größte Teil des Iridiums in den Erdkern abgesunken ist, als unser Planet noch jung war).

Alvarez wusste, dass Frank Asaro, ein Kollege am Lawrence Berkeley Laboratory in Kalifornien, eine neue Methode entwickelt hatte, mit der er die chemische Zusammensetzung von Lehm sehr genau messen konnte. Dazu bediente er sich eines Vorganges, der als Neutronenaktivierungsanalyse bezeichnet wird: Man bombardiert die Materialprobe mit Neutronen aus einem kleinen Kernreaktor und misst sehr genau die Gammastrahlung, die das Material daraufhin abgibt. Es ist eine ausgesprochen heikle Arbeit. Zuvor hatte Asaro das Verfahren zur Analyse von Keramikscherben benutzt, aber Alvarez hatte die Idee, damit die Menge eines exotischen Elements in den Bodenproben seines Sohnes zu messen und das Ergebnis mit der jährlich abgelagerten Menge zu vergleichen; auf diese Weise, so seine Überlegung, konnte man herausfinden, wie lange die Entstehung der Bodenproben gedauert hatte. An einem Nachmittag im Oktober 1977 kamen Luis und Walter Alvarez bei Asaro zu Besuch und fragten ihn, ob er für sie die erforderlichen Untersuchungen durchführen wolle.

Es war eine dreiste Anfrage. Asaro sollte monatelang an geologischen Materialproben äußerst mühsame Messungen vornehmen, nur um das zu bestätigen, was von vornherein auf der Hand zu liegen schien: dass die dünne Lehmschicht sich so schnell gebildet hatte, wie man auf Grund ihrer geringen Dicke annehmen musste. Dass aus seinen Untersuchungen dramatische neue Erkenntnisse erwachsen würden, erwartete sicher niemand.

»Nun ja, sie waren sehr liebenswürdig und überzeugend«, erinnerte sich Asaro 2002 in einem Interview.14 »Außerdem schien es eine interessante Aufgabe zu sein, also willigte ich ein, es zu versuchen. Leider hatte ich auch eine Menge andere Arbeit, und deshalb dauerte es acht Monate, bevor ich dazu kam.« Er blätterte in seinen Notizen aus jener Zeit. »Am 21. Juni 1978 um 13:45 Uhr steckten wir eine Probe in den Detektor. Die Analyse lief 224 Minuten, und wir konnten erkennen, dass wir interessante Ergebnisse erhalten würden. Also schalteten wir das Gerät aus und sahen nach.«

Das Ergebnis war tatsächlich so unerwartet, dass alle drei Wissenschaftler zuerst glaubten, es müsse falsch sein. Die Iridiummenge in Alvarez’ Proben lag um mehr als das 300-fache über dem Normalwert – weit höher, als sie jemals prophezeit hätten. In den folgenden Monaten arbeiteten Asaro und seine Kollegin Helen Michel manchmal bis zu 30 Stunden ohne Pause (»Wenn man einmal angefangen hatte, konnte man nicht mehr aufhören«, erklärte Asaro): Immer wieder analysierten sie Material, und immer wieder erhielten sie das gleiche Ergebnis. Bei der Untersuchung anderer Proben – aus Dänemark, Spanien, Frankreich, Neuseeland und der Antarktis – stellte sich heraus, dass die Iridiumablagerungen weltweit verbreitet und überall stark erhöht waren, manchmal bis zum 500-fachen der üblichen Menge. Dieser erstaunliche Maximalwert war eindeutig durch irgendein großes, plötzliches Ereignis entstanden, vermutlich durch eine riesige Katastrophe.

Nach langem Nachdenken gelangten Vater und Sohn Alvarez zu einer Erklärung, die zumindest ihnen als die plausibelste erschien: Danach war die Erde von einem Asteroiden oder Kometen getroffen worden.

Der Gedanke, dass die Erde möglicherweise von Zeit zu Zeit verheerenden Einschlägen ausgesetzt ist, war nicht ganz so neu, wie heute manchmal behauptet wird. Schon 1942 hatte der Astrophysiker Ralph B. Baldwin von der Northwestern University in einem Artikel für die Zeitschrift Populär Astronomy eine solche Möglichkeit in Erwägung gezogen.15 (Er veröffentlichte den Aufsatz dort, weil keine Fachzeitschrift ihn angenommen hatte.) Und auch mindestens zwei angesehene Wissenschaftler, der Astronom Ernst Öpik sowie der Chemiker und Nobelpreisträger Harold Urey, hatten ebenfalls zu verschiedenen Zeitpunkten solche Vorstellungen vertreten. Selbst unter Paläontologen waren sie nicht unbekannt. M. W. de Laubenfels, ein Professor an der Oregon State University, hatte bereits 1956 im Journal of Paleontology die Alvarez-Theorie vorweggenommen und die Vermutung geäußert, der Einschlag eines Himmelskörpers könne den Dinosauriern einen tödlichen Schlag versetzt haben.16 Im Jahr 1970 brachte Dewey J. McLaren, damals Präsident der American Paleontological Society, auf der Jahrestagung seiner Gesellschaft den Gedanken ins Gespräch, ein Einschlag aus dem Weltraum könne die Ursache für ein früheres Aussterbe-Ereignis in einer Epoche namens Frasnium gewesen sein.17

Sogar Hollywood, so schien es, wollte unterstreichen, wie wenig originell die Idee zu jener Zeit bereits war: Ein Studio produzierte 1979 einen Film mit dem Titel Meteor (»Es ist fünf Meilen breit … Es kommt mit 30000 Meilen in der Stunde – und nirgendwo kann man sich verstecken …«). In den Hauptrollen: Henry Fonda, Natalie Wood, Karl Malden und ein sehr großer Stein.

Deshalb hätte es eigentlich keine Überraschung sein dürfen, als Vater und Sohn Alvarez in der ersten Woche des Jahres 1980 auf einer Tagung der American Association for the Advancement of Science ihre Überzeugung äußerten, die Dinosaurier seien nicht im Laufe mehrerer Millionen Jahre durch einen langsamen, unaufhaltsam fortschreitenden Prozess ausgestorben, sondern sehr plötzlich durch ein einziges katastrophales Ereignis.

Es war dennoch ein Schock. Überall, insbesondere aber in der Paläontologengemeinde, wurde die Ansicht als empörende Ketzerei empfunden.

»Nun ja, man muss daran denken, dass wir auf diesem Gebiet Amateure waren«, erinnert sich Asaro. »Walter war Geologe und auf Paläomagnetismus spezialisiert, Luis war Physiker, und ich war Kernchemiker. Und jetzt erzählten wir den Paläontologen, wir hätten ein Problem gelöst, an dem sie seit über einem Jahrhundert herumrätselten. Eigentlich ist es nicht weiter verwunderlich, dass sie sich unsere Antwort nicht sofort zu Eigen machten.« Und Luis Alvarez scherzte: »Man hatte uns ertappt, wie wir ohne Lizenz Paläontologie praktizierten.«

Die Theorie vom Meteoriteneinschlag hatte aber auch auf einer tieferen, grundsätzlicheren Ebene etwas Entsetzliches. Seit Lyells Zeit gehörte die Vorstellung, dass alle Prozesse auf der Erde sehr langsam ablaufen, zu den Grundfesten der Naturgeschichte. In den achtziger Jahren des 20. Jahrhunderts war die Katastrophentheorie schon so lange aus der Mode, dass sie buchstäblich undenkbar war. Die Idee von einem verheerenden Einschlag richtete sich »gegen die wissenschaftliche Religion« der meisten Geologen, wie Eugene Shoemaker es formulierte.

Auch die Tatsache, dass Luis Alvarez gegenüber den Paläontologen und ihren Beiträgen zu den naturwissenschaftlichen Kenntnissen offen eine verächtliche Haltung an den Tag legte, machte die Sache nicht gerade einfacher. »Sie sind wirklich keine guten Wissenschaftler. Sie sind eher wie Briefmarkensammler«, schrieb er in einem Artikel der New York Times, der noch heute schmerzt.18

Gegner der Alvarez-Theorie lieferten jede Menge anderer Erklärungen für die Iridiumablagerungen – unter anderem wurde behauptet, sie seien durch länger anhaltende Vulkanausbrüche in Indien entstanden –, vor allem aber beharrten sie darauf, es gebe keinen Beweis, dass die Dinosaurier an der Iridium-Grenzlinie plötzlich aus den Fossilfunden verschwinden. Einer der engagiertesten Gegner war Charles Officer vom Dartmouth College. Er blieb bei seiner Ansicht, das Iridium sei durch Vulkantätigkeit abgelagert worden, obwohl er in einem Zeitungsinterview einräumen musste, dass er dafür keinen echten Beleg hatte.19 Noch 1988 gab mehr als die Hälfte der amerikanischen Paläontologen in einer Umfrage an, sie seien nach wie vor der Ansicht, dass das Aussterben der Dinosaurier nichts mit dem Einschlag eines Asteroiden oder Kometen zu tun habe.20

Und gerade der Beleg, der die Theorie der Alvarez’ am nachdrücklichsten unterstützt hätte, war der einzige, den sie nicht besaßen: die Einschlagstelle. Hier hatte Eugene Shoemaker seinen großen Auftritt. Er besaß eine Verbindung nach Iowa – seine Schwiegertochter unterrichtete an der Universität des Bundesstaates – und kannte aus seinen eigenen Untersuchungen den Krater von Manson. Ihm war es zu verdanken, dass sich nun alle Blicke auf Iowa richteten.

Das Fachgebiet der Geologie hatte von Ort zu Ort einen unterschiedlichen Charakter. In Iowa, einem flachen und im Hinblick auf die Gesteinsschichtungen relativ gleichförmigen Staat, geht es unter den Geologen vergleichsweise behäbig zu. Es gibt weder Hochgebirgsgipfel noch Gletscher, welche die Landschaft planieren, keine großen Öl- oder Edelmetall-Lagerstätten, keine Spur von Lavaströmen. Als Geologe in Diensten des Bundesstaates Iowa verbringt man die Arbeitszeit zum größten Teil damit, Gülle-Bewirtschaftungspläne zu prüfen,21 die von allen »geschlossenen Nutztierzuchtbetrieben« – normale Menschen sprechen von Schweinezüchtern – in regelmäßigen Abständen erstellt werden müssen. Es gibt in Iowa 15 Millionen Schweine und damit auch eine Menge Gülle, die bewirtschaftet werden muss. Ich will mich darüber überhaupt nicht lustig machen – es ist eine lebenswichtige Arbeit, die viel Fachkunde verlangt; durch sie bleibt das Trinkwasser in Iowa sauber –, aber sie ist auch mit noch so viel gutem Willen nicht das Gleiche, als wenn man am Pinatubo den fliegenden Lavabrocken ausweichen muss oder in Gletscherspalten des Grönlandeises nach vorzeitlichen Quarzbrocken sucht, die möglicherweise Lebewesen enthalten. Man kann sich also durchaus vorstellen, welche Aufregung sich im Umweltministerium von Iowa breit machte, als Geologen aus der ganzen Welt Mitte der achtziger Jahre ihre Aufmerksamkeit auf Manson und seinen Krater richteten.

Die Trowbridge Hall in Iowa City ist ein roter Backsteinbau aus der Zeit der Jahrhundertwende. Hier ist das geowissenschaftliche Institut der University of Iowa untergebracht, und ganz oben, in einer Art Dachstube, arbeiten die Geologen des Umweltministeriums von Iowa. Heute kann sich niemand mehr erinnern, wann – und noch viel weniger warum – die staatlichen Geologen sich in einem Universitätsgebäude einquartierten, aber man hat den Eindruck, dass die Räume nur widerwillig zur Verfügung gestellt wurden: Die Büros sind eng, die Decken sind niedrig, und der Zugang ist schwierig. Wenn man den Weg erklärt bekommt, rechnet man fast damit, dass man über ein Dachsims klettern und durch ein Fenster einsteigen muss.

Hier oben verbrachten Ray Anderson und Brian Witzke ihr Berufsleben zwischen unordentlichen Papierstapeln, Fachzeitschriften, aufgerollten Lageplänen und massiven Gesteinsproben. (Geologen sind nie um einen Briefbeschwerer verlegen.) Um in solchen Räumen irgendetwas zu finden – einen freien Stuhl, eine Kaffeetasse, ein klingelndes Telefon –, muss man grundsätzlich erst irgendwelche Papierstapel bewegen.

»Plötzlich standen wir im Mittelpunkt«, erzählt mir Anderson, als ich ihn und Witzke an einem trüben, regnerischen Vormittag im Juni in ihrem Büro aufsuche. Bei der Erinnerung leuchten seine Augen auf. »Es war eine großartige Zeit.«22

Ich erkundige mich nach Gene Shoemaker, der zu jener Zeit offenbar allgemein verehrt wurde. »Das war einfach ein toller Kerl«, erwidert Witzke ohne zu zögern. »Hätte es ihn nicht gegeben, wäre die ganze Sache nicht von der Stelle gekommen. Trotz seiner Unterstützung dauerte es noch zwei Jahre, bis alles lief. Bohrungen sind teuer – damals kostete ein Meter ungefähr 100 Dollar, heute ist es noch mehr. Und wir mussten bis in fast 1000 Meter Tiefe vorstoßen.«

»Manchmal auch noch mehr«, fügt Anderson hinzu.

»Manchmal auch noch mehr«, stimmt Witzke zu. »Und das an mehreren Orten. Es ging also um eine Menge Geld. Sicher um mehr, als unser Etat hergab.«

Deshalb einigten sich die Iowa Geological Survey und die U. S. Geological Survey auf ein Gemeinschaftsprojekt.

»Jedenfalls glaubten wir, es sei ein Gemeinschaftsprojekt«, sagt Anderson mit einem schwachen, gequälten Lächeln.

»Für uns war es ein echter Lernprozess«, fährt Witzke fort.

»Damals lief in der Wissenschaft tatsächlich eine Menge Mist – die Leute brachten Befunde, die einer ernsthaften Überprüfung nicht immer standhielten.« Ein solcher Augenblick kam auf der Jahrestagung 1985 der American Geophysical Union: Dort gaben Glenn Izett und C. L. Pillmore von der U. S. Geological Survey bekannt, der Krater von Manson habe genau das richtige Alter und könne daher mit dem Aussterben der Dinosaurier in Zusammenhang stehen.23 Die Erklärung stieß bei der Presse auf großes Interesse, aber leider war sie voreilig. Bei genauerer Überprüfung der Daten stellte sich heraus, dass der Manson-Krater nicht nur zu klein war, sondern auch neun Millionen Jahre zu alt.

Von diesem Rückschlag für ihre Karriere erfuhren Anderson und Witzke, als sie zu einer Tagung nach South Dakota kamen. Kollegen traten mit mitfühlenden Blicken auf sie zu und sagten:

»Wir haben gehört, Sie haben Ihren Krater verloren.« Erst dadurch hörten sie, dass Izett und die anderen Wissenschaftler der USGS kurz zuvor genauere Zahlen vorgelegt hatten, aus denen sich ergab, dass Manson nicht der gesuchte Einschlagkrater sein konnte.

»Es war schon erstaunlich«, erinnert sich Anderson. »Ich meine, wir hatten dieses Ding, das war wirklich wichtig, und plötzlich hatten wir es nicht mehr. Aber noch schlimmer war eine andere Erkenntnis: Die Leute, die angeblich mit uns zusammenarbeiteten, hatten es nicht einmal nötig gehabt, uns ihre neuen Befunde mitzuteilen.«

»Warum nicht?«

Er zuckt die Achseln. »Wer weiß? Aber jedenfalls war es ein gutes Beispiel dafür, wie unangenehm Wissenschaft werden kann, wenn man auf einer gewissen Ebene angelangt ist.«

Die Suche verlagerte sich. Einer der Beteiligten, Alan Hildebrand von der University of Arizona, traf 1990 zufällig mit einem Journalisten des Houston Chronicle zusammen, der etwas über eine große, unerklärliche, ringförmige Gesteinsformation von 194 Kilometern Durchmesser und fast 50 Kilometern Tiefe wusste. Sie befand sich bei Chicxulub auf der mexikanischen Halbinsel Yucatán, in der Nähe der Stadt Progreso und rund 1000 Kilometer südlich von New Orleans. Entdeckt worden war sie 1952 von der mexikanischen Ölgesellschaft Pemex24 – übrigens im gleichen Jahr, in dem auch Gene Shoemaker zum ersten Mal den Meteor Crater in Arizona besucht hatte –, aber die Geologen des Unternehmens waren entsprechend der allgemeinen Lehrmeinung ihrer Zeit zu der Ansicht gelangt, die Formation sei vulkanischen Ursprungs. Hildebrand reiste in das Gebiet und war sich sehr schnell sicher, dass sie ihren Krater gefunden hatten. Anfang 1991 war in den Augen fast aller Fachleute schlüssig nachgewiesen, dass es sich bei Chicxulub um die Einschlagstelle handelt.

Aber viele Beteiligte begriffen immer noch nicht ganz, welche Wirkung ein solcher Einschlag haben kann. Stephen Jay Gould berichtet in einem seiner Essays: »Ich kann mich noch gut erinnern, dass ich anfangs stark an den Auswirkungen eines solchen Ereignisses zweifelte … warum sollte ein zehn Kilometer großer Himmelskörper eine solche Katastrophe auf einem Planeten anrichten, dessen Durchmesser mehr als 12000 Kilometer beträgt?«25

Angenehm war, dass sich bald darauf eine natürliche Gelegenheit ergab, die Theorie zu überprüfen: Die Shoemakers und Levy entdeckten den Kometen Shoemaker-Levy 9 und erkannten sehr schnell, dass er in Richtung des Jupiter unterwegs war. Zum ersten Mal würden Menschen zu Zeugen eines kosmischen Zusammenstoßes werden – und mit dem neuen Hubble-Weltraumteleskop war er sehr gut zu beobachten. Wie Curtis Peebles berichtet, hatten die meisten Astronomen keine großen Erwartungen, insbesondere da es sich bei dem Kometen nicht um eine zusammenhängende Kugel handelte, sondern um eine Kette aus einundzwanzig Bruchstücken. Einer schrieb: »Nach meinem Gefühl wird der Jupiter diese Kometen schlucken und dabei nicht einmal rülpsen.«26 Eine Woche vor dem Einschlag brachte die Wissenschaftszeitschrift Nature einen Artikel mit der Überschrift »Das große Fiasko steht bevor«. Darin prophezeite sie, der Einschlag werde nicht mehr sein als ein Meteorschauer.

Das Ereignis begann am 16. Juli 1994, setzte sich eine Woche lang fort und war bei weitem größer, als irgendjemand – vielleicht mit Ausnahme von Gene Shoemaker – erwartet hatte. Ein Bruchstück, das als »Nucleus G« bezeichnet wurde, schlug mit der Energie von ungefähr sechs Millionen Megatonnen ein27 – dem 75-fachen aller Atomwaffen auf der Erde. Nucleus G hatte nur die Größe eines kleinen Berges, aber auf der Jupiteroberfläche riss er Wunden von der Größe der Erde. Für jede Kritik an der Alvarez-Theorie war es der Todesstoß.

Luis Alvarez erfuhr von der Entdeckung des Kraters in Chicxulub und von dem Shoemaker-Levy-Kometen nichts mehr: Er starb 1988. Auch Shoemaker wurde nicht alt. Am dritten Jahrestag des Einschlages auf dem Jupiter befand er sich mit seiner Frau im australischen Outback, wo die beiden jedes Jahr nach Einschlagstellen suchten. Auf einer unbefestigten Straße in der Tanami-Wüste – normalerweise einem der einsamsten Gebiete auf Erden – fuhren sie gerade über eine leichte Anhöhe, als ihnen ein anderes Fahrzeug entgegenkam. Shoemaker war sofort tot, seine Frau wurde verletzt.28 Ein Teil seiner Asche reiste mit der Raumsonde »Lunar Prospector« zum Mond, der Rest wurde rund um den Meteor Crater verstreut.

Anderson und Witzke besaßen nun zwar nicht mehr den Krater, der die Dinosaurier das Leben gekostet hatte, »aber wir haben immer noch den größten und besterhaltenen Einschlagkrater auf dem US-amerikanischen Festland«, sagt Anderson. (Um die Spitzenstellung des Manson-Kraters zu bewahren, muss man sprachlich ein wenig spitzfindig sein: Andere Krater – insbesondere der von Chesapeake Bay, in dem man 1994 eine Einschlagstelle erkannte – sind größer, aber sie liegen entweder vor der Küste oder sind stark verformt.) »Chicxulub ist unter zwei oder drei Kilometern Kalkstein begraben und liegt zum größten Teil vor der Küste. Deshalb ist es schwierig, ihn zu untersuchen«, fährt Anderson fort. »Manson dagegen ist wirklich gut zugänglich. Gerade weil er immer zugedeckt war, ist er noch verhältnismäßig unberührt.«

Ich frage ihn, wie viel Vorwarnzeit uns wohl bleibt, wenn heute ein ähnlicher Brocken auf uns zusteuert.

»Ach, vermutlich überhaupt keine«, erwidert Anderson kess.

»Mit bloßem Auge ist er erst zu sehen, wenn er sich erhitzt, und das geschieht erst dann, wenn er in die Atmosphäre eintritt, also vermutlich ungefähr eine Sekunde vor dem Einschlag. Wir reden hier über ein Objekt, das zehnmal schneller ist als die schnellste Gewehrkugel. Wenn es nicht irgendjemand vorher im Teleskop gesehen hat – und das ist keineswegs sicher –, würde es uns völlig überraschen.«

Wie hart ein solches Objekt auftrirrt, hängt von vielen Faktoren ab, von Eintrittswinkel, Geschwindigkeit und Flugbahn, von der Richtung der Kollision – ob das Objekt genau von oben oder von der Seite kommt –, von Masse und Dichte des Himmelskörpers und vielem anderen. Nichts davon können wir nach so vielen Millionen Jahren noch mit Sicherheit feststellen. Etwas anderes aber können die Wissenschaftler tun, und das haben Anderson und White auch getan: Sie haben die Einschlagstelle vermessen und daraus die freigesetzte Energiemenge berechnet. Auf diese Weise gelangt man zu einem plausiblen Szenario, nach dem das Ereignis abgelaufen sein dürfte – oder, beängstigender, nach dem es wieder ablaufen könnte.

Ein Asteroid oder Komet, der mit kosmischer Geschwindigkeit unterwegs ist, würde so schnell in die Erdatmosphäre eintreten, dass die Luft vor ihm nicht ausweichen kann und wie in einer Fahrradpumpe zusammengepresst wird. Wie jeder weiß, der schon einmal eine solche Pumpe bedient hat, wird komprimierte Luft sehr schnell heiß. Die Temperatur unterhalb des Objekts würde auf bis zu 60000 Grad ansteigen, das Zehnfache der Temperatur an der Oberfläche der Sonne. In dem Augenblick, wenn der Meteor in unserer Atmosphäre angelangt ist, würde alles, was ihm im Weg steht – Menschen, Häuser, Fabriken, Autos – verbrennen und verschwinden wie Zellophan in einer Kerzenflamme.

Eine Sekunde nach dem Eintritt in die Atmosphäre würde der Meteorit auf die Erdoberfläche treffen, wo die Menschen einen Augenblick zuvor noch ihren normalen Tätigkeiten nachgegangen sind. Der Meteorit selbst würde sofort verdampfen, aber der Aufschlag würde 1000 Kubikkilometer Gestein, Erde und überhitzte Gase in die Luft schleudern. In einem Umkreis von rund 250 Kilometern würden alle Lebewesen, die noch nicht durch die Hitze beim Eintritt ums Leben gekommen sind, durch die Explosion getötet. Von der Einschlagstelle würde sich fast mit Lichtgeschwindigkeit eine Druckwelle in sämtliche Richtungen ausbreiten und alles hinwegfegen, was vor ihr liegt.

Für die Beobachter außerhalb der unmittelbaren Zerstörungszone wäre ein blendender Lichtblitz – der hellste, den menschliche Augen jemals gesehen haben – das erste Anzeichen der Katastrophe. Eine oder zwei Minuten später würde sich ein apokalyptischer Anblick von unvorstellbarer Großartigkeit bieten: eine brodelnde Wand aus Dunkelheit, die bis zum Himmel reicht, das gesamte Blickfeld ausfüllt und mit mehreren 1000 Stundenkilometern wandert. Da sie sich mit einem Vielfachen der Schallgeschwindigkeit bewegt, wäre ihre Ankunft von gespenstischer Stille begleitet. Wer sich beispielsweise in Omaha oder Des Moines in einem Hochhaus befindet und in die richtige Richtung blickt, würde einen bestürzenden Schleier des Durcheinanders sehen, auf den die sofortige Vernichtung folgt.

Nach wenigen Minuten wären in einem Gebiet von Denver bis Detroit, das auch Chicago, St. Louis, Kansas City, die Zwillingsstädte St. Paul und Minneapolis umfasst – also kurz gesagt, im gesamten mittleren Westen der USA – fast alle Gebäude plattgewalzt oder in Flammen aufgegangen, und nahezu alle Lebewesen wären tot.29 Noch 1500 Kilometer entfernt würden Menschen umgeworfen und von einem Hagel aus fliegenden Gegenständen aufgeschlitzt oder erschlagen. Erst in noch größerem Abstand würde die Zerstörungswirkung allmählich nachlassen.

Und das ist nur die erste Druckwelle. Wie groß die Zerstörungen wären, kann man nur vermuten, aber in jedem Fall kämen sie plötzlich und hätten weltweite Ausmaße. Der Einschlag würde mit ziemlicher Sicherheit eine ganze Serie verheerender Erdbeben auslösen. Überall auf der Erde würden Vulkane zu grummeln beginnen und Feuer speien. Flutwellen würden sich aufbauen und an weit entfernten Küsten riesige Zerstörungen anrichten. Innerhalb einer Stunde würden schwarze Wolken den ganzen Planeten einhüllen, überall würden glühende Steine und andere Trümmer herabregnen und große Teile der Erdoberfläche in Brand setzen. Nach Schätzungen wären am Ende des ersten Tages bereits eineinhalb Milliarden Menschen tot. Durch die gewaltigen Störungen in der Ionosphäre würden weltweit die Kommunikationsverbindungen zusammenbrechen, sodass die Überlebenden keine Ahnung mehr hätten, was in anderen Regionen vor sich geht. Es würde auch kaum eine Rolle spielen. Flüchten, so ein Kommentator, würde bedeuten, dass man statt des schnellen den langsamen Tod wählt. Die Zahl der Opfer würde durch alle nur denkbaren Ausweichbewegungen kaum beeinflusst, denn die Fähigkeit der Erde, Leben zu erhalten, wäre ganz allgemein vermindert.30

Ruß und Asche vom Einschlag und den nachfolgenden Bränden würden die Sonne sicher einige Monate, vielleicht auch mehrere Jahre lang verdunkeln und die biologischen Wachstumskreisläufe unterbrechen. Im Jahr 2001 analysierten Wissenschaftler am California Institute of Technology Heliumisotope aus Sedimenten, die vom Einschlag an der KT-Grenze übrig geblieben waren. Dabei stellte sich heraus, dass das Weltklima ungefähr 10000 Jahre lang beeinträchtigt war.31 Der Befund sprach wieder einmal für die Vorstellung, dass die Dinosaurier nach erdgeschichtlichen Maßstäben sehr schnell und auf dramatische Weise ausstarben. Wie gut – und ob überhaupt – die Menschheit mit einem solchen Ereignis zurechtkäme, können wir nur vermuten.

Und wie gesagt: Aller Wahrscheinlichkeit nach käme es ohne Vorwarnung buchstäblich aus heiterem Himmel.

Aber nehmen wir einmal an, wir hätten das Objekt kommen sehen. Was würden wir tun? Allgemein nimmt man an, wir würden einen Atomsprengkopf in den Weltraum jagen, der es in Stücke reißt. Aber diese Idee hat ihre Probleme. Zunächst einmal weist John S. Lewis darauf hin, dass unsere Waffen nicht für den Einsatz im Weltraum konstruiert sind.32 Sie entwickeln nicht genügend Schub, um das Schwerefeld der Erde zu verlassen, und selbst wenn das gelänge, besäßen sie keinen Mechanismus, mit dem man sie Zigmillionen Kilometer durch den Weltraum steuern könnte. Und noch weniger können wir wie in dem Film Armageddon eine Schiffsladung voller Weltraumcowboys beauftragen, die Sache für uns zu erledigen; wir besitzen nicht einmal mehr eine Rakete, die stark genug ist, um einen Menschen auf den Mond zu transportieren. Das letzte Modell, das dazu in der Lage war, die Saturn V, wurde schon vor Jahren ausgemustert und nie ersetzt. Wir könnten auch nicht schnell eine neue bauen, denn die Pläne für die Startvorrichtungen der Saturn-Raketen wurden im Rahmen eines Hausputzes bei der NASA vernichtet.

Und selbst wenn wir irgendwie einen Atomsprengkopf zum Asteroiden bringen und ihn zertrümmern könnten, wird er mit großer Wahrscheinlichkeit nur zu einer Kette kleinerer Stücke werden, die nacheinander bei uns einschlagen wie Shoemaker-Levy 9 auf dem Jupiter – nur mit dem Unterschied, dass die Brocken jetzt stark radioaktiv wären. Nach Ansicht des Asteroidenfachmannes Tom Gehrels von der University of Arizona würde selbst eine Vorwarnzeit von einem Jahr nicht ausreichen, um geeignete Maßnahmen zu ergreifen.33 Größer ist jedoch die Wahrscheinlichkeit, dass wir jedes Objekt – auch einen Kometen – erst sehen würden, wenn es nur noch sechs Monate von uns entfernt ist, und das wäre viel zu spät. Shoemaker-Levy 9 umkreiste den Jupiter schon seit 1929 auf einer verdächtigen Bahn, aber es dauerte über ein halbes Jahrhundert, bis ihn jemand bemerkte.34

Interessant ist noch etwas anderes: Da solche Dinge sehr schwierig und meist nur mit einer großen Fehlerspanne zu berechnen sind, wüssten wir selbst dann, wenn ein Objekt auf uns zusteuert, erst ganz am Ende – während der letzten Wochen –, ob mit Sicherheit eine Kollision bevorsteht. Vorher würden wir uns während der Annäherung in einer Art Trichter der Unsicherheit befinden. Es wären mit Sicherheit die interessantesten Monate der Weltgeschichte. Und man stelle sich nur die Party vor, wenn die Kollision ausbleibt!

»Wie oft kommen Einschläge wie der von Manson vor?«, frage ich Anderson und Witzke, bevor ich mich verabschiede.

»Ach, im Durchschnitt ungefähr alle Million Jahre«, erwidert Witzke.

»Und denken Sie daran«, fügt Anderson hinzu, »das hier war ein relativ unbedeutendes Ereignis. Wissen Sie, wie viele biologische Arten durch den Einschlag von Manson ausgestorben sind?«

»Keine Ahnung.«

»Keine«, erklärt er mit seltsam zufriedenem Gesicht. »Keine Einzige.«

Aber natürlich, so fügen beide eilig und mehr oder weniger gleichzeitig hinzu, habe es auf der Erde die gerade beschriebenen schrecklichen Zerstörungen gegeben, und in mehreren 100 Kilometern Umkreis um die Einschlagstelle sei alles vernichtet worden. Aber das Leben ist zäh, und als der Rauch sich verzog, gab es aus allen biologischen Arten so viele Überlebende, dass keine auf Dauer verschwand.

Die gute Nachricht lautet offenbar: Es muss schon entsetzlich viel passieren, damit eine Spezies ausgelöscht wird. Die schlechte: Auf die gute Nachricht kann man sich nicht verlassen. Und noch schlimmer ist, dass wir eigentlich gar nicht in den Weltraum blicken müssen, um schreckliche Gefahren zu finden. Wie wir noch sehen werden, hält auch die Erde selbst eine Fülle von Bedrohungen für uns bereit.