SOLUCIONES

1. Con siete cifras

Este problema tiene no una, sino tres soluciones distintas, a saber:

123 + 4 — 5 — 67 = 55;

1 — 2 — 3 — 4 + 56 + 7 = 55;

12 — 3 + 45 — 6 + 7 = 55

2. Nueve cifras

He aquí por qué procedimiento puede usted obtener 100 de una serie de nueve cifras y tres signos más y menos:

123 — 45 — 67 + 89 = 100

Esta es la única solución posible; ninguna otra combinación de las nueve cifras y de los signos más y menos, empleados tres veces, puede dar el resultado 100.

Lograr este mismo resultado utilizando los signos de sumar y restar menos de tres veces, es imposible.

3. Con diez cifras

Aquí tiene cuatro soluciones:

70 + 24 9/18 + 5 3/5 5 = 100;

80 27/54 + 19 3/6 = 100;

87 + 9 4/5 +3 12/60 = 100;

50 ½ + 49 38/76 = 100.

4. La unidad

Hay que representar la unidad como suma de dos quebrados;

148/296 + 35/70 = 1

Los que sepan álgebra pueden dar otras soluciones, como, por ejemplo, 123 456 7890;

234 567 (9-8-1), etc., ya que todo número elevado a la potencia cero es igual a la unidad.

5. Con cinco doses

El número 15 puede escribirse así:

Y el número 11, así:

22/2 + 2 — 2 = 11.

El número 12 321. A primera vista parece que es imposible escribir este número de cinco cifras con cinco números iguales. Sin embargo, el problema puede resolverse. La solución es:

6. Otra vez con cinco doses

22 + 2 + 2 + 2 = 28.

7. Con cuatro doses

222/2 = 111.

8. Con cinco treses

He aquí la solución del problema

(33/3) — (3/3) = 10

Es interesante el hecho de que este problema se resolvería exactamente lo mismo, si el número 10 hubiera que expresarlo no con cinco treses, sino con cinco unidades, cinco cuatros, cinco sietes, cinco nueves y, en general, por cualesquiera cinco cifras iguales.

En efecto:

11/1 — 1/1 = 22/2 — 2/2 = 44/4 — 4/4 = 99/9 — 9/9, ...etc.

Existen otras formas de resolver este mismo problema:

(3 * 3 * 3 + 3)/3 = 10

9. El número 37

Hay dos soluciones:

33 + 3 + 3 / 3 = 37;

333/3 * 3 = 37.

10. Por cuatro procedimientos

El número 100 puede expresarse por medio de cinco cifras iguales, utilizando para ello unos, treses y —lo que es aún más fácil— cincos:

111 — 11 = 100;

33 * 3 + 3 / 3 = 100;

5 × 5 × 5 — 5 × 5 = 100;

(5 + 5 + 5 + 5) x 5 = 100.

11. Con cuatro treses

1 = 33/33 (hay otros procedimientos):

2 = 3 / 3 + 3 / 3;

3 = 3 + 3 + 3 / 3;

4 = 3 × 3 + 3 / 3;

6 = (3 + 3) x 3 / 3

Sólo damos las soluciones hasta el número seis. Las demás piénsalas usted mismo. Las soluciones indicadas también pueden componerse de otras combinaciones de treses.

12. Con cuatro cuatros

13. Con cuatro cincos

Sólo existe un procedimiento:

55/5 + 5 = 16.

14. Con cinco nueves

Dos procedimientos son:

9 + 99/99 = 10,

99/9 — 9/9 = 10

El que sepa álgebra puede añadir varias soluciones más, por ejemplo:

15. Veinticuatro

Aquí tiene das soluciones:

16. Treinta

Damos tres soluciones:

17. Mil

888 + 88 + 8 + 8 + 8 = 1000.

18. ¿Cómo obtener veinte?

He aquí como hay que hacer esto (las cifras tachadas han sido sustituidas por ceros):

En efecto,

011

000

009

11 + 9 = 20.

19. Tachar nueve cifras

Este problema admite varias soluciones. Damos cuatro ejemplos, sustituyendo por ceras las cifras tachadas:

100 111 011 101
000 030 330 303
005 000 000 000
007 070 770 707
999 900 000 000
1111 1111 1111 1111

20. En el espejo

Las únicas cifras que no se desfiguran en el espejo son 1, 0 y 8. Por lo tanto, el año que se busca sólo puede contener estas cifras. Sabemos además que se trata de uno de los años del siglo XIX, cuyas primeras dos cifras son 18.

Ahora ya es fácil comprender que este año es el 1818. En el espejo, el año 1818 se convertirá en 8181, que es exactamente 4 ½ mayor que 1818:

1818 * 4 ½ = 8181

Este problema no tiene más soluciones.

21. ¿Que año?

En el siglo XX sólo hay un año de este tipo, el 1961.

22. ¿Qué números?

La respuesta es fácil: 1 y 7. Otros números que den 7 no hay.

23. Sumar y multiplicar

Números de estos hay tantos como se quieran:

3 × 1 = 3; 3 + 1 = 4

10 × 1 = 10; 10 + 1 = 11

y, en general, toda pareja de números enteros en que uno de ellos sea la unidad.

Esto se debe a que sumándole una unidad, el número aumenta, mientras que si se multiplica por la unidad, el número no varía.

24. Lo mismo

Estos números son 2 y 2. Otros números enteros que tengan estas propiedades no existen.

25. Número par primo

Existe un número par primo, el 2. Este número sólo es divisible por sí mismo (y por la unidad).

26. Tres números

1, 2 y 3 dan el mismo resultado cuando se multiplican entre sí que cuando se suman:

1 + 2 + 3 = 6; 1 * 2 * 3 = 6

27. Suma y multiplicación

Existe una cantidad innumerable de pares de números de este tipo. He aquí varios ejemplos:

28. Multiplicación y división

Números así hay muchos. Por ejemplo:

2: 1 = 2, 2 × 1 = 2;

7: 1 = 7, 7 × 1 = 7;

43: 1 = 43, 43 × 1 = 43;

29. Un número de dos cifras

El número buscado debe ser, evidentemente, un cuadrado exacto. Como entre los números de dos cifras sólo hay seis cuadrados, por medio de pruebas puede hallarse fácilmente la única solución, es decir, el número 81:

81/8 + 1 = 8 + 1

30. Diez veces mayor

He aquí cuatro parejas de números de este tipo:

11 y 110; 14 y 35; 15 y 30; 20 y 20

En efecto:

11 * 110 = 1210; 11 + 110 = 121;

14 * 35= 490; 14 + 35 = 49;

15 * 30= 450; 15 + 30 = 45;

20 * 20= 400; 20 + 20 = 40;

Este problema no tiene otras soluciones. Buscar las soluciones a ciegas es bastante embarazoso. Teniendo nociones de álgebra, el problema resulta más fácil y es posible no sólo buscar todas las soluciones, sino también cerciorarse de que no tiene más que cinco.

31. Con dos cifras

El número menor que puede escribirse con dos cifras no es 10, como pensarán posiblemente algunos lectores, sino la unidad expresada del modo siguiente:

1/1, 2/2, 3/3, 4/4 y así sucesivamente hasta 9/9.

Los que saben álgebra añaden a estas expresiones una serie de otras:

10, 20, 30, 40 y así sucesivamente hasta 90

porque todo número elevado a la potencia cero es igual a la unidad29.

32. El número mayor

Por lo general responden a esta pregunta escribiendo el número 1111. Pero este número dista mucho de ser el mayor. Mucho mayor —en 250 millones de veces es

1111

Aunque representado nada más que por cuatro unidades, este número contiene, si se calcula, más de 285 millares de millones de unidades.

33. Quebrados singulares

El problema tiene varias soluciones. He aquí una de ellas:

Existe un gran número de variantes; sobre todo puede representarse de muchas formas la fracción 1/8 (¡por más de 40 procedimientos!).

34. ¿Por cuánto multiplicó?

Razonaremos así. La cifra 6 se obtuvo de la suma de una columna de dos cifras, de las cuales, la inferior puede ser 0 ó 5. Pero si la inferior es 0, la superior tendrá que ser 6.

¿Puede ser 6 la cifra superior? Hagamos la prueba. Resulta que cualquiera que sea la segunda cifra del multiplicador, es imposible obtener 6 en el penúltimo lugar del primer producto parcial. Por lo tanto, la cifra inferior de la penúltima columna debe ser 5; y, en este caso, sobre ella se encuentra un 1.

Ahora ya es fácil reconstruir parte de las cifras borradas:

La última cifra del multiplicador debe ser mayor que 4, de lo contrario el primer producto parcial no tendría cuatro cifras. Esta cifra no puede ser 5 (porque con ella no se obtendría 1 en el penúltimo lugar). Veamos si sirve 6. Tenemos:

Razonando de igual modo en adelante, hallamos que el multiplicador es igual a 96. ¿Qué cifras faltan?

Las cifras que faltan se reponen gradualmente, si se razona como sigue. Para mayor comodidad numeraremos las filas:

Se comprende fácilmente que el último asterisco de la fila III es un 0, ya que 0 figura al final de la fila VI.

Ahora se determina el valor del último asterisco de la fila I: ésta es una cifra que multiplicada por 2 da un número que termina en cero, y multiplicada por 3, un número que termina en 5 (V fila). Por lo tanto, sólo puede ser 5.

No es difícil darse cuenta de que el asterisco de la fila II es un 8, porque sólo al multiplicarlo por 8, el número 15 da un resultado que termina en 20 (IV fila).

Finalmente, queda claro el valor del primer asterisco de 1a fila I: es la cifra 4, porque sólo el 4 multiplicado por 8 da un resultado que empieza en 3 (fila IV).

Hallar las demás cifras desconocidas no ofrece ya dificultad: basta multiplicar los números de las dos primeras filas, que ya están completamente determinados.

En fin de cuentas se obtiene el siguiente ejemplo de multiplicación:

35. ¿Qué números?

Razonando de un modo semejante a como se hizo en el ejemplo anterior, descubrimos los valores de los asteriscos en este caso.

Se obtiene:

36. Casos raros de multiplicación

El lector que tenga paciencia puede encontrar nueve casos de multiplicación de este tipo, a saber:

12 * 483 = 5796

42 * 138 = 5796

18 × 297 = 5346

27 * 198 = 5346

39 * 186 = 7254

48 * 159 = 7632

28 * 157 = 4396

4 * 1738 = 6952

4 * 1963 = 7852

37. Una división misteriosa

Para mayor comodidad numeraremos las filas de puntos según la posición dada.

Observando la fila II llegamos a la conclusión de que la segunda cifra del cociente es 0, ya que fue necesario bajar, una detrás de otra, dos cifras del dividendo. Designemos todo el divisor por x.

Las filas IV y V demuestran que el número 7 x (producto de la penúltima cifra del cociente por el divisor) después de restarlo de un número que no supera a 999, dio un resto no menor que 100. Está claro que 7x no puede ser mayor que 999 — 100. Es decir, que 899, de donde x no es mayor que 128. Vemos después que el número de la fila III es mayor que 900, de lo contrario al restarlo de un número de cuatro cifras no daría un resto de dos cifras. Pero en este caso la tercera cifra del cociente deberá ser 900: 128, es decir, mayor que 7,03 y, por consiguiente, igual a 8 ó a 9. Como los números de las filas I y VII son de cuatro cifras, es evidente que la tercera cifra del cociente es 8 y la última, 9.

Con esto queda resuelto, en realidad, el problema, puesto que el resultado que se buscaba de la división (es decir, el cociente) lo hemos encontrado: 90 879.

No hay necesidad de seguir adelante y buscar el dividendo y el divisor. El problema sólo planteaba encontrar el resultado de la división, o sea, el cociente. El problema no exige descifrar iodo lo escrito. Pero, además, existe no una, sino 11 parejas de números que satisfacen, al hacer la división, la disposición dada de los puntos y dan la cifra 7 en el cuarto lugar del cociente.

Estos números son:

10 360 206: 114 = 90 879

10 451 085: 115 = 90 879

10 541 964: 116 = 90 879

10 632 843: 117 = 90 879

10 723 722: 118 = 90 879

10 814 601: 119 = 90 879

10 905 480: 120 = 90 879

10 996 359: 121 = 90 879

11 087 238: 122 = 90 879

11 178 117: 123 = 90 879

11 268 996: 124 = 90 879

38. ¿Qué se dividió?

El caso de división buscado es:

39. División por 11

Para poder resolver este problema hay que conocer la condición de divisibilidad por 11. Un número es divisible por 11 si la diferencia entre la suma de los valores absolutos de las cifras de lugar par y las de lugar impar es divisible por 11 o igual a cero. Probemos, por ejemplo, el número 23 658 904. La suma de las cifras de lugar par es:

3 + 5 + 9 + 4 = 21;

Y la suma de las cifras de lugar impar:

2 + 6 + 8 + 0 = 16.

Su diferencia (descontando la menor de la mayor) es igual a:

21 — 16 = 5.

Esta diferencia (5) no es divisible por 11; por lo tanto, el número que hemos tomado no puede dividirse por 11 sin que quede resto. Ensayemos otro número, el 7 344 535:

3 + 4 + 3 = 10;

7 + 4 + 5 + 5 = 21;

21 — 10 = 11.

Y como 11 es divisible por 11, el número ensayado también es múltiplo de 11. Ahora es fácil comprender en qué orden hay que escribir las nueve cifras para obtener un número múltiplo de 11 que satisfaga las condiciones del problema. Por ejemplo: 352 049 786

Hacemos la prueba:

3 + 2 + 4 + 7 + 6 = 22, 5 + 0 + 9 + 8 = 22.

La diferencia 22 — 22 = 0; por consiguiente, el número que hemos escrito es múltiplo de 11. El mayor de todos los números de este tipo es: 987 652 413. El menor: 102 347 586.

40. Triángulo numérico

La solución se muestra en la fig. 235. Las cifras medias de cada fila pueden permutarse y, de este modo, obtener una serie de soluciones más.

Figura 235

41. Otro triángulo numérico

La solución se da en la fig. 236. Las cifras medias de cada fila se pueden permutar y obtener así una serie de soluciones más.

Figura 236

42. La estrella de ocho puntas

La solución puede verse en la fig. 237.

Figura 237

43. La estrella mágica

Para simplificar la búsqueda de la disposición que se requiere de los números, nos atendremos a las siguientes consideraciones.

La suma de los números que hay en las puntas de la estrella es igual a 26; y la de todos los números de la estrella, 78. Por lo tanto, la suma de los números del hexágono interior será 78 — 26 = 52.

Consideremos ahora uno de los grandes triángulos. La suma de los números de cada uno de sus lados es igual a 26, y si sumamos los números de sus tres lados, obtenemos 26 * 3 = 78, con la particularidad de que cada uno de los números que hay en las puntas participa dos veces. Y como la suma de los números de los tres pares internos (es decir, del hexágono interior) debe, como sabemos, ser igual a 52, la suma duplicada de los números que hay en los vértices de cada triángulo será 78 — 52 = 26; la suma simple será 13.

E1 campo de las búsquedas se ha reducido ya considerablemente. Sabemos, por ejemplo, que ni 12 ni 11 pueden ocupar las puntas de la estrella (¿por qué?). Por lo tanto, podemos empezar los ensayos a partir de 10, en este caso se determinan inmediatamente los dos números que deben ocupar los restantes vértices del triángulo. Estos números son 1 y 2. Prosiguiendo por este camino, encontramos finalmente la disposición requerida. Esta disposición se muestra en la fig. 238.

Figura 238

44. La rueda numérica

La solución se da en la fig. 239.

Figura 239

45. El tridente

He aquí la colocación que se exige de los números (fig. 240). La suma de los números en cada una de las tres columnas verticales y en la fila horizontal es igual a 25.

Figura 240

Problemas y experimentos recreativos
titlepage.xhtml
sec_0001.xhtml
sec_0002.xhtml
sec_0003.xhtml
sec_0004.xhtml
sec_0005.xhtml
sec_0006.xhtml
sec_0007.xhtml
sec_0008.xhtml
sec_0009.xhtml
sec_0010.xhtml
sec_0011.xhtml
sec_0012.xhtml
sec_0013.xhtml
sec_0014.xhtml
sec_0015.xhtml
sec_0016.xhtml
sec_0017.xhtml
sec_0018.xhtml
sec_0019.xhtml
sec_0020.xhtml
sec_0021.xhtml
sec_0022.xhtml
sec_0023.xhtml
sec_0024.xhtml
sec_0025.xhtml
sec_0026.xhtml
sec_0027.xhtml
sec_0028.xhtml
sec_0029.xhtml
sec_0030.xhtml
sec_0031.xhtml
sec_0032.xhtml
sec_0033.xhtml
sec_0034.xhtml
sec_0035.xhtml
sec_0036.xhtml
sec_0037.xhtml
sec_0038.xhtml
sec_0039.xhtml
sec_0040.xhtml
sec_0041.xhtml
sec_0042.xhtml
sec_0043.xhtml
sec_0044.xhtml
sec_0045.xhtml
sec_0046.xhtml
notas_a_pie_de_pagina_split_000.xhtml
notas_a_pie_de_pagina_split_001.xhtml
notas_a_pie_de_pagina_split_002.xhtml
notas_a_pie_de_pagina_split_003.xhtml
notas_a_pie_de_pagina_split_004.xhtml
notas_a_pie_de_pagina_split_005.xhtml
notas_a_pie_de_pagina_split_006.xhtml
notas_a_pie_de_pagina_split_007.xhtml
notas_a_pie_de_pagina_split_008.xhtml
notas_a_pie_de_pagina_split_009.xhtml
notas_a_pie_de_pagina_split_010.xhtml
notas_a_pie_de_pagina_split_011.xhtml
notas_a_pie_de_pagina_split_012.xhtml
notas_a_pie_de_pagina_split_013.xhtml
notas_a_pie_de_pagina_split_014.xhtml
notas_a_pie_de_pagina_split_015.xhtml
notas_a_pie_de_pagina_split_016.xhtml
notas_a_pie_de_pagina_split_017.xhtml
notas_a_pie_de_pagina_split_018.xhtml
notas_a_pie_de_pagina_split_019.xhtml
notas_a_pie_de_pagina_split_020.xhtml
notas_a_pie_de_pagina_split_021.xhtml
notas_a_pie_de_pagina_split_022.xhtml
notas_a_pie_de_pagina_split_023.xhtml
notas_a_pie_de_pagina_split_024.xhtml
notas_a_pie_de_pagina_split_025.xhtml
notas_a_pie_de_pagina_split_026.xhtml
notas_a_pie_de_pagina_split_027.xhtml
notas_a_pie_de_pagina_split_028.xhtml
notas_a_pie_de_pagina_split_029.xhtml
notas_a_pie_de_pagina_split_030.xhtml
notas_a_pie_de_pagina_split_031.xhtml
notas_a_pie_de_pagina_split_032.xhtml
notas_a_pie_de_pagina_split_033.xhtml
notas_a_pie_de_pagina_split_034.xhtml
notas_a_pie_de_pagina_split_035.xhtml