SOLUCIONES

1. Un millón de objetos

Los cálculos de este tipo se hacen mentalmente así: hay que multiplicar 89,4 g, por un millón, es decir, por mil millares.

Multiplicamos en dos veces: 89,4 g X 1000 = 89,4 kg, porque el kilogramo es mil veces mayor que el gramo. Después, 89,4 kg X 1000 = 89,4 t, porque la tonelada es mil veces mayor que el kilogramo.

Por lo tanto, el peso buscado es 89,4 t.

2. La miel y el kerosene

Como la miel es dos veces más pesada que el kerosene, la diferencia de peso 500-350, es decir, 150 g, es el peso del kerosene que cabe en el tarro (el tarro lleno de miel pesa lo mismo que pesaría si en él cupiera doble cantidad de kerosene). De aquí deducimos el peso neto del tarro: 350 — 150 = 200 g. En efecto, 500 — 200 = 300 g, es decir, la miel es dos veces más pesada que el mismo volumen de kerosene.

3. El peso del tronco

Suelen responder que si el grosor del tronco se duplica, pero su longitud se reduce a la mitad, su peso no debe variar. Pero esto es un error. Cuando el diámetro se duplica, el volumen del tronco redondo se cuadruplica, mientras que cuando su longitud se hace la mitad, el volumen sólo disminuye hasta la mitad. Por esto el tronco grueso y corto deberá ser más pesado que el largo y delgado, es decir, deberá pesar 60 kg.

4. Debajo del agua

Todo cuerpo, cuando se sumerge en agua, se hace más ligero: «pierde» en peso tanto como pesa el agua que desaloja. Conociendo este principio (descubierto por Arquímedes) podemos responder sin dificultad a la pregunta planteada en el problema.

El canto de 2 kg de peso ocupa un volumen mayor que la pesa de hierro de 2 kg, porque el material de aquél (granito) es más liviano que el hierro. De aquí se deduce que el canto desaloja más volumen de agua que la pesa, y, por el principio de Arquímedes, pierde dentro del agua más peso que la pesa. Así, pues, la balanza, dentro del agua, se inclinará hacia el lado de la pesa.

5. La balanza decimal

Cuando se sumerge en agua un objeto de hierro (macizo), éste pierde la octava parte de su peso14. Por esto, las pesas pesarán debajo del agua 7/8 de su peso inicial, los clavos también pesarán 7/8 partes de su peso en seco. Y como las pesas eran 10 veces más ligeras que los clavos, debajo del agua también serán 10 veces más livianas y, por consiguiente, la balanza decimal seguirá en equilibrio debajo del agua.

6. Un trozo de jabón

3/4 partes del trozo de jabón + ¾ de kg pesan tanto como el trozo entero. Pero este trozo entero contiene ¾ partes del trozo + ¼ parte del mismo. Por consiguiente, ¼ parte del trozo pesa ¾ de kg, y el trozo entero pesa cuatro veces más que ¾ de kg, es decir, 3 kg.

7. Las gatas y los gatitos

Comparando ambas pesadas se ve fácilmente que, con la sustitución de una gata por un gatito, el peso total disminuye en 2 kg. De aquí se deduce que la gata pesa 2 kg más que el gatito. Conociendo esto, sustituimos en la primera pesada las cuatro gatas por gatitos: tendremos entonces 4 + 3 = 7 gatitos, que pesarán no 15 kg, sino 2 X 4, o sea, 8 kg menos. Es decir, los 7 gatitos pesarán 15 — 8 = 7 kg.

Está claro, pues, que 1 gatito pesa 1 kg y una gata, 1 + 2 = 3 kg.

8. La concha y las cuentas de vidrio

Compare la primera pesada con la segunda. Verá usted que, en la primera pesada, la concha puede sustituirse por un cubo y ocho cuentas de vidrio, puesto que lo uno y lo otro pesan lo mismo. En este caso tendríamos en el platillo de la izquierda cuatro cubos y ocho cuentas, y esto estaría equilibrado por 12 cuentas. Quitando ahora ocho cuentas de cada platillo no violaremos el equilibrio. Pero en el platillo de la izquierda quedan cuatro cubos, y en el de la derecha, cuatro cuentas. Esto quiere decir que un cubo pesa lo mismo que una cuenta.

Ahora está claro cuántas cuentas de vidrio pesa la concha: sustituyendo (en la segunda pesada) un cubo por una cuenta, en el platillo de la derecha, sabemos que la concha pesa lo mismo que nueve cuentas de vidrio.

Este resultado es fácil de comprobar.

Sustituya en la primera pesada los cubos y la concha, del platillo de la izquierda, por el número correspondiente de cuentas, y obtendrá 3 + 9 = 12, como tenía que ser.

9. El peso de las frutas

Sustituimos, en la primera pesada, la pera por seis melocotones y una manzana; tenemos derecho a hacer esto, porque la pera pesa tanto como seis melocotones y una manzana. Tendremos entonces en el platillo de la izquierda cuatro manzanas y seis melocotones, y en el derecho, 10 melocotones. Quitando de cada platillo seis melocotones, sabemos que cuatro manzanas pesan lo mismo que cuatro melocotones. De aquí se deduce que un melocotón pesa lo mismo que una manzana.

Ahora es ya fácil comprender que la pera pesa lo mismo que siete melocotones.

10. ¿Cuántos vasos?

Este problema puede resolverse por diversos procedimientos. He aquí uno de ellos.

En la tercera pesada se sustituye cada jarra por una botella y un vaso (según la primera pesada, al hacer esto la balanza debe seguir en equilibrio). Sabemos entonces que dos botellas y dos vasos equilibran tres platos pequeños. Basándonos en la segunda pesada podemos sustituir cada botella por un vaso y un plato pequeño. Resulta que cuatro vasos y dos platos pequeños se equilibran con tres platos pequeños.

Quitando dos platos pequeños de cada platillo de la balanza, establecemos que cuatro vasos equilibran a un plato.

Por consiguiente, una botella se equilibra (por comparación con la segunda pesada) con cinco vasos.

11. Con una pesa y un martillo

El orden en que deben hacerse las pesadas es el que sigue. Primero se pone en un platillo el martillo y en el otro, la pesa y la cantidad de azúcar molida necesaria para que la balanza esté en equilibrio. Está claro que el azúcar echado en este platillo pesará 900 — 500 = 400 g. Esta misma operación se repite tres veces más. El azúcar restante pesará 2000 — (4 X 400) = 400 g.

Ahora no queda más que dividir en dos partes iguales cada uno de los cinco paquetes de 400 gramos así obtenidos. Esto puede hacerse fácilmente sin pesas: se va echando el contenido del paquete de 400 gramos en dos paquetes colocados en los platillos de la balanza, hasta que ésta queda en equilibrio.

12. El problema de Arquímedes

Si la corona encargada estuviera hecha de oro puro, fuera del agua pesaría 10 kg, y dentro del agua perdería la vigésima parte de su peso, es decir ½ kg. Pero, como sabemos, la corona no pierde dentro del agua ½ kg, sino 10 — 9 ¼ = ¾ de kg. Esto ocurre porque la corona contiene plata —metal que sumergido en el agua pierde no la vigésima parte de su peso, sino la décima. La corona debe tener tanta plata como se necesita para perder en el agua no ½ kg, sino ¾ de kg, es decir ¼ de kg más. Si en nuestra corona de oro puro sustituimos mentalmente 1 kg de oro por plata, la pérdida que experimenta aquélla en el agua será mayor que antes en 1/l0 — 1/20 = 1/20 kg. Por consiguiente, para que resulte la pérdida de ¼ de kg más de peso, hay que sustituir por plata tantos kilogramos de oro como veces 1/2o de kg está contenido en ¼ de kg; pero 1/4: 1/20 = 5. Por lo tanto, la corona tenía 5 kg de plata y 5 kg de oro en vez de 2 kg de plata y 8 de oro, es decir, 3 kg de oro habían sido substraídos y sustituidos por plata.

Quitando dos platos pequeños de cada platillo de la balanza, establecemos que cuatro vasos equilibran a un plato.

Por consiguiente, una botella se equilibra (por comparación con la segunda pesada) con cinco vasos.

13. Con una pesa y un martillo

El orden en que deben hacerse las pesadas es el que sigue. Primero se pone en un platillo el martillo y en el otro, la pesa y la cantidad de azúcar molida necesaria para que la balanza esté en equilibrio. Está claro que el azúcar echado en este platillo pesará 900 — 500 = 400 g. Esta misma operación se repite tres veces más. El azúcar restante pesará 2000 — (4 X 400) = 400 g.

Ahora no queda más que dividir en dos partes iguales cada uno de los cinco paquetes de 400 gramos así obtenidos. Esto puede hacerse fácilmente sin pesas: se va echando el contenido del paquete de 400 gramos en dos paquetes colocados en los platillos de la balanza, hasta que ésta queda en equilibrio.

14. El problema de Arquímedes

Si la corona encargada estuviera hecha de oro puro, fuera del agua pesaría 10 kg, y dentro del agua perdería la vigésima parte de su peso, es decir ½ kg. Pero, como sabemos, la corona no pierde dentro del agua ½ kg, sino 10 — 91/4 = ¾ de kg. Esto ocurre porque la corona contiene plata —metal que sumergido en el agua pierde no la vigésima parte de su peso, sino la décima. La corona debe tener tanta plata como se necesita para perder en el agua no ½ kg, sino ¾ de kg, es decir ¼ de kg más. Si en nuestra corona de oro puro sustituimos mentalmente 1 kg de oro por plata, la pérdida que experimenta aquélla en el agua será mayor que antes en 1/l0 — 1/20 = 1/2º kg. Por consiguiente, para que resulte la pérdida de ¼ de kg más de peso, hay que sustituir por plata tantos kilogramos de oro como veces 1/2o de kg está contenido en ¼ de kg; pero 1/4: 1/20 = 5. Por lo tanto, la corona tenía 5 kg de plata y 5 kg de oro en vez de 2 kg de plata y 8 de oro, es decir, 3 kg de oro habían sido substraídos y sustituidos por plata.

Problemas y experimentos recreativos
titlepage.xhtml
sec_0001.xhtml
sec_0002.xhtml
sec_0003.xhtml
sec_0004.xhtml
sec_0005.xhtml
sec_0006.xhtml
sec_0007.xhtml
sec_0008.xhtml
sec_0009.xhtml
sec_0010.xhtml
sec_0011.xhtml
sec_0012.xhtml
sec_0013.xhtml
sec_0014.xhtml
sec_0015.xhtml
sec_0016.xhtml
sec_0017.xhtml
sec_0018.xhtml
sec_0019.xhtml
sec_0020.xhtml
sec_0021.xhtml
sec_0022.xhtml
sec_0023.xhtml
sec_0024.xhtml
sec_0025.xhtml
sec_0026.xhtml
sec_0027.xhtml
sec_0028.xhtml
sec_0029.xhtml
sec_0030.xhtml
sec_0031.xhtml
sec_0032.xhtml
sec_0033.xhtml
sec_0034.xhtml
sec_0035.xhtml
sec_0036.xhtml
sec_0037.xhtml
sec_0038.xhtml
sec_0039.xhtml
sec_0040.xhtml
sec_0041.xhtml
sec_0042.xhtml
sec_0043.xhtml
sec_0044.xhtml
sec_0045.xhtml
sec_0046.xhtml
notas_a_pie_de_pagina_split_000.xhtml
notas_a_pie_de_pagina_split_001.xhtml
notas_a_pie_de_pagina_split_002.xhtml
notas_a_pie_de_pagina_split_003.xhtml
notas_a_pie_de_pagina_split_004.xhtml
notas_a_pie_de_pagina_split_005.xhtml
notas_a_pie_de_pagina_split_006.xhtml
notas_a_pie_de_pagina_split_007.xhtml
notas_a_pie_de_pagina_split_008.xhtml
notas_a_pie_de_pagina_split_009.xhtml
notas_a_pie_de_pagina_split_010.xhtml
notas_a_pie_de_pagina_split_011.xhtml
notas_a_pie_de_pagina_split_012.xhtml
notas_a_pie_de_pagina_split_013.xhtml
notas_a_pie_de_pagina_split_014.xhtml
notas_a_pie_de_pagina_split_015.xhtml
notas_a_pie_de_pagina_split_016.xhtml
notas_a_pie_de_pagina_split_017.xhtml
notas_a_pie_de_pagina_split_018.xhtml
notas_a_pie_de_pagina_split_019.xhtml
notas_a_pie_de_pagina_split_020.xhtml
notas_a_pie_de_pagina_split_021.xhtml
notas_a_pie_de_pagina_split_022.xhtml
notas_a_pie_de_pagina_split_023.xhtml
notas_a_pie_de_pagina_split_024.xhtml
notas_a_pie_de_pagina_split_025.xhtml
notas_a_pie_de_pagina_split_026.xhtml
notas_a_pie_de_pagina_split_027.xhtml
notas_a_pie_de_pagina_split_028.xhtml
notas_a_pie_de_pagina_split_029.xhtml
notas_a_pie_de_pagina_split_030.xhtml
notas_a_pie_de_pagina_split_031.xhtml
notas_a_pie_de_pagina_split_032.xhtml
notas_a_pie_de_pagina_split_033.xhtml
notas_a_pie_de_pagina_split_034.xhtml
notas_a_pie_de_pagina_split_035.xhtml