DREISSIG

Universalien und Regionalismen

Der Zufall hat vielleicht eine größere Rolle dabei gespielt, unser Dasein auf der Erde zu sichern, als wir glauben. Nicht allein daß wir alles andere als die Krone der Evolution sind – es ist denkbar, daß wir um ein Haar überhaupt nicht aufgetaucht wären. Andererseits, wenn das Leben von dem speziellen Evolutionsweg abgekommen wäre, der zu uns führte, hätte es sehr wohl statt dessen auf etwas Ähnliches stoßen können. Intelligente Krabben zum Beispiel. Oder sehr schlaue, netzewebende Quallen.

Wir haben keine Ahnung, wie viele vielversprechende Arten von einer plötzlichen Dürre ausgelöscht wurden, von Zusammenbruch einer Nahrungsgrundlage, vom Einschlag eines großen Meteoriten oder vom Zusammenstoß mit einem Kometen. Wir haben nichts als die Spuren jener Arten, die mehr oder weniger zufällig Fossilien hinterlassen haben. Wenn wir die Fossilien betrachten, sehen wir allmählich ein undeutliches Muster, eine Tendenz zu zunehmender Komplexität. Und viele von den wichtigsten evolutionären Neuerungen scheinen mit schweren Katastrophen zusammenzuhängen …

Wenn wir uns heute Organismen ansehen, wirken einige davon sehr einfach und andere komplexer. Eine Küchenschabe wirkt viel einfacher als ein Elefant. Also neigen wir dazu, die Schabe für ›primitiv‹ und den Elefanten für ›weiterentwickelt‹ zu halten, oder wir sprechen vielleicht von ›niederen‹ und ›höheren‹ Organismen. Wir erinnern uns auch, daß sich das Leben entwickelt hat und daß die komplexen Organismen von heute einfachere Vorfahren gehabt haben müssen, und wenn wir nicht sehr gut achtgeben, denken wir, die ›primitiven‹ Organismen von heute seien typisch für die Vorfahren der komplexen Organismen von heute. Wir hören, daß sich die Menschen aus etwas entwickelt haben, das eher wie ein Affe aussah, und schließen daraus, Schimpansen seien im Sinne der Evolution primitiver als wir.

Dabei verwechseln wir zwei Dinge. Das eine ist eine Art Sortierung der gegenwärtigen Organismen nach ihrer Komplexität. Das andere ist eine Sortierung der Organismen von heute, ihrer Vorfahren von gestern, deren Vorfahren von vorgestern und so weiter nach der Zeit. Obwohl die Schabe vielleicht in dem Sinne primitiv ist, daß sie einfacher als ein Elefant ist, ist sie es nicht in dem Sinne, daß sie ein altertümlicher Vorfahren-Organismus wäre. Das kann sie nicht sein: Es ist eine heutige Küchenschabe, eine dynamische, vorandrängende Küchenschabe, bereit, sich den Herausforderungen des neuen Jahrtausends zu stellen.

Obwohl altertümliche fossile Schaben dasselbe Aussehen wie moderne hatten, agierten sie vor einem anderen Hintergrund. Was man brauchte, um in der Kreidezeit eine lebenstüchtige Schabe zu sein, unterschied sich wahrscheinlich merklich von der DNS einer modernen Küchenschabe. Die Gene müssen sehr schnell laufen, nur damit der Körper an Ort und Stelle bleibt.

Das allgemeine Bild von der Evolution, zu dem die Theoretiker schließlich gelangt sind, erinnert an einen verzweigten Baum, wobei die Zeit wie der Saft vom Stamm am Boden vier Milliarden Jahre in der Vergangenheit bis zu den Spitzen der obersten Zweige, der Gegenwart, ansteigt. Jeder Ast oder Zweig steht für eine Art, und alle sind aufwärts gerichtet. Dieses Bild vom ›Baum des Lebens‹ gibt einen entscheidenden Zug der Evolution richtig wieder – wenn sich ein Ast erst einmal geteilt hat, wächst er nicht wieder zusammen. Arten teilen sich, doch sie verschmelzen nicht.* [* Dafür gibt es einen albernen und einen vernünftigen Grund. Der alberne Grund besagt, daß Arten für gewöhnlich dann als unterschiedlich definiert werden, wenn sie sich nicht kreuzen lassen. Wenn sich zwei verschiedene Arten nicht kreuzen lassen, können sie kaum wieder verschmelzen. Der vernünftige Grund besagt, daß die Evolution aufgrund zufälliger Mutationen – Änderungen im DNS-Code – mit anschließender Auslese erfolgt. Wenn die Veränderung erst einmal eingetreten ist, ist es unwahrscheinlich, daß sie durch spätere zufällige Mutationen wieder aufgehoben wird. Es ist, wie wenn man zufällig über Landstraßen fährt, einen Ort erreicht und dann wieder zufällig herumfährt. Dabei kann man nicht damit rechnen, den ursprünglichen Weg in umgekehrter Richtung zu wiederholen und zum Ausgangspunkt zurückzugelangen.]

Das Bild vom Baum ist aber in mehr als einer Hinsicht irreführend. Es gibt beispielsweise keinen Zusammenhang zwischen der Dicke eines Astes und der Größe der zugehörigen Population – der dicke Stamm am Boden kann weniger Organismen oder weniger organische Gesamtmasse darstellen als ein Zweig an der Spitze. (Nehmen wir zum Beispiel den Menschen-Zweig …) Die Art, wie sich die Äste teilen, kann auch irreführend sein: Sie setzt eine gewisse langanhaltende Kontinuität von Arten voraus, selbst wenn neue auftauchen, da bei einem Baum die neuen Zweige allmählich aus den alten hervorgehen. Darwin hielt die Bildung neuer Arten grundsätzlich für einen allmählichen Vorgang, doch darin kann er sich geirrt haben. Die Theorie des ›unterbrochenen Gleichgewichts‹ von Stephen Jay Gould und Niles Eldredge besagt das Gegenteil: Die Artenbildung erfolgt plötzlich. Tatsächlich gibt es ausgezeichnete mathematische Gründe für die Annahme, daß die Artenbildung Elemente von beidem enthält – manchmal plötzlich, manchmal allmählich.

Ein weiteres Problem beim Baum des Lebens ist darin zu sehen, daß viele von seinen Ästen fehlen – viele Arten sind unter den Fossilien nicht vertreten. Am irreführendsten ist die Art, wie die Menschen ganz oben an der Spitze plaziert werden. Aus psychologischen Gründen setzen wir Höhe mit Wichtigkeit gleich (wie in der Wendung ›Euer Königliche Hoheit‹), und wir sehen uns nur zu gern als das wichtigste Wesen auf dem Planeten. Die Höhe einer Art im Baum des Lebens zeigt aber an, zu welcher Zeit sie gedieh, so daß jeder heutige Organismus, sei es eine Küchenschabe, eine Biene, ein Bandwurm oder eine Kuh, auf derselben Höhe wie wir steht.

In Zufall Mensch: das Wunder des Lebens als Spiel der Natur hatte Gould am Bild vom Baum noch etwas anderes auszusetzen, und er gründete seinen Widerspruch auf eine bemerkenswerte Folge von Fossilien, die sich in einer als Burgess-Schiefer bekannten Gesteinsschicht erhalten haben. Diese Fossilien, die vom Beginn des Kambriums datieren,* [* Den modernsten Datierungsmethoden zufolge begann das Kambrium-Zeitalter vor 543 Millionen Jahren. Der Burgess-Schiefer wurde vor etwa 530 bis 520 Millionen Jahren abgelagert.] sind die Überreste von Wesen mit weichen Körpern, die auf Schlammbänken am Fuße eines Algenriffs lebten und unter rutschenden Schlamm-Massen begraben wurden. Es gibt sehr wenig Fossilien von Lebewesen mit weichen Körpern, da gewöhnlich nur die härteren Teile bei der Fossilbildung erhalten bleiben. Die Bedeutung der Fossilien im Burgess-Schiefer wurde jedoch nach ihrer Entdeckung durch Charles Walcorr 1909 lange nicht erkannt, bis Harry Whittington sie sich 1971 genauer ansah. Die Organismen waren alle plattgedrückt, und man schien unmöglich feststellen zu können, welche Form sie zu Lebzeiten gehabt hatten. Dann zog Simon Conway Morris die zusammengedrückten Schichten auseinander und rekonstruierte mit Hilfe eines Computers die ursprünglichen Formen – und das Geheimnis des Burgess-Schiefers wurde der Welt offenbar.

Bis dahin hatten die Paläontologen die Organismen aus dem Burgess-Schiefer in verschiedene herkömmliche Kategorien eingeordnet – Würmer, Gliederfüßer, was auch immer. Doch nun wurde deutlich, daß die meisten Zuordnungen falsch waren. Wir kannten beispielsweise nur vier herkömmliche Typen von Gliederfüßern: Trilobiten (jetzt ausgestorben), Spinnentiere (Spinnen, Skorpione), Krebse und Tracheentiere (Insekten und andere). Der Burgess-Schiefer enthält Vertreter von allen diesen – aber er enthält auch zwanzig andere, radikal unterschiedliche Typen. In diesem einen Schlammrutsch, in Schieferschichten erhalten wie zwischen Buchseiten gepreßte Blumen, finden wir eine größere Vielfalt als im ganzen heutigen Leben.

Beim Nachdenken über die erstaunliche Entdeckung erkannte Gould, daß die meisten Äste des Lebensbaumes, die von den Burgess-Tieren ausgingen, durch Aussterben ›gekappt‹ worden sein müssen. Vor langer Zeit verschwanden 20 von jenen 24 Körperbauplänen für Gliederfüßer vom Antlitz der Erde. Der Unerbittliche Schnitter beschnitt den Baum des Lebens, und das mit grober Schere. Also schlug Gould vor, ein besseres Bild als ein Baum wäre so etwas wie Buschland. Hier und da sprossen ›Büsche‹ von Arten aus dem Urboden. Die meisten jedoch wuchsen nicht weiter und wurden vor Hunderten von Jahrmillionen weggeschnitten. Andere Büsche wuchsen zu großen Sträuchern heran, ehe sie aufhörten … Und ein großer Baum schaffte es bis in die Gegenwart. Oder vielleicht haben wir ihn falsch rekonstruiert und mehrere verschiedene Bäume für einen gehalten.

Dieses neue Bild ändert unsere Sicht auf die menschliche Evolution. Ein Tier im Burgess-Schiefer, Pikaia genannt, ist ein Chordatier. Das ist die Gruppe, aus der sich alle heute lebenden Tiere mit einer Chorda, einer Rückensaite, entwickelt haben, darunter Fische, Amphibien, Reptilien, Vögel und Säugetiere. Pikaia ist unser ferner Vorfahre. Ein anderes Wesen im Burgess-Schiefer, Nectocaris, hat ein gliederfüßerartiges Vorderende, aber das Hinterende eines Chordatieres, und es hat keine überlebenden Nachkommen hinterlassen. Doch beide lebten in derselben Umwelt, und keins von beiden ist sichtlich ›besser‹ fürs Überleben ausgestattet als das andere. Wenn nämlich eins evolutionär weniger tüchtig gewesen wäre, wäre es höchstwahrscheinlich ausgestorben, lange ehe die Fossilien sich bildeten. Was also entschied darüber, welcher Zweig ausstarb und welcher überlebte? Die von Gould vorgeschlagene Antwort lautete: der Zufall.

Der Burgess-Schiefer bildete sich an einer der wichtigsten geologischen Grenzen: am Ende des Präkambriums und zu Beginn des Paläozoikums. Der früheste Teil des Paläozoikums ist als Kambrium-Periode bekannt und war eine Zeit gewaltiger biologischer Vielfalt – der ›Kambrischen Explosion‹. Die Geschöpfe der Erde erholten sich vom Aussterben der Ediacarer, und die Evolution nutzte die Gelegenheit, neue Spiele zu spielen, denn eine Zeitlang war es nicht so entscheidend, ob sie sie schlecht spielte. Der ›Selektionsdruck‹ auf neue Körper-Baupläne war gering, weil sich das Leben noch nicht vollends vom großen Sterben erholt hatte. Unter diesen Umständen, sagte Gould, ist es größtenteils Glückssache, was überlebt und was nicht – Schlammrutsch oder nicht, trockenes oder feuchtes Klima. Wenn man die Evolution von diesem Punkt an nochmals ablaufen ließe, würden höchstwahrscheinlich völlig andersartige Organismen überleben, andere Äste des Lebensbaumes würden gekappt werden.

Beim zweiten Mal könnte es leicht unser Ast sein, der weggeschnitten würde.

Diese Sichtweise der Evolution als ›Zuteilungs‹-Prozeß, bei dem der Zufall eine große Rolle spielt, hat etwas für sich. Es ist eine sehr nachdrückliche Art, um festzustellen, daß Menschen nicht die Krone der Schöpfung sind, nicht der Zweck des ganzen Unternehmens.* [* Mit den Worten des Gottes der Evolution auf der Scheibenwelt: »… der Sinn der ganzen Sache liegt in der ganzen Sache.«] Wie können wir das sein, wenn ein paar zufällige Rucke uns völlig vom Brett hätten fegen können? Gould reizte seine Karten jedoch zu weit aus (und zog sich in späteren Schriften etwas zurück). Ein kleines Problem liegt darin, daß neuere Rekonstruktionen der Tiere aus dem Burgess-Schiefer darauf hinweisen, daß ihre Vielfalt vielleicht etwas überschätzt wurde – obwohl sie immer noch sehr groß ist.

Das größte Loch in dem Argument ist jedoch die Konvergenz. Die Evolution kommt auf Lösungen für Probleme des Überlebens, und oft ist der Spielraum für die Lösungen eng. Die Welt der Gegenwart wimmelt von Beispielen für ›konvergente Evolution‹, wo Wesen sehr ähnliche Formen haben, aber ganz unterschiedliche Entwicklungsgeschichten. Der Hai und der Delphin beispielsweise haben dieselbe Stromlinienform, spitze Schnauze und dreieckige Rückenflosse. Aber der Hai ist ein Fisch und der Delphin ein Säugetier.

Wir können die Eigenschaften von Organismen in zwei große Kategorien unterteilen: Universalien und Regionalismen. Universalien sind allgemeine Lösungen für Überlebensprobleme – Methoden, die breite Anwendung finden können und sich mehrfach unabhängig voneinander entwickelt haben. Flügel beispielsweise sind Universalien zum Fliegen: Sie haben sich unabhängig bei Insekten, Vögeln, Fledermäusen und sogar fliegenden Fischen entwickelt. Regionalismen ereignen sich zufällig, und es gibt keinen Grund, daß sie sich wiederholen sollten. Der Weg für die Speise kreuzt bei uns den für die Luft, was zu einer Menge Husten und Krächzen führt, wenn etwas ›in die falsche Kehle kommt‹. Das ist keine Universalie: Wir haben es, weil zufällig unser ferner Vorfahr, der als erster aus dem Ozean ans Land kroch, es hatte. Es ist nicht einmal eine besonders sinnvolle Anordnung – es funktioniert nur eben gut genug, daß seine Nachteile nicht gegen uns ins Gewicht fallen, wenn sie zusammen mit allem anderen wirken, was uns zum Menschen macht. Die Schwächen dieser Konstruktion sind vom ersten Fisch, der das Wasser verließ, über Amphibien und Dinosaurier bis zu den modernen Vögeln toleriert worden, und von Amphibien über säugetierähnliche Reptilien bis zu Säugetieren wie uns. Da die Evolution grundlegende Eigenschaften des Körperbauplans nicht ohne weiteres rückgängig machen kann, haben wir es am (oder eben im) Hals.

Wenn unsere fernen Vorfahren durch einen Zufall umgekommen wären, gäbe es dann trotzdem etwas Ähnliches wie uns? Es scheint sehr unwahrscheinlich, daß Wesen aufgetaucht wären, die uns genau gleichen, denn vieles an uns sind Regionalismen. Aber Intelligenz sieht ganz nach einem klaren Fall von einer Universalie aus – Kopffüßler haben sie unabhängig von den Säugetieren entwickelt, und überhaupt ist Intelligenz so ein allgemeiner Trick. Wahrscheinlich hätte sich statt dessen eine andere Form von intelligentem Leben entwickelt, wenn auch nicht unbedingt nach demselben Fahrplan. Auf einer alternativen Erde könnten intelligente Krabben eine Fantasywelt in Form einer flachen Schüssel erfinden, die auf sechs Schwämmen auf dem Rücken eines riesigen Seeigels ruht. Drei von ihnen könnten gerade Die Gelehrten der Schüsselwelt schreiben.

Tut uns leid. Aber es ist wahr. Wäre nicht hier ein Felsen herabgefallen, da ein bestimmtes Gezeitenmuster vorgekommen, so wären wir nicht wir. Das Interessante ist, daß wir fast mit Sicherheit etwas anderes geworden wären.