VIER
Wissenschaft und Magie
Wenn wir wollten, könnten wir zu mehreren Aspekten von Ponder Stibbons’ Experiment etwas sagen und die damit verknüpfte Wissenschaft beschreiben. Beispielsweise gibt es einen Hinweis auf die Multiversum-Interpretation der Quantenmechanik, wo jedesmal, wenn eine Entscheidungssituation mehrere Möglichkeiten zuläßt, Milliarden von Universen von unserem abzweigen. Und da gibt es die inoffizielle Standardprozedur für Eröffnungszeremonien, wo ein Mitglied des Königshauses oder der Präsident einen großen Hebel umlegt oder einen großen Knopf drückt, um ein großes Monument der Technik in Gang zu setzen – das hinter den Kulissen schon seit Tagen in Betrieb ist. Als Königin Elizabeth II. Calder Hall eröffnete, das erste britische Kernkraftwerk, ist genau das passiert – mitsamt großem Zeiger und allem Drum und Dran.
Aber für die Quanten ist es noch ein bißchen zu früh, und die meisten von uns haben Calder Hall völlig vergessen. Jedenfalls müssen wir mit dringlicheren Themen fertig werden. Nämlich mit der Beziehung zwischen Wissenschaft und Magie. Beginnen wir mit der Wissenschaft.
Das menschliche Interesse für das Wesen des Weltalls und unseren Platz darin reicht weit, weit zurück. Den frühen Humanoiden beispielsweise, die in den afrikanischen Savannen lebten, kann schwerlich entgangen sein, daß der Nachthimmel voll heller Lichtflecken war. In welchem Stadium ihrer Evolution sie sich zu fragen begannen, was es wohl mit den Lichtern auf sich habe, ist ein ungelöstes Rätsel, aber als sie genug Intelligenz entwickelt hatten, um Stöcke in eßbare Tiere zu stechen und Feuer zu benutzen, mögen sie wohl nicht zum Nachthimmel aufgeschaut haben, ohne sich zu fragen, wozu er zum Teufel da sei (und in Anbetracht der traditionellen fixen Ideen der Menschheit, ob er irgendwas mit Sex zu tun habe). Der Mond jedenfalls war beeindruckend – groß, hell, und er änderte seine Gestalt.
Wesen, die tiefer auf der Evolutionsleiter standen, haben den Mond zweifellos wahrgenommen. Nehmen wir zum Beispiel die Schildkröte – ein besser zur Scheibenwelt passendes Tier wird man schwerlich finden. Wenn in unserer Zeit Schildkröten auf den Strand kriechen, um ihre Eier zu legen und sie im Sand zu vergraben, richten sie es zeitlich irgendwie so ein, daß, wenn die Jungen schlüpfen, sie zum Meer krabbeln können, indem sie auf den Mond zu halten. Wir wissen das, weil die Lichter moderner Gebäude sie verwirren. Dieses Verhalten ist bemerkenswert, und es genügt durchaus nicht, alles auf den ›Instinkt‹ zu schieben und so zu tun, als sei das eine Antwort. Was ist denn Instinkt? Wie funktioniert er? Wie ist er entstanden? Ein Wissenschaftler möchte plausible Antworten auf solche Fragen, nicht bloß einen Vorwand, unter dem man sie abhaken kann. Es ist anzunehmen, daß die mondsüchtigen Neigungen der kleinen Schildkröten und die unheimliche Genauigkeit, mit der ihre Mütter den richtigen Zeitpunkt finden, sich gemeinsam entwickelt haben. Bei Schildkröten, die rein zufällig ihre Eier zum richtigen Zeitpunkt legten, so daß beim Schlüpfen der Jungen der Mond seewärts vom Strand stand, und deren Junge zufällig auf das helle Licht zusteuerten, erreichten mehr von den nächsten Generation das Meer als bei den anderen. Um aus diesen Tendenzen eine universelle Eigenschaft aller Schildkröten zu machen, bedurfte es nur einer Methode, sie an die nächste Generation weiterzugeben, und da kommen die Gene ins Spiel. Jene Schildkröten, die auf eine brauchbare Navigationsstrategie gestoßen waren und über die Gene diese Strategie an ihre Nachkommen weitergeben konnten, hatten mehr Erfolg als die anderen. Also gediehen sie und verdrängten die anderen, und bald gab es nur noch Schildkröten, die sich nach dem Mond orientieren konnten.
Schwimmt Groß-A’Tuin, die Schildkröte, die die Elefanten trägt, die die Scheibenwelt tragen, auf der Suche nach einem fernen Licht durch die Tiefen des Raumes? Vielleicht. Laut Das Licht der Phantasie »haben die Philosophen viele Jahre lang darüber diskutiert, wohin Groß-A’Tuin unterwegs sei, und ihre größte Sorge besteht darin, es möglicherweise nie zu erfahren. In zwei Monaten werden sie eine Antwort auf ihre Frage bekommen. Und dann haben sie wirklich Grund, sich Sorgen zu machen …« Denn wie ihr ans Erdendasein gefesseltes Gegenstück ist Groß-A’Tuin auf Fortpflanzung aus, was in diesem Fall heißt, sie begibt sich zum Ort ihrer eigenen Eiablage, um zuzuschauen, wie die Jungen ausschlüpfen. Die Geschichte endet damit, daß sie wieder in die kühlen Tiefen des Raumes hinausschwimmt, umkreist von acht kleinen Schildkröten (die anscheinend später ihre eigenen Wege gegangen sind und jetzt vielleicht sogar ganz kleine Scheibenwelten tragen) …
Das Interessante an den Tricks der irdischen Schildkröten ist die Tatsache, daß die Tiere in keiner Phase zu wissen brauchen, daß ihre Zeitplanung an die Bewegung des Mondes geknüpft ist, oder auch nur, daß der Mond existiert. Die Sache würde aber nicht funktionieren, wenn die kleinen Schildkröten den Mond nicht wahrnähmen, daher ziehen wir den Schluß, daß sie es tun. Wir können aber nicht auf die Existenz eines Schildkröten-Astronomen schließen, der sich über den rätselhaften Gestaltwandel des Mondes wundert.
Als eine bestimmte Gruppe von Affen auf der Bildfläche erschien, die im gesellschaftlichen Aufstieg begriffen waren, begannen sie jedoch solche Fragen zu stellen. Je besser die Affen es verstanden, diese Fragen zu beantworten, um so verwirrender wurde das Weltall; Wissen bringt neues Unwissen hervor. Die Botschaft, die sie mitbekamen, lautete: Dort Oben ist es ganz anders als Hier Unten.
Sie wußten nicht, daß Hier Unten ein ziemlich guter Ort zum Leben für Wesen wie sie war. Es gab Luft zum Atmen, Tiere und Pflanzen zum Essen, Wasser zum Trinken, Boden, auf dem man stehen, und Höhlen, in denen man sich vor dem Regen und den Löwen in Sicherheit bringen konnte. Sie wußten, daß es veränderlich war, chaotisch, unvorhersehbar …
Sie wußten nicht, daß es Dort Oben – im übrigen Universum – anders ist. Der größte Teil davon ist leerer Raum, ein Vakuum. Vakuum kann man nicht atmen. Wo kein Vakuum ist, befinden sich größtenteils riesige Kugeln von überhitztem Plasma. Auf einer Feuerkugel kann man nicht stehen. Und der größte Teil dessen, was weder Vakuum noch Feuer ist, ist lebloses Gestein. Gestein kann man nicht essen.* [* Freilich, Salz kann man essen. Aber außerhalb der Scheibenwelt geht niemand in ein Restaurant, um ein Basalt-Balti zu bestellen.] Später sollten sie das erfahren. Eines wußten sie aber: daß es Dort Oben nach menschlichen Zeitmaßen ruhig, geordnet, regelmäßig zuging. Und auch kalkulierbar – man konnte seinen Steinkreis danach stellen.
Das alles erzeugte ein allgemeines Gefühl, der Unterschied zwischen Dort Oben und Hier Unten habe einen Grund. Hier Unten war offensichtlich für uns bestimmt. Dort Oben war es ebenso offensichtlich nicht. Also mußte es für jemand anders bestimmt sein. Und die neue Menschheit machte sich schon Gedanken über geeignete Bewohner, und sie tat das schon immer, seit sie sich in Höhlen vor dem Donner verkroch. Die Götter! Die waren Dort Oben und blickten herab! Und ganz offensichtlich hatten sie das Sagen, denn die Menschheit hatte es offensichtlich nicht. Als Zugabe erhielt man gleich noch eine Erklärung für alles Hier Unten, was weitaus verwickelter als das war, was man Dort Oben sah, eine Erklärung für Gewitter und Erdbeben und Bienen. Die wurden von den Göttern regiert.
Das war ein hübsches Bündel. Es gab uns ein Gefühl von Wichtigkeit. Zumal die Priester machten es wichtig. Und da Priester Leute waren, die einem die Zunge herausreißen lassen oder einen ins Löwenland verbannen konnten, wenn man ihre Meinung nicht teilte, wurde das im Handumdrehen zu einer ungeheuer beliebten Theorie, wenn auch vielleicht nur deshalb, weil die Anhänger anderer Theorien nicht reden konnten oder irgendwo auf einem Baum saßen.
Und dennoch … Es kam immer wieder vor, daß ein Verrückter ohne Selbsterhaltungstrieb geboren wurde, der die ganze Geschichte für unbefriedigend hielt und den Zorn der Priesterschaft riskierte, indem er das sagte. Solche Leute fand man schon zur Zeit der Babylonier, deren Zivilisation zwischen 4000 und 300 v. Chr. zwischen und an den Flüssen Euphrat und Tigris blühte. Die Babylonier – ein Begriff, der einen ganzen Haufen halbunabhängige Völker umfaßt, die in einzelnen Städten wie Babylon, Ur, Nippur, Uruk, Lagasch und so weiter lebten – verehrten die Götter jedenfalls so, wie es alle anderen auch taten. Eine ihrer Geschichten ist beispielsweise die Grundlage für die biblische Erzählung von Noah und seiner Arche. Aber sie interessierten sich auch lebhaft dafür, was diese Lichter am Himmel tatsächlich taten. Sie wußten, daß der Mond rund ist – eher eine Kugel als eine flache Scheibe. Wahrscheinlich wußten sie auch, daß die Erde rund ist, da sie bei Mondfinsternissen einen runden Schatten auf den Mond warf. Sie wußten, daß das Jahr ungefähr 365 Tage lang ist. Sie kannten sogar die ›Präzession des Frühjahrspunktes‹, eine zyklische Veränderung, die in rund 26 000 Jahren einen Umlauf vollendet. Sie machten diese Entdeckungen, indem sie sorgfältig aufzeichneten, wie sich Mond und Planeten am Himmel bewegten. Babylonische astronomische Aufzeichnungen von 500 v.Chr. sind bis heute erhalten geblieben.
Aus solchen Anfängen entstand eine alternative Erklärung des Weltalls. Götter kamen darin nicht vor, zumindest nicht direkt, also traf sie bei der Priesterklasse auf wenig Gegenliebe. Manche Nachfahren dieser Klasse versuchen sogar heute noch, die Erklärung auszulöschen. Die traditionellen Priesterschaften (denen damals wie heute oft einige sehr intelligente Leute angehörten) haben im Laufe der Zeit eine Anpassung an diese gottlose Denkweise erarbeitet, aber sie ist weiterhin unbeliebt bei Postmodernisten, Kreationisten, Boulevardastrologen und anderen Leuten mit einer Vorliebe für Antworten, die man sich zu Hause selbst zurechtschustern kann.
Der gegenwärtig übliche Name für das, was unter anderem ›Ketzerei‹ und ›Naturphilosophie‹ genannt worden ist, lautet natürlich ›Wissenschaft‹.
Die Wissenschaft hat ein sehr seltsames Bild vom Universum entwickelt. Sie geht davon aus, daß das Weltall nach Regeln funktioniert. Regeln, die niemals verletzt werden. Regeln, die wenig Raum für die Launen von Göttern lassen.
Diese Betonung der Regeln stellt die Wissenschaft vor eine entmutigende Aufgabe. Sie muß erklären, wie eine Menge glühendes Gas und Gestein Dort Oben auch nur im entferntesten das Hier Unten hervorbringen kann, indem sie einfache Regeln befolgt, etwa ›große Dinge ziehen kleine Dinge an, und obwohl auch kleine Dinge große Dinge anziehen, tun sie es zu schwach, als das man es bemerken würde‹. Hier Unten scheint von einer strengen Befolgung von Regeln keine Spur zu sein. Einen Tag gehst du auf Jagd und erlegst ein Dutzend Gazellen; tags darauf erlegt ein Löwe dich. Hier Unten scheint die deutlichste Regel zu heißen: »Es gibt keine Regeln.« Abgesehen von der einen Regel, die man wissenschaftlich als ›Excreta passiert eben‹ ausdrücken könnte. Wie das Harvardsche Gesetz des Verhaltens von Tieren es formuliert: »Versuchstiere verhalten sich unter sorgfältig kontrollierten Laborbedingungen so, wie es ihnen gerade paßt.« Nicht nur Tiere: Jeder Golfspieler weiß, daß ein so einfaches Ding wie eine harte, federnde Kugel mit einem Pünktchenmuster darauf niemals tut, was man von ihm erwartet. Und was das Wetter betrifft …
Die Wissenschaft hat sich nun ein zwei große Bereiche getrennt: die Wissenschaften vom Leben, die uns etwas über Lebewesen sagen, und die physikalischen Wissenschaften, die alles übrige behandeln. Historisch gesehen ist ›getrennt‹ entschieden das treffende Wort – die wissenschaftlichen Herangehensweisen dieser beiden großen Bereiche haben etwa soviel gemein wie Kreide und Käse. In der Tat ist ja Kreide eine Gesteinsart und gehört also eindeutig zu den geologischen Wissenschaften, während Käse, von der Tätigkeit von Bakterien an Körperflüssigkeiten von Kühen erzeugt, in die Zuständigkeit der biologischen Wissenschaften fällt. Beide Bereiche sind zweifellos Wissenschaft und betonen gleichermaßen die Rolle des Experiments zur Überprüfung von Theorien, doch ihre gewohnten Denkmuster folgen unterschiedlichen Bahnen.
Bisher zumindest.
Mit dem Herannahen des dritten Jahrtausends greifen immer mehr Aspekte der Wissenschaft über die Grenzen der Fachgebiete hinaus. Kreide zum Beispiel ist mehr als nur ein Gestein. Kreide ist das Überbleibsel der Schalen und Skelette von Millionen winziger Meereslebewesen. Und die Herstellung von Käse hängt von Chemie und Sensortechnik nicht weniger ab als von der Biologie des Grases und der Kühe.
Der ursprüngliche Grund für diese Spaltung der Wissenschaft war die ausgeprägte Empfindung, daß Leben und Nicht-Leben extrem unterschiedliche Dinge sind. Nicht-Leben ist einfach und gehorcht mathematischen Regeln; Leben ist komplex und gehorcht überhaupt keinen Regeln. Wie gesagt, Hier Unten scheint es ganz anders zu sein als Dort Oben.
Doch je mehr wir in die Bedeutung mathematischer Regeln eindringen, um so flexibler scheint ein auf Regeln gegründetes Universum zu sein. Und umgekehrt: Je besser wir die Biologie verstehen, um so wichtiger werden ihre physikalischen Aspekte – denn Leben ist keine besondere Art von Materie, also muß es ebenfalls den Regel der Physik gehorchen. Was wie eine breite, unüberbrückbare Kluft zwischen den Wissenschaften vom Leben und den physikalischen Wissenschaften aussah, schrumpft so rasch, daß es sich als nicht viel mehr als eine dünne Linie erweist, die in den Sand der Wissenschaftswüste geritzt ist.
Wenn wir diese Linie überschreiten wollen, müssen wir unsere Denkweise allerdings einer Revision unterziehen. Nur zu leicht fällt man in alte – und unangebrachte – Gewohnheiten zurück. Um diesen Punkt zu veranschaulichen und ein Thema einzuführen, das sich durch das Buch ziehen wird, wollen wir betrachten, was uns die technischen Probleme, auf den Mond zu gelangen, über die Funktionsweise von Lebewesen sagen.
Das Haupthindernis bei der Beförderung eines Menschen auf den Mond ist nicht die Entfernung, sondern die Gravitation. Man könnte in etwa dreißig Jahren zu Fuß zum Mond gehen – vorausgesetzt, man hätte einen Weg, Luft und das übliche Zubehör eines erfahrenen Reisenden –, wenn es nicht den größten Teil der Strecke bergauf ginge. Man braucht Energie, um einen Menschen von der Oberfläche des Planeten bis hinauf zu dem neutralen Punkt zu bringen, wo die Anziehungskraft des Mondes die Erdanziehung aufhebt. Die Physik liefert die definitive Untergrenze für die Energie, die man aufbringen muß – das ist der Unterschied zwischen der ›potentiellen Energie‹ einer Masse, die sich im neutralen Punkt befindet, und der potentiellen Energie derselben Masse an der Erdoberfläche. Der Energieerhaltungssatz besagt, daß es mit weniger Energie nicht zu machen ist, egal, wie schlau man es anfängt.
Gegen die Physik kommt man nicht an.
Deswegen ist Raumforschung so teuer. Man braucht eine Menge Treibstoff, um einen Menschen mit einer Rakete in den Weltraum zu bringen. Und noch schlimmer: Man braucht weiteren Treibstoff, um die Rakete hinaufzubringen … und weiteren, um den Treibstoff hinaufzubringen … und … So oder so, wir scheinen am Grunde des Gravitationsbrunnens der Erde festzusitzen, und das Ticket nach draußen muß ein Vermögen kosten.
Wirklich?
Zu verschiedenen Zeiten sind ähnliche Berechnungen auf Lebewesen angewandt worden, und das mit bizarren Ergebnissen. Es ist ›bewiesen‹ worden, daß Känguruhs nicht springen, Hummeln nicht fliegen können und daß Vögel aus ihrer Nahrung nicht genug Energie gewinnen können, damit es wenigstens für die Nahrungssuche reicht. Es ist sogar ›bewiesen‹ worden, daß Leben unmöglich ist, da lebende Systeme einen immer höheren Grad an Ordnung erreichen, während aus der Physik folgt, daß in allen Systemen die Unordnung immer weiter zunimmt. Die wichtigsten Schlußfolgerungen, die Biologen aus derlei Übungen gezogen haben, sind eine tiefe Skepsis gegenüber der Brauchbarkeit der Physik für die Biologie und das angenehme Gefühl der Überlegenheit, da doch Leben offensichtlich weitaus interessanter als Physik ist.
Die richtige Schlußfolgerung lautet, daß man sehr vorsichtig mit den stillschweigenden Voraussetzungen umgehen muß, die man bei solchen Berechnungen macht. Nehmen wir zum Beispiel das Känguruh. Man kann ausrechnen, wieviel Energie ein Känguruh für einen Sprung aufwendet, man kann zählen, wie viele Sprünge es pro Tag macht, und eine Untergrenze für seinen täglichen Energiebedarf ableiten. Bei einem Sprung verläßt das Känguruh den Boden, steigt hoch und kommt wieder herunter, also ist die Berechnung dieselbe wie bei einer Raumrakete. Wenn man alles zusammenzählt, findet man heraus, daß der tägliche Energiebedarf eines Känguruhs etwas zehnmal höher ist als die Energie, die es aus seiner Nahrung gewinnen kann. Schlußfolgerung: Känguruhs können nicht springen. Da sie nicht springen können, können sie keine Nahrung finden, also sind sie alle tot.
Sonderbarerweise wimmelt es in Australien von Känguruhs, die zum Glück keine Ahnung von Physik haben.
Wo liegt der Fehler? Die Berechnung behandelt ein Känguruh, als wäre es ein Sack Kartoffeln. Anstelle von, sagen wir, tausend Känguruhsprüngen pro Tag ermittelt sie die Energie, die benötigt wird, um einen Sack Kartoffeln tausendmal vom Boden zu heben und zurückfallen zu lassen. Aber wenn man sich eine Zeitlupenaufnahme von einem Känguruh ansieht, wie es durchs australische Hinterland hüpft, sieht es nicht wie ein Sack Kartoffeln aus. Es federt zurück, springt dahin wie eine große Gummifeder. Während die Beine sich nach oben bewegen, bewegen sich Kopf und Schwanz nach unten und speichern Energie in den Muskeln. Wenn dann die Füße auf den Boden treffen, wird diese Energie freigesetzt, um den nächsten Sprung auszulösen. Da der größte Teil der Energie geborgt und zurückgezahlt wird, wird pro Sprung nur eine winzige Menge Energie benötigt.
Nun ein Assoziationstest für Sie. ›Sack Kartoffeln‹ verhält sich zu ›Känguruh‹ wie ›Rakete‹ – wozu? Eine mögliche Antwort wäre eine Weltraumlift. In der Oktobernummer 1945 von Wireless World erfand der Science Fiction-Autor Arthur C. Clarke das Konzept einer geostationären Umlaufbahn, das jetzt praktisch allen Nachrichtensatelliten zugrunde liegt. In einer bestimmten Höhe – etwa 35 000 km über der Erdoberfläche – umkreist ein Satellit die Erde exakt synchron mit der Erddrehung. Also sieht es vom Erdboden so aus, als würde sich der Satellit nicht bewegen. Das ist nützlich für die Kommunikation: Man kann seine Satellitenantenne in einer festen Richtung einstellen und bekommt immer zusammenhängende, intelligente Signale oder, wenn das nicht möglich ist, so doch wenigstens MTV.
Fast dreißig Jahre später machte Clarke ein Konzept von weitaus größerem technischen Veränderungspotential populär. Man bringt einen Satelliten in eine geostationäre Bahn und läßt ein langes Kabel zum Boden herabhängen. Es muß ein phänomenal starkes Kabel sein. Wir haben die nötige Technik noch nicht, aber ›Nanotubes‹, Kohlenstoff-Nanofasern, die jetzt im Labor entwickelt werden, kommen diesen Vorstellungen nahe. Wenn man mit der Technik klarkommt, kann man einen 35 000 km hohen Aufzug bauen. Die Kosten wären enorm, doch dann könnte man Dinge in den Weltraum befördern, indem man sie einfach am Kabel hochzieht.
Ach, aber gegen die Physik kommt man nicht an! Die benötigte Energie wäre genau dieselbe, als wenn man eine Rakete benutzte.
Natürlich. Wie die Energie, die man braucht, ein Känguruh in die Höhe zu bringen, die gleiche ist wie bei einem Sack Kartoffeln.
Der Trick besteht darin, eine Möglichkeit zu finden, wie man Energie borgt und zurückzahlt. Der Witz ist: Wenn der Aufzug erst einmal vorhanden ist, kommt nach einer Weile genausoviel herunter, wie hinauffährt. Wenn man auf dem Mond oder auf den Planetoiden Metalle abbaut, wird eigentlich sogar mehr herunter- als heraufkommen. Die Stoffe, die herabfahren, liefern die Energie für jene, die hinauffahren. Im Gegensatz zu einer Rakete, die jedesmal verbraucht wird, wenn man sie abschießt, versorgt sich ein Weltraumlift selbst.
Das Leben ist wie ein Weltraumlift. Womit sich das Leben selbst versorgt, ist nicht Energie, sondern Organisation. Wenn man erst einmal ein derart hochorganisiertes System hat, daß es Kopien von sich selbst herstellen kann, ist der Grad der Organisation nicht mehr ›teuer‹. Die ursprüngliche Investition mag riesig gewesen sein, wie für den Weltraumlift, doch nachdem sie einmal gemacht wurde, ist der Rest umsonst.
Wenn Sie Biologie verstehen wollen, dann brauchen Sie die Physik von Weltraumlifts, nicht die von Raketen.
Wie kann die Magie der Scheibenwelt die Wissenschaft der Rundwelt erhellen? Genauso, wie sich die Kluft zwischen den physikalischen und den biologischen Wissenschaften als viel schmaler erwiesen hat, als wir immer dachten, wird auch die Kluft zwischen Wissenschaft und Magie immer schmaler. Je weiter unsere Technik fortschreitet, um so weniger kann der durchschnittliche Nutzer die mindeste Ahnung haben, wie sie funktioniert. Im Ergebnis wirkt sie immer mehr wie Zauberei. Wie Clarke erkannte, ist diese Tendenz unvermeidlich; Gregory Benford ist weitergegangen und hat sie für wünschenswert erklärt.
Technik funktioniert, weil derjenige, der sie ursprünglich baute, genug von den Regeln des Universums herausgefunden hatte, damit sie das tat, was von ihr verlangt wurde. Man braucht die Regeln nicht richtig zu kennen, damit das klappt, nur richtig genug – Raumraketen funktionieren gut, obwohl ihre Flugbahnen nach Newtons Ansatz für die Regeln der Gravitation berechnet werden, der weniger genau als der von Einstein ist. Doch was man erreichen kann, ist nachdrücklich eingeschränkt auf das, was die Regeln des Universums zulassen. Bei der Magie hingegen funktionieren Dinge, weil jemand es will. Man muß immer noch den richtigen Zauberspruch finden, doch vorangetrieben wird die Entwicklung von den Wünschen der Menschen (und natürlich von Wissen, Fertigkeit und Erfahrung des Ausführenden). Das ist einer der Gründe, warum Wissenschaft oft unmenschlich erscheint, denn sie betrachtet, wie das Universum uns vorantreibt, statt umgekehrt.
Magie ist jedoch nur ein Aspekt der Scheibenwelt. Auf der Scheibenwelt gibt es auch jede Menge Wissenschaft – oder zumindest rationale Vorgehensweisen. Bälle werden geworfen und gefangen, die Biologie des Flusses Ankh ähnelt der irdischer Sümpfe oder Rieselfelder, und das Licht breitet sich mehr oder weniger geradlinig aus. Allerdings sehr langsam. Wie wir in Das Licht der Phantasie lesen: »Ein neuer Scheibenwelttag dämmerte, aber nur sehr langsam, und zwar aus folgendem Grund: Wenn Licht auf ein starkes magisches Feld trifft, vergißt es plötzlich, was Eile bedeutet. Es wird geradezu träge. Und auf der Scheibenwelt war die Magie besonders stark ausgeprägt. Deshalb glitt das mattgelbe Glühen der Dämmerung wie eine sanfte, liebkosende Hand über die Landschaft – goldenem Sirup gleich, wie manche Leute meinen.« Dieselbe Passage teilt uns mit, daß es neben rationalen Verfahrensweisen in der Scheibenwelt jede Menge Magie gibt: unverhüllte Magie, die das Licht verlangsamt, Magie, die es der Sonne erlaubt, die Welt zu umkreisen, vorausgesetzt, daß gelegentlich einer der Elefanten ein Bein hebt, um die Sonne durchzulassen. Die Sonne ist klein, nahe und bewegt sich schneller als ihr eigenes Licht. Das scheint keine schwerwiegenden Probleme mit sich zu bringen.
Magie gibt es auch in unserer Welt, aber von anderer, weniger offensichtlicher Art. Sie ereignet sich in der Umgebung eines jeden, in all den kleinen Zusammenhängen, die wir nicht verstehen, sondern einfach hinnehmen. Wenn wir den Schalter betätigen und das Licht angeht. Wenn wir uns in den Wagen setzen und den Motor anlassen. Wenn wir alle diese unwahrscheinlichen und lächerlichen Dinge tun, durch die dank biologischer Zusammenhänge Kinder entstehen. Gewiß verstehen viele Leute – oft ziemlich genau und in Einzelheiten –, was auf bestimmten Gebieten vor sich geht, doch früher oder später erreichen wir alle unseren magischen Ereignishorizont. Clarkes Gesetz stellt fest, daß jede hochentwickelte, weit fortgeschrittene Technik wie Magie aussieht. Unter ›fortgeschritten‹ wird hier für gewöhnlich verstanden: ›wie sie uns von hochentwickelten Außerirdischen oder von Menschen aus der Zukunft gezeigt wird‹, wie wenn man Neandertalern Fernsehen zeigt. Doch wir sollten uns bewußt sein, daß das Fernsehen für fast alle seine heutigen Benutzer Magie ist – für die Leute hinter der Kamera wie für die, die vor dem beweglichen Bild in dem komischen Kasten auf dem Sofa sitzen. An einer bestimmten Stelle in dem Vorgang, um es mit den Worten des Karikaturisten S. Harris zu sagen, ›geschieht ein Wunder‹.
Die Wissenschaft gewinnt die Aura von Magie, weil das Grundmuster einer Zivilisation nach einer Art narrativem Imperativ voranschreitet – es ergibt eine zusammenhängende Geschichte. Um 1970 hielt Jack in einer Schule einen Vortrag über ›Die Möglichkeit von Leben auf anderen Planeten‹.* [* Jetzt als Buch erschienen: Evolving the Alien (Wie der Außerirdische entwickelt wird) von Jack Cohen und Ian Stewart.] Er sprach von der Evolution, davon, woraus Planeten bestehen – alles, was man in so einem Vortrag erwartet. Die erste Frage kam von einem etwa fünfzehnjährigen Mädchen, das fragte: »Sie glauben an die Evolution, nicht wahr?« Der Lehrer wollte die Frage als ›unangebracht‹ übergehen, aber Jack antwortete trotzdem und sagte (ziemlich hochtrabend): »Nein, ich glaube nicht an die Evolution, wie die Leute an Gott glauben … Wissenschaft und Technik werden nicht von Leuten vorangebracht, die etwas glauben, sondern von Leuten, die etwas nicht wissen, aber ihr Bestes tun, um es herauszufinden … die Dampfmaschine … die Spinning Jenny … das Fernsehen …« Da war sie wieder auf den Füßen. »Nein, so ist das Fernsehen nicht erfunden worden!« Der Lehrer versuchte, den Disput zu mäßigen, indem er sie um eine Erklärung bat, wie denn ihrer Meinung nach das Fernsehen erfunden worden sei. »Mein Vater arbeitet bei Fisher Ludlow und preßt Stahlblech für Autokarrossen. Er wird bezahlt und gibt einen Teil des Geldes der Regierung, damit sie ihm Sachen verschafft. Er sagt der Regierung also, daß er fernsehen möchte, und sie bezahlen jemanden dafür, daß er das Fernsehen erfindet, und der tut es!«
In diesen Irrtum kann man sehr leicht verfallen, weil sich die Technik weiterentwickelt, indem sie Ziele verfolgt. Wir erhalten den Eindruck, daß wir nur genug Mittel einzusetzen brauchen, um jedes beliebige Ziel zu erreichen. Dem ist nicht so. Wenn wir genug Mittel einsetzen, können wir alles erreichen, was in Reichweite unseres gegenwärtigen Wissensstandes liegt oder vielleicht, wenn wir Glück haben, ein kleines Stück dahinter. Doch niemand redet von den mißglückten Erfindungen. Niemand versucht Mittel für ein Projekt aufzutreiben, von dem man weiß, daß es unmöglich funktionieren kann. Kein Geldgeber wird Forschungsprojekte unterstützen, bei denen niemand weiß, wo begonnen werden soll. Wir könnten alles Geld dieser Welt in die Entwicklung von Antigravitation oder überlichtschnellen Raumflügen stecken und würden nichts erreichen.
Wenn man eine Maschine auseinandernehmen und sehen kann, wie sie funktioniert, bekommt man ein deutliches Gefühl für die Beschränkungen, innerhalb derer sie arbeiten muß. In solchen Fällen wird man Wissenschaft und Magie nicht verwechseln. Die ersten Autos erforderten ein außerordentlich kraftaufwendiges Anlassersystem – man steckte eine große Kurbel in den Motor und mußte ihn buchstäblich ›anwerfen‹. Was der Motor beim Anlassen vollführte, war bekanntermaßen keine Magie. Im Lauf ihrer Entwicklung bleibt die Technik für den Benutzer jedoch nicht durchschaubar. Als mehr Menschen Autos benutzten, wurde immer mehr von der offensichtlichen Technik durch Symbole ersetzt. Man betätigte Schalter mit Aufschriften, damit etwas geschah. Das ist unsere Version des Zauberspruchs: Man drückt einen Knopf mit der Aufschrift ›Kaltstart‹, und der Motor führt alles, was zum Kaltstart gehört, selbst aus. Wenn Oma fahren will, braucht sie nicht viel mehr zu tun, als aufs Gaspedal zu treten. Den Rest erledigen kleine Dämonen mittels Magie.
Dieser Vorgang ist der Kern des Verhältnisses von Wissenschaft und Magie in unserer Welt. Das Universum, in das wir hineingeboren wurden und in dem sich unsere Art entwickelt hat, funktioniert nach Regeln – und die Wissenschaft ist die Methode, wie wir herauszufinden versuchen, welche Regeln dies sind. Doch das Universum, das wir für uns aufzubauen im Begriff sind, ist ein Universum, das für jeden mit Ausnahme der Mitglieder des Entwicklungsteams – und höchstwahrscheinlich sogar für diese – mit Hilfe von Magie funktioniert.
Eine besondere Art von Magie gehört zu jenen Dingen, die den Menschen dazu gemacht haben, was er ist. Sie heißt Bildung. Mit Hilfe von Bildung geben wir eine Idee von einer Generation an die nächste weiter. Wenn wir wie Computer wären, könnten wir unseren Geist auf unsere Kinder kopieren, damit sie in Übereinstimmung mit den Ansichten aufwüchsen, die uns lieb und teuer sind. Nun ja, im Grunde täten sie das nicht, obwohl sie auf diese Weise anfangen könnten. Bildung hat einen Aspekt, auf den wir Sie aufmerksam machen möchten. Wir nennen ihn ›Lügen-für-Kinder‹. Uns ist bewußt, daß manche Leser etwas gegen das Wort ›Lügen‹ haben könnten – auf einer wissenschaftlichen Konferenz gerieten Ian und Jack in schreckliche Schwierigkeiten mit ein paar Schweden, die den Ausdruck wörtlich und fürchterlich ernst nahmen und etliche Tage damit zubrachten, zu widersprechen, es sei keine Lüge. Es ist eine Lüge. Es ist, wenn auch aus den besten Gründen, so doch eine Lüge. Eine Lüge-für-Kinder ist eine Behauptung, die falsch ist, aber trotzdem das Denken des Kindes zu einer richtigeren Erklärung hinführt, zu einer Erklärung, die das Kind nur dann zu schätzen weiß, wenn es zunächst mit einer Lüge vorbereitet worden ist.
Die frühen Stadien der Bildung müssen eine Menge Lügen-für-Kinder enthalten, denn frühe Erklärungen müssen einfach sein. Wir leben aber in einer komplexen Welt, und Lügen-für-Kinder müssen zum gegebenen Zeitpunkt durch komplexere Geschichten ersetzt werden, wenn sie nicht echte Lügen mit Zeitzünderwirkung werden sollen. Leider besteht das, was die meisten von uns von Wissenschaft wissen, aus der unklaren Erinnerung an Lügen-für-Kinder. Zum Beispiel der Regenbogen. Wir erinnern uns alle, wie man uns in der Schule erzählt hat, daß Glas und Wasser das Licht in seine Spektralfarben zerlegen – es gibt sogar ein hübsches Experiment, bei dem man sie sehen kann –, und man hat uns gesagt, daß dadurch der Regenbogen entsteht, aus Licht, das durch Regentropfen dringt. Als Kinder sind wir nie auf den Gedanken gekommen, daß das zwar die Farben des Regenbogens erklärt, aber nicht seine Form. Ebensowenig erklärt es, wieso sich das Licht der vielen verschiedenen Regentropfen bei einem Gewitter derart zusammenfügt, daß ein leuchtender Bogen entsteht. Warum verwischt es sich nicht? Hier ist nicht der Ort, Ihnen von der eleganten Geometrie des Regenbogens zu erzählen – aber Sie sehen, warum ›Lüge‹ gar kein so heftiger Ausdruck ist. Die Schulerklärung lenkt unsere Aufmerksamkeit vom wahren Wunder des Regenbogens ab, vom Zusammenspiel aller Regentropfen, indem sie vorgibt, mit den Farben sei alles erklärt.
Andere Beispiele von Lügen-für-Kinder sind die Vorstellung, das Magnetfeld der Erde sei wie ein großer Stabmagnet mit den Aufschriften N und S; das Bild vom Atom als einem Miniatur-Sonnensystem; die Idee, eine lebende Amöbe sei ein Milliarden Jahre alter ›primitiver‹ Organismus; das Bild von der DNA als Konstruktionszeichnung für ein Lebewesen und der Zusammenhang zwischen Relativität und Einsteins Frisur (das ist ein verrückter Einfall, wie ihn nur Leute mit solchen Haaren haben). Die Quantenmechanik hat kein öffentliches Symbol dieser Art – sie erzählt keine einfache Geschichte, die ein Laie erfassen und behalten kann –, daher fühlt man sich bei ihr unbehaglich.
Wenn man in einer komplexen Welt lebt, muß man sie vereinfachen, um sie verstehen zu können. Genau das bedeutet ›verstehen‹. In unterschiedlichen Stadien der Bildung sind unterschiedliche Grade der Vereinfachung angebracht. Lügner-für-Kinder ist ein ehrenwerter und unerläßlicher Beruf, auch als ›Lehrer‹ bekannt. Ein Ziel erreicht Unterricht aber nicht – obwohl viele Politiker es felsenfest glauben, was wiederum ein Problem ist: Er errichtet kein zeitloses Gebäude von ›Tatsachen‹.* [* Als Menschen haben wir eine Menge nützliche Arten von Lügen erfunden. Wie Lügen-für-Kinder (»soviel sie verstehen können«) gibt es Lügen-für-Chefs (»soviel sie wissen sollten«), Lügen-für-Patienten (»was sie nicht wissen, wird ihnen keine Sorgen bereiten«) und aus allen möglichen Gründen Lügen-für-uns-selbst. Lügen-für-Kinder sind einfach eine weitverbreitete und notwendige Art von Lügen. Universitäten kennen zur Genüge die klugen, gut ausgebildeten Schulabgänger, die ein Studium beginnen und dann schockiert sind, wenn sie feststellen, daß Biologie und Physik nicht ganz das sind, was man ihnen bisher beigebracht hat. »Ja, aber Sie mußten das verstehen«, sagt man ihnen, »damit wir Ihnen jetzt sagen können, warum es nicht exakt wahr ist.« Lehrer auf der Scheibenwelt wissen das und benutzen diese Methode, um zu demonstrieren, warum Universitäten wahrlich Lagerhäuser des Wissens sind: Studenten kommen von der Schule im festen Glauben, daß sie nahezu alles wissen, und Jahre später gehen sie mit der Gewißheit ab, praktisch nichts zu wissen. Wo ist das Wissen geblieben? In der Universität natürlich, wo es sorgfältig getrocknet und gelagert wird.] Immer wieder muß man Wissen, das man sicher zu haben glaubt, aufgeben und es durch etwas Subtileres ersetzen. Um diesen Prozeß geht es in der Wissenschaft, und er hört nie auf. Das heißt auch, daß Sie nicht alles, was wir sagen, für der Weisheit letzten Schluß halten sollten, denn wir gehören einem anderen, ebenso ehrenwerten Beruf an: Lügner-für-Leser.
Auf der Scheibenwelt ist eine von Ponder Stibbons Lügen-für-Zauberer im Begriff, ernstlich aus dem Ruder zu laufen.