4

LA HIPÓTESIS DE RIEMANN: DE LOS NÚMEROS PRIMOS ALEATORIOS A LOS CEROS ORDENADOS

La hipótesis de Riemann es un enunciado matemático según el cual es posible descomponer los números primos en música. Afirmar que los números primos tienen música en sí mismos es una forma poética de describir este teorema matemático. Sin embargo, se trata de una música claramente postmoderna.

MICHAEL BERRY

Universidad de Bristol

Riemann había encontrado un pasadizo que conducía del mundo familiar de los números a una matemática que habría parecido absolutamente extraña a los griegos que habían estudiado los números primos dos mil años antes que él. Había mezclado inocentemente los números imaginarios con su función zeta descubriendo, como un alquimista de las matemáticas, el tesoro que emergía de aquella mezcla de elementos, un tesoro matemático que generaciones enteras habían buscado en vano. Riemann había planteado sus ideas en un estudio de diez páginas, pero era totalmente consciente de que aquellas ideas abrirían puntos de vista radicalmente nuevos sobre los números primos.

La capacidad de Riemann para liberar toda la potencia de la función zeta tiene su origen en los cruciales descubrimientos que hizo durante sus años de estancia en Berlín y durante sus estudios de doctorado en Gotinga. Lo que más había impresionado a Gauss cuando examinaba la tesis de Riemann era la fuerte intuición geométrica que demostraba poseer el joven matemático cuando insertaba números imaginarios en las funciones. Al fin y al cabo, el mismo Gauss se había aprovechado de su propia y particular imagen mental para trazar sus bocetos de los números imaginarios, antes de construir su andamiaje conceptual. El punto de partida de Riemann para la elaboración de su teoría de las funciones imaginarias había sido el trabajo de Cauchy, y para éste una función estaba definida por una ecuación. Ahora Riemann añadió la idea de que, si bien la ecuación era el punto de partida, lo verdaderamente importante era la geometría de la gráfica de la ecuación.

El problema está en la imposibilidad de dibujar la gráfica completa de una función en la que se introduzcan números imaginarios. Para ilustrar su gráfica, Riemann habría tenido que trabajar en cuatro dimensiones. ¿Qué quieren decir los matemáticos con cuarta dimensión? Quien haya leído los libros escritos por cosmólogos como Stephen Hawking podría legítimamente responder: «el tiempo». La verdad es que los matemáticos utilizamos las dimensiones para cualquier cosa que sea de interés. En física hay tres dimensiones para el espacio y una cuarta dimensión para el tiempo. Los economistas que quieren indagar las relaciones entre tasas de interés, inflación, desempleo y deuda nacional pueden interpretar la economía como un espacio de cuatro dimensiones. De esta forma, mientras remontan la cuesta en dirección a las tasas de interés, pueden explorar lo que sucede con la economía en las tres direcciones restantes. A pesar de que en realidad no es posible dibujar una imagen de este modelo tetradimensional de la economía, al menos nos da una visión de conjunto que nos permite analizar sus cumbres y valles.

Para Riemann, la función zeta se describía en un espacio análogo de cuatro dimensiones: dos dimensiones servían para trazar las coordenadas de los números imaginarios que introducimos en la función zeta, mientras que la tercera y la cuarta dimensiones se utilizaban para indicar las dos coordenadas que describen el número imaginario resultado de la función.

La dificultad consiste en que vivimos en un espacio de tres dimensiones y ello nos impide basarnos en el mundo visible para comprender este nuevo «diagrama imaginario». Los matemáticos utilizan el lenguaje de las matemáticas para adiestrar su capacidad de visualización mental, de forma que les ayude a «ver» tales estructuras. Pero, aunque no estemos en posesión de esta «lente» matemática, existen otras formas de ayudarnos a penetrar en esos mundos de más dimensiones. Uno de los mejores métodos para comprenderlos es mirar las sombras. La sombra que proyectamos es una imagen bidimensional de nuestro cuerpo tridimensional. Si la observamos desde algunas perspectivas, una sombra puede ofrecer poca información, pero vista de perfil, por ejemplo, la silueta de una persona puede revelar la información necesaria para reconocer una cara. De forma similar, podemos construir una sombra tridimensional del espacio de cuatro dimensiones que Riemann creó utilizando la función zeta, una sombra que conserve información suficiente para permitirnos captar las ideas de Riemann.

El mapa bidimensional de los números imaginarios que ideó Gauss nos da una representación gráfica de los números que introducimos en la función zeta. El eje norte-sur marca el número de pasos a dar en la dirección imaginaria, mientras que el eje este-oeste representa los números reales. Podemos extender este mapa sobre una mesa: lo que pretendemos es crear un paisaje físico situado en el espacio que está sobre este mapa, la sombra de la función zeta se transformará entonces en un objeto físico cuyas cumbres y valles podremos explorar.

La altura del espacio que hay sobre cada número imaginario del mapa debería registrar el resultado que se obtiene al introducir aquel número en la función zeta. Por la misma razón por la que una sombra nos muestra únicamente algunos aspectos de un objeto tridimensional, algunas informaciones se perderán inevitablemente en la construcción gráfica del paisaje. Haciendo girar el objeto obtendremos sombras distintas que nos proporcionarán información distinta. Análogamente, tenemos una cierta capacidad de elección sobre lo que queremos que registre la altura del espacio por encima de cada número imaginario del mapa que hemos extendido sobre la mesa. Sin embargo, es posible elegir una sombra que recoja suficiente información para permitirnos comprender el descubrimiento de Riemann. Tal perspectiva fue de gran ayuda para Riemann en su viaje en aquel mundo más allá del espejo. Entonces, ¿cuál es esa particular sombra tridimensional de la función zeta?

El espacio zeta. Riemann descubrió cómo continuar el dibujo en un nuevo territorio hacia el oeste.

Cuando Riemann comenzó a explorar este paisaje se topó con algunos aspectos fundamentales de su geografía. Colocándose dentro del espacio zeta y mirando hacia el este el paisaje era una llanura uniforme que se elevaba una unidad sobre el nivel del mar. Si se giraba y miraba hacia el oeste, veía una cresta de alturas onduladas que iba de norte a sur. Las cimas de estas montañas estaban todas ellas situadas por encima de la línea que cruzaba el eje este-oeste hasta el número 1. Por encima de este punto de intersección había un pico en forma de torre que subía al cielo. Era, en efecto, infinitamente alto: tal y como había descubierto Euler, cuando se inserta el número 1 en la función zeta se obtiene un resultado que tiende al infinito. Si se dirigía hacia el norte o hacia el sur de esta cumbre de altura infinita, Riemann encontraba otros picos; ninguno de ellos, sin embargo, era de altura infinita. El primer pico aparecía a poco menos de diez pasos hacia el norte, correspondiente al número imaginario 1 + (9,986…)i, y alcanzaba una altura de apenas 1,4 unidades aproximadamente.

Si Riemann hubiera hecho girar el espacio y hubiera representado en un diagrama la sección transversal de las colinas correspondientes a la línea de división norte-sur que pasa por 1, habría obtenido algo así:

Sección transversal de la cadena de montañas a lo largo de la línea crítica de la coordenada este-oeste fijada a una unidad este.

Había un aspecto crucial del paisaje que no dejó de atraer la atención de Riemann. Parecía que fuera imposible utilizar la fórmula que define la función zeta para construir el paisaje al oeste más allá de la cadena montañosa. Riemann tenía el mismo problema que Euler había sufrido al insertar números reales en la función zeta. Cada vez que insertaba un número situado al oeste de 1, las demás montañas de la cadena norte-sur parecían transitables.

¿Por qué entonces no continuaban onduladas, con independencia de los resultados de la función zeta? Con toda seguridad, el paisaje no terminaba allí, en la línea norte-sur. ¿Es posible que no hubiera nada al oeste de esa frontera? Si tenía que hacer caso sólo de las ecuaciones, se diría que no se podía construir otro paisaje que el que se encuentra al este del 1. Las ecuaciones carecían de sentido cuando se insertaban números situados al oeste del 1. ¿Conseguiría Riemann completar el paisaje? Y, en caso afirmativo, ¿cómo?

Afortunadamente, Riemann no se dejó desorientar por la apariencia intratable de la función zeta. Su formación lo había provisto de una perspectiva de la que carecían los matemáticos franceses. Para él, la ecuación sobre la que se basaba un paisaje imaginario debía considerarse como un aspecto secundario. La importancia primordial estaba en la topografía efectiva del paisaje de cuatro dimensiones. Podía suceder que las ecuaciones no tuvieran sentido, pero la geometría del paisaje sugería otra cosa. Riemann descubrió una fórmula que podía usar para construir el paisaje que faltaba al oeste. Aquel nuevo paisaje podía encajarse perfectamente con el paisaje original. Ahora un explorador del mundo imaginario podría pasar tranquilamente de la región definida por la fórmula de Euler al paisaje creado por la fórmula de Riemann sin tener siquiera conciencia de cruzar una frontera.

Llegado a este punto, Riemann disponía de un paisaje completo que cubría el mapa completo de los números imaginarios. Ahora estaba ya preparado para el movimiento siguiente. Durante sus estudios de doctorado había descubierto dos hechos cruciales e inesperados sobre los espacios imaginarios; en primer lugar había aprendido que estaban dotados de una geometría extraordinariamente rígida. Había una única forma de expandirlos: lo que podía existir al oeste estaba completamente determinado por la geometría del paisaje de Euler al este. Riemann no podía manipular a su gusto su nuevo paisaje para crear alturas donde le apeteciera hacerlo: cualquier modificación provocaría un descosido en la costura que separaba los dos espacios.

La inflexibilidad de tales paisajes imaginarios suponía un importante descubrimiento. Cuando un cartógrafo de mundos imaginarios traza una pequeña región cualquiera del paisaje, ello le basta para reconstruirlo completo. Riemann había descubierto que las alturas y los valles presentes en una región contienen información sobre la topografía del paisaje completo. Se trata de un hecho realmente sorprendente; no esperaríamos que un cartógrafo del mundo real, tras dibujar los alrededores de Oxford, pudiera ya deducir el mapa completo de las Islas Británicas.

Pero Riemann hizo un segundo descubrimiento crucial en relación a ese extraño nuevo tipo de matemática. Descubrió lo que podríamos considerar como el ADN de los espacios imaginarios: cualquier cartógrafo matemático capaz de trazar sobre el mapa imaginario bidimensional los puntos en los que el paisaje coincide con el nivel del mar será capaz de reconstruir la configuración del paisaje completo. El mapa que indica tales puntos es el mapa del tesoro de cualquier paisaje imaginario. Se trataba de un descubrimiento sorprendente. Un cartógrafo que viva en nuestro mundo real no podría reconstruir los Alpes sabiendo la posición de todos los puntos del mundo que se hallan al nivel del mar. Sin embargo, en los espacios imaginarios, la posición de todos los números imaginarios que tienen imagen cero lo describe todo. Estos puntos reciben el nombre de ceros de la función zeta.

Los astrónomos están muy acostumbrados a deducir la composición química de astros lejanos sin necesidad de visitarlos. La luz que proviene de un astro puede analizarse gracias a la espectroscopia y contiene información suficiente para que conozcamos su química. Estos ceros se comportan de la misma manera que el espectro de luz emitido por un compuesto químico. Riemann sabía que lo único que tenía que hacer era marcar todos los puntos del mapa en los cuales la altura del paisaje zeta fuera igual a cero. Las coordenadas de todos estos puntos situados al nivel del mar darían información suficiente para reconstruir todas las alturas y valles sobre el nivel del mar.

Riemann no olvidaba cuál había sido el punto de partida de su exploración: el big bang que había creado el paisaje zeta era la fórmula con la que Euler había definido la función zeta, una fórmula que, gracias al producto de Euler, podía construirse utilizando sólo números primos. Y si ambas cosas —los números primos y los ceros de la función zeta— daban lugar al mismo espacio, Riemann sabía que tenía que existir algún nexo que los ligara: un único objeto construido de dos maneras distintas. Fue el genio de Riemann el que desveló cómo aquellas dos entidades eran dos caras de la misma ecuación.

NÚMEROS PRIMOS Y CEROS

La conexión que Riemann consiguió encontrar entre los números primos y los puntos situados a nivel del mar en el paisaje zeta no podía ser más directa. Gauss había intentado estimar cuántos números primos había entre 1 y un número N cualquiera. Pero Riemann, usando las coordenadas de aquellos ceros, pudo crear una fórmula que diera el número exacto de primos no mayores que N. La fórmula que Riemann ideó tenía dos ingredientes clave; el primero era una nueva función R(N) que servía para estimar el número de primos no mayores que N y que básicamente proporcionaba una estimación mejor que la de Gauss. La nueva función contenía todavía algunos errores, pero los cálculos de Riemann determinaron que tales errores eran notablemente menores que los que contenía la fórmula de Gauss. Para poner un ejemplo, el logaritmo integral de Gauss predecía la existencia de 754 números primos más de los que realmente hay en el intervalo comprendido entre 1 y cien millones. La función perfeccionada que Riemann introdujo predecía sólo 97 de más, con un error aproximado de la milésima parte del uno por ciento.

La siguiente tabla evidencia la precisión de la nueva función de Riemann en la estimación de la cantidad de primos no mayores que N desde 102 hasta 1016.

N Número de primos p(N) comprendidos entre 1 y N Sobreestimación de la función de Riemann R(N) Sobreestimación de la función de Gauss Li(N)
102 25 1 5
103 168 0 10
104 1,229 −2 17
105 9.592 −5 38
106 78.498 29 130
107 664.579 88 339
108 5.761.455 97 754
109 50.84.7534 −79 1.701
1010 455.052.511 −1.828 3.104
1011 4.118.054.813 −2.318 11.588
1012 37.607.912.018 −1.476 38.263
1013 346.065.536.839 −5.773 108.971
1014 3.204.941.750.802 −19.200 314.890
1015 29.844.570.422.669 73.218 1.052.619
1016 279.238.341.033.925 327.052 3.214.632

Aunque la nueva función de Riemann representaba una mejora en relación a la función logaritmo de Gauss, seguía produciendo algunos errores. Pero la excursión de Riemann por el mundo imaginario le dio acceso a algo que Gauss ni siquiera habría soñado con obtener: un método para eliminar los errores. Riemann comprendió que, usando los puntos del mapa de los números imaginarios que señalaban los lugares en los que el espacio zeta estaba al nivel del mar, podía deshacerse de los errores y obtener una fórmula exacta para contar los números primos. Ese fue el segundo ingrediente clave de su fórmula.

Euler había hecho un descubrimiento sorprendente: si se insertaba un número imaginario en la función exponencial se obtenía una onda sinusoidal. La curva en rápido ascenso que se asocia normalmente a la función exponencial se transformaba, con la introducción de estos números imaginarios, en una curva de marcha sinuosa de las que habitualmente se asocian con las ondas sonoras. Su descubrimiento abrió una vía para la exploración de los extraños nexos que sacaban a la luz los números imaginarios: Riemann comprendió que era posible extender el descubrimiento de Euler usando su mapa de puntos correspondientes a los ceros del paisaje imaginario. En aquel mundo del otro lado del espejo consiguió ver cómo, usando la función zeta, cada uno de aquellos puntos se podía transformar en una onda específica. Cada onda tendría el aspecto de una variación en el diagrama de una función seno.

Las características de cada onda venían determinadas por la posición del correspondiente cero. Cuanto más al norte se situaba un punto al nivel del mar, más rápidamente oscilaba la onda correspondiente. Si imaginamos esta onda como una onda sonora, la nota asociada a un cero resulta tanto más aguda cuanto más al norte se sitúa el correspondiente cero en el paisaje zeta.

¿Por qué tales ondas —estas notas musicales— eran útiles para contar los números primos? Riemann hizo un descubrimiento espectacular: en las alturas variables de aquellas ondas estaba codificado el modo de corregir los errores que aparecían en su estimación de la cantidad de números primos. La función R(N) proporcionaba una estimación razonablemente buena de la cantidad de primos menores o iguales que N, pero si a esta estimación le añadía la altura de cada onda por encima del número N, podía obtener el número exacto de primos: había eliminado completamente el error. Había conseguido desenterrar el Santo Grial que Gauss había buscado en vano: una fórmula exacta para calcular el número de primos menores o iguales que N.

La ecuación que describe este descubrimiento puede resumirse con palabras simplemente como «números primos = ceros = ondas». Para un matemático, la fórmula de Riemann que proporciona el número de primos en términos de ceros tiene un impacto similar al de la ecuación de Einstein E = mc2, que reveló la existencia de una conexión directa entre masa y energía. Como la ecuación de Einstein, ésta es una fórmula de conexiones y transformaciones: Riemann fue testigo de la paulatina metamorfosis de los números primos. Los números primos crean el paisaje zeta, y los puntos que en tal paisaje se encuentran al nivel del mar son la clave para desentrañar sus secretos. A continuación emerge una nueva conexión consistente en que cada uno de aquellos puntos a nivel del mar produce una onda, una nota musical. Finalmente, Riemann retornó al punto de partida para mostrar de qué manera estas ondas permitían contar en cantidad exacta de números primos. Riemann debió de quedarse asombrado al ver el círculo cerrarse de forma tan espectacular.

Riemann sabía que, dado que existen infinitos números primos, en el paisaje zeta existen infinitos puntos que se encuentran al nivel del mar. Por tanto, tienen que existir infinitas ondas que permitan mantener los errores bajo control. Hay una manera muy gráfica de ver que la adición de cada onda suplementaria mejora la estimación de la cantidad de números primos que proporciona la fórmula de Riemann: antes de añadir las ondas que corresponden a los ceros, la gráfica de la función de Riemann R(N) (ver gráfica adjunta, arriba) no se parece en absoluto a la escalinata que representa el número efectivo de números primos (abajo). En el primer caso tenemos una curva uniforme mientras que en el segundo aparece una curva dentada.

El reto: pasar de la gráfica uniforme de la función de Riemann (arriba), a la gráfica escalonada que representa el verdadero número de números primos, (abajo).

Basta con tener en cuenta los errores previstos por las treinta ondas creadas por los treinta primeros ceros que encontramos cuando miramos al norte en el paisaje zeta, para que se produzca un efecto más que evidente: la gráfica de Riemann se transforma respecto a la curva de R(N) y se parece mucho más a la escalinata que describe el verdadero número de números primos:

Efecto que se obtiene al añadir las treinta primeras ondas a la gráfica uniforme de Riemann.

Cada nueva onda retuerce un poco más la curva perfectamente uniforme de partida. Riemann comprendió que cuando añadiera las infinitas ondas, una por cada punto a nivel del mar, que encontraba a medida que avanzaba hacia el norte en el paisaje zeta, la curva se superpondría exactamente con la escalinata de los números primos.

Una generación antes, Gauss había descubierto la que consideró como la moneda que la naturaleza lanzaba al aire para elegir los números primos. Las ondas que Riemann descubrió eran los verdaderos resultados de los lanzamientos que la naturaleza había hecho: las alturas de cada una de aquellas ondas para el número N predecían para cada lanzamiento si la moneda de los números primos daría cara o cruz. Si el descubrimiento de la relación entre números primos y logaritmos que había conseguido Gauss permitió prever el comportamiento medio de los números primos, Riemann identificó lo que controlaba tal comportamiento hasta los más mínimos detalles: había hallado la lista completa de los billetes ganadores de la lotería de los números primos.

LA MÚSICA DE LOS NÚMEROS PRIMOS

Durante siglos los matemáticos escucharon los números primos sin oír nada más que un ruido desorganizado. Aquellos números eran como notas diseminadas por el pentagrama de forma totalmente aleatoria, en un caos del que no emergía ninguna melodía reconocible. Ahora Riemann había descubierto oídos nuevos con los que escuchar aquellas misteriosas tonadas: las ondas sinusoidales que creó usando los ceros de su espacio zeta revelaban la existencia de una estructura armónica escondida.

Al percutir su recipiente, Pitágoras había desvelado la armonía musical que se ocultaba en una sucesión de fracciones. Mersenne y Euler, dos grandes expertos en números primos, habían creado la teoría de los armónicos. Pero ninguno de ellos sospechó siquiera que se pudieran dar relaciones directas entre la música y los números primos: la de los números primos era una melodía que para ser captada necesitaba oídos matemáticos del siglo XIX. El mundo imaginario de Riemann generó simples ondas que, juntas, pudieron reproducir las armonías sutiles de los números primos.

Un matemático comprendió mejor que todos los demás hasta qué punto la fórmula de Riemann captaba la música que se escondía tras los números primos: Joseph Fourier. Huérfano, Fourier se educó en una escuela militar dirigida por monjes benedictinos. Hasta los trece años, cuando descubrió el encanto de las matemáticas, fue un chico indisciplinado. Fourier estaba destinado a ser monje, pero los sucesos de 1789 lo liberaron de las perspectivas que para él tenía preparadas el período prerrevolucionario. Ahora podía ya dedicarse a su pasión por las matemáticas y por la vida militar.

Fourier fue un entusiasta defensor de la Revolución, y enseguida atrajo la atención de Napoleón. El futuro emperador estaba instituyendo las academias de las que deberían salir los maestros e ingenieros que habrían de dinamizar la revolución cultural y militar. Cuando comprobó la capacidad excepcional de Fourier no sólo como matemático sino también como maestro, Napoleón lo nombró profesor de matemáticas en la Ecole Polytechnique.

Napoleón quedó tan impresionado por los logros de su protegido que lo reclutó para la legión de científicos y artistas que acompañaron a las tropas que invadieron Egipto en 1798 con el objetivo de «civilizarlo». Lo que empujaba a Napoleón a aquella expedición era en realidad el deseo de poner fin a la creciente supremacía colonial inglesa, pero en su programa también se preveía la oportunidad de estudiar el mundo antiguo. Su ejército de intelectuales se puso manos a la obra en cuanto embarcaron en el Orient, el buque insignia de Napoleón, camino de las costas septentrionales de África. Cada mañana, Napoleón anunciaba el tema con el que sus embajadores académicos lo entretendrían por la noche: mientras la marinería se afanaba con jarcias y velamen, bajo cubierta Fourier y sus compañeros se aventuraban en los temas preferidos por Napoleón, desde la edad de la Tierra hasta la posibilidad de la existencia de otros mundos habitados.

Al llegar a Egipto no todo sucedió según lo previsto: tras conquistar El Cairo por la fuerza en la batalla de las Pirámides en julio de 1798, Napoleón sufrió la desilusión de descubrir que los egipcios no parecían apreciar la alimentación cultural forzosa que les suministraba gente del calibre de Joseph Fourier. Cuando trescientos de sus hombres fueron degollados en una escaramuza nocturna, Napoleón decidió minimizar pérdidas y regresar a ocuparse de los disturbios que se estaban urdiendo en París. Zarpó sin decir a ninguno de los miembros de su ejército de intelectuales que los estaba abandonando. Fourier, encallado en El Cairo, no tenía rango suficiente para poner tierra de por medio sin riesgo de ser fusilado como desertor, y no tuvo más remedio que quedarse en el desierto. Consiguió volver a Francia en 1801, cuando los franceses decidieron dejar a los ingleses el trabajo de «civilizar» Egipto.

Durante su estancia en aquel país, Fourier se volvió adicto al calor sofocante del desierto; en París tenía su vivienda a una temperatura tan alta que sus amigos la comparaban con los hornos del infierno. Estaba convencido de que el extremo calor contribuía a mantener el cuerpo sano y que incluso podía curar algunas enfermedades. Sus amigos lo encontraban cubierto como una momia egipcia, sudando en una habitación ardiente como el Sahara.

La predilección de Fourier por el calor se extendía a su trabajo académico. Conquistó su lugar en la historia de las matemáticas por su análisis de la propagación del calor, una obra que el físico inglés Lord Kelvin definió como «un gran poema matemático». Fourier redobló sus esfuerzos cuando la Academia de París anunció la concesión del Grand Prix des Mathématiques de 1812 a quien desvelara los misterios de la propagación del calor en la materia. Fourier recibió el premio como reconocimiento a la novedad e importancia de sus ideas, pero tuvo que encajar algunas críticas procedentes, entre otros, de Legendre. Los jueces del Grand Prix constataron que buena parte de su tratado contenía errores y que su tratamiento matemático no era ni mucho menos riguroso. Fourier se ofendió profundamente por las críticas de la Academia, pero reconoció que todavía le quedaba mucho trabajo por hacer.

Al tiempo que corregía los errores de su análisis, Fourier intentaba comprender la naturaleza de las gráficas que representaban los fenómenos físicos; por ejemplo, la gráfica que muestra cómo la temperatura varía según transcurre el tiempo, o la gráfica que representa una onda sonora. Sabía que se puede representar el sonido mediante un diagrama en cuyo eje horizontal se señala el tiempo mientras que en el eje vertical se controlan el volumen y el nivel del sonido en cada instante.

Fourier empezó por el diagrama del sonido más sencillo que existe. Si se hace vibrar un diapasón, al trazar la gráfica de la onda sonora resultante se descubre que se trata de una onda sinusoidal perfecta, pura. Fourier empezó a estudiar la manera de construir ondas más complejas combinando estas ondas sinusoidales puras. Si un violín toca la misma nota que un diapasón, el sonido que produce es muy distinto. Como hemos visto (pág. 128), la cuerda de un violín no sólo vibra en la frecuencia fundamental, que viene determinada por su longitud: junto a aquella nota hay otras, los armónicos, que corresponden a fracciones simples de la longitud de la cuerda. Las gráficas de cada una de estas notas son también ondas sinusoidales, pero de frecuencias más altas; se trata de una combinación de todas estas notas puras, dominada por la nota fundamental, la más baja, que crea el sonido emitido por una cuerda de violín. La gráfica de este sonido compuesto se parece a los dientes de una sierra.

¿Por qué un clarinete emite un sonido tan característicamente distinto de un violín que toca la misma nota? La gráfica de la onda sonora creada por el clarinete no se parece en nada a la onda erizada del violín: se trata de una función de onda escuadrada, como un perfil de almenas sobre los muros de un castillo. La causa de la diferencia está en que el clarinete está abierto por uno de sus extremos, mientras que la cuerda de un violín está fija por ambos lados. Ello implica que los armónicos producidos por el clarinete varíen con respecto de los del violín, y por esta razón la gráfica producida por el sonido del clarinete está formada por ondas sinusoidales que oscilan frecuencias diferentes.

Fourier comprendió que incluso la complicada gráfica que representa el sonido de una orquesta completa podía descomponerse en simples curvas sinusoidales de las notas fundamentales y de los armónicos de cada particular instrumento. Como cada una de las ondas sonoras puras puede reproducirse con un diapasón, Fourier había demostrado que tocando un enorme número de diapasones simultáneamente se puede crear el sonido de una orquesta completa: alguien con los ojos vendados no podría decir si está escuchando una auténtica orquesta o millares de diapasones. Sobre este principio se basa el sonido codificado en un CD: éste envía instrucciones a nuestros altavoces sobre cómo vibrar para crear todas las ondas sinusoidales que componen la música. Esta combinación de ondas sinusoidales nos da la sensación milagrosa de tener una orquesta o un conjunto tocando en vivo en nuestro salón.

Sin embargo, no era sólo el sonido de los instrumentos musicales lo que podía reproducirse sumando entre sí ondas sinusoidales puras de frecuencias distintas. Por ejemplo, el ruido blanco que emite una radio no sintonizada o un grifo abierto puede representarse como una suma infinita de ondas sinusoidales. Al contrario de lo que ocurre con las distintas frecuencias necesarias para reproducir el sonido de una orquesta, el ruido aleatorio de una radio se compone de una gama continua de frecuencias.

Las intuiciones revolucionarias de Fourier no se limitaron a la reproducción de los sonidos: empezó a comprender que era posible usar las ondas sinusoidales para trazar gráficas que proporcionaban una representación de otros fenómenos físicos y matemáticos. Entre los contemporáneos de Fourier eran muchos los que tenían dudas sobre la posibilidad de que una simple curva como la onda sinusoidal pudiera utilizarse como elemento de base para construir gráficas complicadas del sonido de una orquesta o de un grifo abierto. En efecto, muchos matemáticos franceses autorizados expresaron su vigorosa oposición a las ideas de Fourier. Sin embargo, alentado por su relación prestigiosa con Napoleón, Fourier no evitó el reto planteado por tales autoridades. Mostró cómo, con una elección apropiada de ondas sinusoidales oscilantes a distintas frecuencias, se podía crear una gama completa de gráficas complejas. Sumando las alturas de las ondas sinusoidales se podían reproducir las formas de estas gráficas, de la misma forma en que un CD combina las notas puras que emite el diapasón para recrear sonidos musicales complejos.

Esto es lo que Riemann consiguió hacer en su ensayo de diez páginas. Reprodujo la gráfica escalonada que indicaba la cantidad de números primos utilizando idéntica técnica: sumó las alturas de las funciones de onda que había obtenido de los ceros del espacio zeta. Por esta razón, Fourier reconoció en la fórmula de Riemann para el cálculo de la cantidad de primos el descubrimiento de las notas básicas que componen el sonido de los números primos. Este complicado sonido se representa con la gráfica escalonada. Las ondas que Riemann había creado a partir de los ceros, de los puntos situados al nivel del mar en el paisaje, eran como sonidos emitidos por el diapasón, simples notas nítidas, sin armónicos. Al tocarlas simultáneamente estas notas reproducían el sonido de los números primos. Pero ¿cómo es la música de los números primos que compuso Riemann? ¿Se trata del sonido de una orquesta o más bien se parece al ruido blanco de un grifo abierto? Si las frecuencias de las notas de Riemann cubren una gama continua, entonces los números primos producen ruido blanco; pero si las frecuencias son notas aisladas, el sonido de los números primos se parece a la música de una orquesta.

Dado el carácter aleatorio de los números primos, es muy lícito esperar que la combinación de las notas que tocan los ceros del paisaje de Riemann no sea más que ruido. La coordenada norte-sur de cada cero determina la altura de la nota correspondiente: si el sonido de los números primos fuera efectivamente ruido blanco, en el espacio zeta debería darse una concentración de ceros. Y Riemann sabía, a partir de la tesis que había escrito para Gauss, que tal concentración de puntos a nivel del mar comportaría necesariamente que todo el paisaje estuviera al nivel del mar. Evidentemente no era así. El sonido de los números primos no era, por tanto, un ruido blanco: los puntos situados al nivel del mar tenían que ser puntos aislados y, en consecuencia, debían producir una colección de notas aisladas. La naturaleza había escondido en los números primos la música de una orquesta matemática.

LA HIPÓTESIS DE RIEMANN: ORDEN A PARTIR DEL CAOS

Lo que Riemann había hecho era tomar cada uno de los puntos situados al nivel del mar en el mapa del mundo imaginario. A partir de cada punto había creado una onda, una nota emitida por cierto instrumento matemático: al combinar todas estas ondas obtuvo una orquesta que tocaba la música de los números primos. La coordenada norte-sur de cada punto a nivel del mar controlaba la frecuencia de la onda, es decir, la altura de la nota correspondiente; en cambio, la coordenada este-oeste controlaba, tal y como había comprendido Euler, la intensidad a la que sonaría cada nota. Cuanto mayor fuera la intensidad de la nota, tanto mayores eran las fluctuaciones de su gráfica ondulada.

Riemann tenía interés en comprender si alguno de los ceros sonaría con una intensidad significativamente mayor que los demás: un cero así produciría una onda cuya gráfica oscilaría más que el resto de las ondas y, en consecuencia, tendría un papel más importante en la cuenta de los números primos; al fin y al cabo son las alturas de estas ondas las que controlan la diferencia entre la estimación de Gauss y la verdadera cantidad de números primos. ¿Había algún instrumento de esta orquesta de números primos que tocara un solo por encima de los demás instrumentos? Cuanto más al este se situaba un punto al nivel del mar, más intensa era la nota: para determinar el balance de la orquesta, Riemann tenía que volver atrás y observar las coordenadas de cada uno de los ceros en su mapa imaginario.

Conviene subrayar que, hasta aquel momento, su análisis había funcionado sin necesidad de conocer la posición de ninguno de los puntos a nivel del mar: sabía que algunos de los ceros que se encontraban al oeste eran fáciles de identificar, pero no aportaban ninguna contribución interesante al sonido de los números primos porque no tenían tono. Con su típico estilo despectivo, los matemáticos los llamarían enseguida ceros triviales. Riemann fue a la caza de las posiciones de los demás ceros.

En cuanto empezó a analizar la posición exacta de estos puntos, se sorprendió muchísimo: en lugar de distribuirse de manera aleatoria por todo el mapa con algunas notas más intensas que otras, los ceros que calculaba parecían disponerse milagrosamente sobre una recta que cruzaba el paisaje en dirección norte-sur. Era como si cada punto situado al nivel del mar tuviera la misma coordenada este-oeste, igual a 1/2. Si era cierto, significaba que las ondas correspondientes estaban perfectamente equilibradas, que ninguna de ellas producía una nota más intensa que las demás.

El mapa del tesoro de los números primos que descubrió Riemann. Las cruces indican las posiciones de los puntos que se encuentran al nivel del mar en el espacio zeta.

El primer cero que Riemann calculó tenía coordenadas (1/2, 14,134 725…): medio paso al este y aproximadamente 14,134 725 pasos al norte. El siguiente cero tenía coordenadas (1/2, 21,022 040…). (Durante años fue un misterio cómo consiguió calcular las posiciones de estos ceros). Calculó el tercer cero en la posición (1/2, 25,010 856…). Estos ceros no parecían distribuirse de forma aleatoria en absoluto: los cálculos de Riemann indicaban que estaban alineados, como si se encontraran a lo largo de una recta mágica que cruzaba el espacio. Riemann pensó que el comportamiento uniforme de los pocos ceros que consiguió calcular no era una coincidencia. La idea de que cada punto situado al nivel del mar en el espacio se encuentra sobre aquella recta tomó el nombre de hipótesis de Riemann.

Riemann miró la imagen de los números primos en el espejo que separaba el mundo de los números del paisaje matemático zeta. Mientras observaba, vio cómo la disposición caótica de los números primos en un lado del espejo se transformaba en el orden absolutamente rígido de los ceros del otro lado del espejo. Por fin, Riemann había identificado la misteriosa estructura que durante siglos y siglos los matemáticos habían deseado ardientemente captar cuando observaban los números primos.

El descubrimiento de este patrón fue totalmente inesperado: Riemann tuvo la suerte de ser la persona adecuada en el lugar y en el momento adecuados; no podía prever lo que hallaría al otro lado del espejo, pero lo que allí encontró transformó completamente la empresa de comprender los misterios de los números primos. Ahora los matemáticos tenían un nuevo espacio para explorar: si conseguían orientarse en el territorio de la función zeta y construir un diagrama de los lugares situados al nivel del mar, los números primos podrían revelar sus secretos. Riemann también descubrió el rastro de la existencia de una recta mágica que cruzaba este espacio y cuyo alcance conducía directamente al corazón de las matemáticas. La importancia de la recta mágica de Riemann puede juzgarse por el nombre que hoy día le dan los matemáticos: la línea crítica. En un instante, el enigma de la distribución aleatoria de los números primos en el mundo real quedó sustituido por el intento de comprender la armonía del paisaje imaginario que se encontraba al otro lado del espejo.

Dado que hay infinitos números primos, los pocos fragmentos que Riemann había descubierto parecían elementos de prueba más bien precarios como base para la construcción de una teoría. A pesar de ello, Riemann sabía que la recta mágica tenía un importante significado. Sabía ya que el eje este-oeste indicaba un eje de simetría en el paisaje zeta: todo lo que sucedía al norte del eje se reflejaba de forma idéntica en el sur. Pero Riemann hizo un descubrimiento de mucho mayor alcance: la recta mágica —la línea norte-sur que pasa por el punto 1/2— también era un importante eje de simetría. Plausiblemente, este hecho le proporcionó a Riemann una razón para creer que la naturaleza también había utilizado esta línea de simetría para ordenar los ceros.

Lo más extraordinario que sucedía en relación con este importantísimo descubrimiento de Riemann es que sus cálculos de las posiciones de los pocos ceros iniciales no aparecía por ninguna parte en el ensayo sobre los números primos que escribió para la Academia de Berlín. De hecho, en la versión del ensayo que se publicó tenemos dificultades para localizar alguna referencia explícita a este descubrimiento. Riemann sólo escribe que muchos de los ceros hacen su aparición sobre aquella recta, y que es «bastante probable» que suceda lo mismo con todos los demás ceros. Sin embargo, en el ensayo admite no haberse esforzado mucho para demostrar su hipótesis.

En realidad Riemann tenía el objetivo mucho más inmediato de demostrar la conjetura de Gauss sobre los números primos, es decir, explicar por qué la estimación de los números primos que dio Gauss se hacía cada vez más precisa a medida que se contaba un número cada vez mayor de primos. Pero también esta demostración se le escapaba: Riemann comprendió que, si su intuición sobre la recta mágica era verdadera, entonces de ella se deduciría que Gauss tenía razón. Tal y como Riemann había descubierto, era posible describir los errores presentes en la fórmula de Gauss por medio de la posición de cada cero: cuanto más al este se situaba un cero, mayor era la intensidad de la onda; cuanto mayor era la intensidad de la onda, más grande era el error. Por esta razón la predicción de Riemann sobre la posición de los ceros era tan importante para las matemáticas: si tenía razón, es decir, si todos los ceros se situaban sobre la recta mágica, significaba que la estimación de Gauss sería siempre increíblemente precisa.

La publicación del ensayo de diez páginas supuso un breve período de felicidad en la vida de Riemann: tuvo el honor de heredar la cátedra que sus dos mentores, Gauss y Dirichlet, habían ocupado; sus hermanas se instalaron en Gotinga tras la muerte del hermano que las mantenía, en 1857: la proximidad de la familia levantó la moral de Riemann, y se alejaron un poco las depresiones que había sufrido durante los años anteriores. Gracias al sueldo de profesor, se libró de la indigencia que tuvo que soportar en su época de estudiante; y por fin pudo permitirse un alojamiento decoroso e incluso una gobernanta, lo que le permitió dedicar su tiempo a trabajar las ideas que le rondaban por la cabeza.

Sin embargo, no volvió jamás a ocuparse de los números primos. Continuó detrás de su intuición geométrica y elaboró una noción de geometría del espacio destinada a convertirse en una de las piedras angulares de la teoría de la relatividad de Einstein. Aquella época de buena fortuna culminó con su matrimonio con Elise Koch, una amiga de su hermana; pero al cabo de apenas un mes, Riemann enfermó de pleuresía: a partir de aquel momento su mala salud ya no le dio tregua nunca más. En muchas ocasiones buscó refugio en la campiña italiana. Se sintió especialmente atraído por Pisa, la ciudad en que nació su único hijo, una niña a la que llamaron Ida. Riemann disfrutaba con aquellos viajes a Italia no sólo por el buen clima, sino también por la vivacidad intelectual que encontraba: durante aquella época la comunidad matemática italiana fue la más abierta a sus ideas revolucionarias.

Su última visita a Italia no fue para huir del clima húmedo de Alemania, sino de un ejército invasor: en 1866 los ejércitos de Hannover y de Prusia se enfrentaron en Gotinga. Riemann se quedó aislado en los locales donde se alojaba, en el viejo observatorio de Gauss, fuera de las murallas de la ciudad. A juzgar por el estado en que los dejó, Riemann debió de marcharse a Italia a toda prisa. Aquel golpe fue excesivo para su frágil constitución: siete años después de la publicación de su ensayo sobre los números primos, Riemann moría a la temprana edad de treinta y nueve años.

Ante el desorden que Riemann había dejado, su gobernanta destruyó muchos de sus apuntes inéditos antes de que algunos miembros de la Facultad de Gotinga pudieran detenerla. Las cartas que sobrevivieron fueron entregadas a su viuda y desaparecieron durante años. Es difícil resistir la tentación de especular sobre lo que se habría encontrado si la gobernanta de Riemann no hubiera estado tan ansiosa de poner orden en su estudio: una afirmación de Riemann en su ensayo de diez páginas indica que se creía capaz de demostrar que la mayor parte de los ceros se hallaban sobre la recta mágica; su perfeccionismo le impidió desarrollar el tema, y se limitó a escribir que la demostración todavía no estaba preparada para su publicación. Entre sus cartas inéditas nunca se halló tal demostración, y hasta hoy los matemáticos no han conseguido reconstruirla. Aquellas páginas desaparecidas de Riemann intrigan tanto como la anotación en la que Fermat afirmaba poseer una demostración de su último teorema.

Algunos apuntes inéditos que sobrevivieron al fuego de la gobernanta reaparecieron al cabo de cincuenta años. Lo más frustrante es que de ellos se deduce que Riemann realmente había demostrado mucho más de lo que publicó. Pero, por desgracia, muchas de las cartas en las que se describían con todo detalle los resultados que Riemann dejaba entender que había comprendido al menos en parte probablemente se perdieron para siempre en el hornillo de una gobernanta demasiado ordenada.