2

LOS ÁTOMOS DE LA ARITMÉTICA

Cuando las cosas se vuelven demasiado complicadas, a veces tiene sentido parar y preguntarse: ¿he planteado la pregunta correcta?

ENRICO BOMBIERI

«Prime Territory», en The Sciences

Dos siglos antes de que la inocentada de Bombieri pusiera en evidencia al mundo de los matemáticos, otro italiano, Giuseppe Piazzi, difundía una noticia igual de apasionante: desde el observatorio astronómico de Palermo, Piazzi había descubierto un nuevo planeta que giraba alrededor del Sol en una órbita entre las de Marte y Júpiter. Ceres, como lo llamaron, era mucho más pequeño que los siete planetas mayores conocidos hasta entonces, pero su descubrimiento, el 1 de enero de 1801, se consideró un maravilloso augurio para el futuro de la ciencia en el nuevo siglo.

El entusiasmo se convirtió en decepción pocas semanas después, cuando el pequeño planeta desapareció de la vista: su órbita estaba conduciéndolo al otro lado del Sol, donde su débil luz terminó ocultada por el deslumbrador brillo solar. Ceres desapareció del cielo nocturno, perdido de nuevo entre la plétora de estrellas del firmamento. Los astrónomos del siglo XIX no disponían de suficientes instrumentos matemáticos para calcular su órbita completa a partir de la breve trayectoria que habían seguido durante las primeras semanas del nuevo siglo. Lo habían perdido, y parecía que no existía ningún modo de prever dónde haría su siguiente aparición.

Sin embargo, casi un año después de desvanecerse el planeta de Pazzi, un alemán de veinticuatro años, natural de Brunswick, anunció que sabía dónde debían buscar los astrónomos el objeto perdido. A falta de previsiones alternativas a su disposición, los astrónomos dirigieron sus telescopios hacia la región del cielo que indicaba el jovencito. Como por milagro, Ceres se encontraba precisamente allí. Esa previsión astronómica sin precedentes no procedía, sin embargo, de la misteriosa magia de un astrólogo: la trayectoria de Ceres había sido calculada por un matemático que había identificado un orden allí donde los demás habían visto simplemente un minúsculo e imprevisible planeta. Carl Friederich Gauss había tomado los escasísimos datos que se habían registrado sobre la trayectoria del planeta y había aplicado un nuevo método de cálculo desarrollado recientemente por él mismo para determinar dónde se encontraría Ceres en cualquier fecha futura.

Gracias al descubrimiento de la trayectoria de Ceres, Gauss se convirtió de inmediato en una estrella de primera magnitud en la comunidad científica. Su gesta fue un símbolo del poder de predicción de las matemáticas en un período, la primera mitad del siglo XIX, en que la ciencia estaba en plena eclosión. Si bien los astrónomos habían descubierto el planeta por casualidad, un matemático había puesto en juego la capacidad analítica necesaria para explicar qué ocurriría a continuación.

A pesar de que el nombre de Gauss todavía era desconocido en la comunidad astronómica, su joven voz ya había dejado una impronta formidable en el mundo matemático. Gauss había conseguido trazar la trayectoria de Ceres, pero su auténtica pasión era la de identificar estructuras regulares en el mundo de los números. Para él, el universo de los números suponía un reto más importante: hallar estructura y orden donde los demás sólo veían caos. Con excesiva frecuencia se usan epítetos como niño prodigio y genio de las matemáticas, pero pocos matemáticos tendrían nada que objetar al hecho de que tales calificativos se atribuyan a Gauss. El simple número de ideas nuevas y descubrimientos que produjo incluso antes de cumplir los veinticinco años parece inexplicable.

Gauss nació en una familia de modestos trabajadores de Brunswick (Alemania) en 1777. A los tres años corregía las cuentas de su padre; a los diecinueve, su descubrimiento de una magnífica construcción geométrica de una figura de 17 lados le convenció de que debía dedicar su vida a las matemáticas. Antes que él, los antiguos griegos habían demostrado que era posible construir un pentágono perfecto usando sólo regla y compás. Desde entonces nadie había sido capaz de demostrar cómo utilizar aquellos simples instrumentos para construir otros polígonos perfectos, llamados polígonos regulares, con un número primo de lados. La excitación de Gauss cuando descubrió la manera de construir aquella figura perfecta de 17 lados lo empujó a dar comienzo a un diario matemático que mantuvo durante los siguientes dieciocho años. Este diario, que quedó en manos de su familia hasta 1898, se convirtió en uno de los documentos más importantes de la historia de las matemáticas, entre otras razones porque confirmó que Gauss había probado, sin publicarlos, muchos resultados que otros matemáticos intentaron demostrar hasta bien entrado el siglo XIX.

Entre las primeras contribuciones matemáticas de Gauss, una de las principales fue la invención de la calculadora de reloj. No se trataba de una máquina material, sino de una idea que abría la posibilidad de hacer matemáticas con números que hasta aquel momento habían sido considerados inabordables. La calculadora de reloj se basa en el mismo principio que los relojes convencionales. Si su reloj marca las 9 y le añade 4 horas, la manecilla se colocará sobre la una. De igual manera, la calculadora de reloj de Gauss da 1 como resultado de 9 + 4. Si Gauss deseaba realizar un cálculo más complicado, como por ejemplo 7 × 7, la calculadora de reloj daba como resultado el resto que se obtiene al dividir 49 (es decir, 7 × 7) entre 12. El resultado es otra vez 1.

Sin embargo, la potencia y velocidad de la calculadora de reloj comenzaba a ponerse de manifiesto cuando Gauss quería calcular 7 × 7 × 7. En lugar de multiplicar otra vez 49 por 7, Gauss podía limitarse a multiplicar 7 por el último resultado obtenido, es decir 1, para obtener la respuesta, que es 7. De esta forma, sin tener que calcular 7 × 7 × 7 —que da 343— podía saber sin gran esfuerzo que aquel resultado, al dividirlo por 12, daba como resto 7. La calculadora demostró toda su potencia cuando Gauss empezó a utilizarla con grandes números, que sobrepasaban sus propias capacidades de cálculo. Incluso sin tener ni idea del valor de 799, su calculadora de reloj le decía que ese número dividido entre 12 daría 7 como resto.

Gauss se dio cuenta de que en los relojes de 12 horas no había nada de especial. Por ello introdujo la idea de una aritmética del reloj —o aritmética modular, como se llama a veces— basada en relojes con cualquier número de horas. Por ejemplo, si insertamos el número 11 en una calculadora de reloj de 4 horas, obtendremos 3 como respuesta ya que al dividir 11 entre 4 el resto que se obtiene es 3. Los estudios de Gauss sobre este nuevo tipo de aritmética revolucionaron las matemáticas de principios del siglo XIX. Así como el telescopio había permitido a los astrónomos vislumbrar nuevos mundos, la invención de la calculadora de reloj ayudó a los matemáticos a descubrir en el universo de los números estructuras que habían estado ocultas durante generaciones. Todavía hoy la aritmética modular de Gauss es fundamental para la seguridad en Internet, donde se utilizan relojes con cuadrantes divididos en más horas que átomos existen en el universo observable.

Gauss, hijo de padres pobres, tuvo la suerte de poder sacar provecho de su talento matemático. Había nacido en una época en que las matemáticas eran todavía una actividad privilegiada, financiada por cortesanos y mecenas, o practicada a ratos libres por aficionados como Pierre de Fermat. El protector de Gauss era Carl Wilhelm Ferdinand, duque de Brunswick. La familia de Ferdinand siempre había apoyado la cultura y la economía del ducado. Su padre había sido el fundador del Collegium Carolinum, una de las universidades técnicas más antiguas de Alemania. Ferdinand, imbuido del ethos paterno según el cual la instrucción era la base de los éxitos comerciales de Brunswick, estaba siempre al acecho de talentos dignos de apoyo. Coincidió por primera vez con Gauss en 1791, y quedó tan impresionado por sus capacidades que se ofreció a financiar los estudios de aquel joven en el Collegium Carolinum para que pudiera así desarrollar su indiscutible potencial.

Lleno de gratitud, Gauss dedicó su primer libro al duque en 1801. Aquel libro, titulado Disquisitiones arithmeticae, recogía muchos de los descubrimientos sobre las propiedades de los números que Gauss había anotado en sus diarios. Todo el mundo reconoce que no se trata de un simple compendio de observaciones sobre los números, sino que supone el anuncio del nacimiento de la teoría de los números como disciplina independiente. Su publicación hizo de la teoría de los números «la reina de las matemáticas», como siempre le gustó a Gauss definirla. Y si esa teoría era una reina, las joyas engarzadas en su corona eran los números primos, los números que habían fascinado y atormentado a generaciones enteras de matemáticos.

La prueba más antigua del conocimiento de los humanos sobre las propiedades especiales de los números primos es un hueso que data del 6500 a. C. El hueso, llamado de Ishango, se descubrió en 1960 en las montañas de Africa ecuatorial. Tiene grabadas tres columnas con cuatro series de muescas. En una de las columnas encontramos 11, 13, 17, 19 muescas, es decir, la lista de los números primos comprendidos entre 10 y 20. También las otras columnas parecen tener significados de naturaleza matemática. No está claro si este hueso, que se conserva en el Instituto Real de las Ciencias Naturales de Bruselas, representa realmente uno de los primeros intentos que hicieron nuestros antepasados para entender los números primos o si se trata de una selección de números que resultan ser primos por casualidad. Sin embargo, no podemos excluir la posibilidad de que se trate de la primera incursión humana en los números primos.

Algunos sostienen que la civilización china fue la primera en oír el tamtam de los números primos. Los chinos atribuían características femeninas a los números pares y masculinas a los impares, pero además de esa nítida separación, consideraban afeminados los impares que no son primos, como el 15. Hay pruebas de que, antes del 1000 a. C., los chinos habían ideado un método muy concreto para comprender qué hace especiales a los números primos entre todos los números. Si tomamos 15 alubias podemos distribuirlas en un rectángulo perfecto compuesto por tres columnas de cinco alubias. En cambio, si tomamos 17 alubias sólo podremos construir un rectángulo de una fila de 17 alubias. Para los chinos, los números primos eran números viriles que resistían cualquier intento de descomponerlos en producto de números menores.

Si bien a los antiguos griegos también les gustaba atribuir cualidades sexuales a los números, fueron ellos los que descubrieron, en el siglo IV a. C., la fuerza real de los números primos como elementos básicos para la construcción de todos los demás. Comprendieron que todo número puede ser construido multiplicando entre sí números primos. Aunque se equivocaron al creer que el fuego, el aire, el agua y la tierra constituían la base de la materia, acertaron al identificar los átomos de la aritmética. Durante siglos los químicos intentaron en vano identificar los elementos constitutivos básicos de su disciplina, hasta que la búsqueda iniciada por los antiguos griegos culminó en la tabla periódica de los elementos de Dimitri Mendeleyev. En cambio, a pesar de disfrutar de la ventaja de la identificación por los griegos de los elementos básicos de la aritmética, los matemáticos todavía se debaten en sus intentos por descubrir su tabla de los números primos.

Hasta donde sabemos fue Eratóstenes, gran bibliotecario del importantísimo centro cultural de la Grecia antigua que fue Alejandría, el primero en producir tablas de números primos. Como una especie de antiguo Mendeleyev de las matemáticas, en el siglo III a. C., Eratóstenes ideó un procedimiento razonablemente sencillo para determinar qué números eran primos entre los comprendidos, por ejemplo, entre 1 y 1.000. Para empezar, escribía la secuencia entera de números; a continuación tomaba el menor primo, es decir 2, y a partir de él tachaba de la lista un número de cada dos: como son divisibles entre 2, todos los tachados no son primos. Entonces pasaba al siguiente número no tachado, es decir 3, y a partir de él tachaba de la lista un número de cada tres: como todos esos números son divisibles entre 3, no son primos. Continuaba el proceso tomando el siguiente número no tachado y suprimiendo de la lista todos sus múltiplos. Con este proceso sistemático construyó tablas de números primos, y este método recibió el nombre de criba de Eratóstenes: cada nuevo número primo crea una «criba», un cedazo que Eratóstenes utiliza para eliminar una parte de los números que no son primos. En cada nueva fase del proceso las dimensiones de la malla cambian y, cuando Eratóstenes llega a 1.000, los únicos números supervivientes del proceso de selección son los primos.

Cuando Gauss era un jovencito recibió como regalo un libro que contenía una lista de varios millares de números primos que probablemente se había construido utilizando los antiguos cedazos numéricos. Para Gauss, aquellos números aparecían desordenadamente. Predecir la órbita elíptica de Ceres había sido ya suficientemente difícil, pero el reto de los números primos tenía más en común con la empresa casi imposible de analizar la rotación de cuerpos celestes del tipo de Hiperión, uno de los satélites de Saturno, que tiene forma de hamburguesa. A diferencia de nuestra Luna, Hiperión no es en absoluto estable desde el punto de vista gravitacional, y por esa razón gira caóticamente sobre sí mismo. De todos modos, por más que la rotación de Hiperión o las órbitas de algunos asteroides sean caóticas, por lo menos sabemos que su comportamiento viene determinado por la atracción gravitacional del Sol y de los planetas; en cuanto los números primos, no tenemos ni la más ligera idea de qué fuerzas los atraen o los repelen. Cuando escrutaba sus tablas numéricas, Gauss no conseguía determinar ninguna regla que le indicara cuánto tenía que saltar para hallar el siguiente número primo. ¿Podría ser que los matemáticos debieran resignarse a aceptar que esos números han sido elegidos al azar por la naturaleza, que hubieran sido fijados como estrellas en el cielo nocturno, sin pies ni cabeza? Gauss no podía aceptar semejante idea: la motivación primaria en la vida de un matemático es determinar estructuras ordenadas, descubrir y explicar las reglas que están en los cimientos de la naturaleza, prever qué sucederá a continuación.

LA BÚSQUEDA DE MODELOS

La aventura de la búsqueda de los números primos por parte de los matemáticos está perfectamente expresada en uno de los problemas que todos hemos resuelto en la escuela: dada una sucesión de números, determinar el siguiente elemento. Veamos, a título de ejemplo, tres de estos problemas:

1, 3, 6, 10, 15, …

1, 1, 2, 3, 5, 8, 13, …

1, 2, 3, 5, 7, 11, 15, 22, 30, …

Muchas preguntas asaltan la mente matemática ante listas así: ¿cuál es la regla que está detrás de la creación de cada sucesión? ¿Es posible predecir el siguiente elemento? ¿Se puede determinar una fórmula que nos permita calcular el centésimo término de la sucesión sin que sea necesario calcular los 99 anteriores?

La primera de las tres sucesiones anteriores está formada por los llamados números triangulares. El décimo número de la lista es el número de alubias necesarias para construir un triángulo de diez filas que comience con una fila de una única alubia y que termine con una fila de diez alubias. Por esta razón, el enésimo número triangular se obtiene simplemente sumando los primeros N números: 1 + 2 + 3 + … + N. Si deseamos determinar el centésimo número triangular tenemos ya un método largo y laborioso: atacar frontalmente el problema sumando los 100 primeros números de la sucesión.

El maestro de la escuela a la que asistía Gauss tenía por costumbre poner este problema a sus alumnos, con la seguridad de que tardarían en resolverlo el tiempo suficiente para que él pudiera echar una cabezadita. A medida que terminaban el problema, los alumnos se levantaban y ponían su pizarra en una pila ante el maestro. Mientras los demás alumnos apenas se habían puesto a la tarea, en pocos segundos Gauss, con diez años, había dejado ya su pizarra sobre el escritorio del maestro. Furioso, éste creyó que el joven Gauss estaba siendo insolente, pero cuando miró la pizarra, vio que la respuesta —5.050— estaba allí, sin un solo paso de cálculo. El maestro pensó que Gauss había hecho trampa de un modo u otro, pero el alumno explicó que bastaba con insertar N = 100 en la fórmula 1/2 × (N + 1) × N, para obtener el centésimo término de la sucesión sin tener que calcular ningún otro término.

Gauss no había atacado el problema directamente, sino que se había aproximado a él lateralmente. El mejor modo de descubrir cuántas alubias hay en un triángulo de 100 filas, razonó, era tomar otro triángulo igual, darle la vuelta y ponerlo al lado del primero. Ahora Gauss tenía un rectángulo de 100 filas, de 100 alubias cada una, y calcular el número total de alubias de este rectángulo formado por dos triángulos era muy fácil: el total de alubias es 101 × 100 = 10.100. Por tanto, un único triángulo contenía la mitad de ese número de alubias, es decir, 1/2 × 101 × 100 = 5.050. Además, el número 100 no tiene nada de especial: si lo sustituimos por N obtendremos la fórmula 1/2 × (N + 1) × N.

La siguiente figura ilustra el razonamiento en el caso de un triángulo de 10 filas en lugar de 100.

Una ilustración del método usado por Gauss para demostrar su fórmula para el cálculo de los números triangulares.

En lugar de atacar frontalmente el problema que su maestro le proponía, Gauss había encontrado un punto de vista distinto. El pensamiento lateral, la capacidad de observar el problema desde todos los ángulos posibles para verlo desde una nueva perspectiva, es una cuestión de inmensa importancia para el descubrimiento matemático y supone una de las razones por las que las personas capaces de razonar como el joven Gauss son buenos matemáticos.

La segunda de las sucesiones que hemos propuesto, 1, 1, 2, 3, 5, 8, 13, …, es la de los llamados números de Fibonacci. Para construirla basta calcular cada número sumando los dos inmediatamente anteriores. Por ejemplo, 13 = 5 + 8. Leonardo Fibonacci, matemático pisano del siglo XIII, dio con ella al estudiar los hábitos reproductores de los conejos. Fibonacci intentó divulgar los descubrimientos de los matemáticos árabes en un intento fracasado de sacar las matemáticas europeas de los oscuros siglos de la Alta Edad Media.

Sin embargo, fueron los conejos los que le confirieron la inmortalidad en el mundo matemático. Según su modelo de reproducción, cada nueva estación tendremos un número de parejas de conejos que siguen una pauta regular. Este esquema está basado en dos reglas: cada pareja madura de conejos producirá una nueva pareja de conejos por estación, y cada nueva pareja necesitará una estación para llegar a la madurez sexual.

Pero los números de Fibonacci no sólo gobiernan el mundo de los conejos. Esta sucesión aparece en la Naturaleza de mil maneras distintas. El número de pétalos de una flor es siempre un número de Fibonacci, y también el número de espirales de una piña de abeto. Y el crecimiento de una concha marina a lo largo del tiempo sigue la progresión de los números de Fibonacci.

¿Existe una fórmula rápida que, como la de Gauss para los números triangulares, permita determinar el centésimo número de Fibonacci? También en este caso, la primera impresión es que tendremos que calcular los 99 términos anteriores, ya que para determinar el centésimo término necesitamos conocer el nonagésimo octavo y el nonagésimo noveno. ¿Puede ser que exista una fórmula que nos determine este centésimo término insertando simplemente el número 100? Tal fórmula existe, pero su determinación es mucho más complicada que la regla que nos permite determinar esos otros números.

La fórmula para generar los números de Fibonacci se basa en un número especial llamado número de oro o proporción áurea, un número que empieza por 1,61803… Igual que π, la proporción áurea es un número cuya expresión decimal no tiene fin, no manifiesta ninguna regularidad y, sin embargo, encierra las que a lo largo de los siglos han sido consideradas como las proporciones perfectas. Si examinamos los lienzos que se exponen en el Louvre o en la Tate Gallery, descubriremos que con mucha frecuencia el artista ha elegido un rectángulo cuyos lados están en la proporción de 1 a 1,61803. Además, los experimentos revelan que entre la altura de una persona y la distancia que separa sus pies del ombligo se conserva esa misma proporción numérica. La aparición de la proporción áurea en la naturaleza tiene algo de misterioso. El enésimo número de Fibonacci puede expresarse mediante una fórmula construida a partir de la enésima potencia de la proporción áurea.

Dejaremos la tercera sucesión numérica —1, 2, 3, 5, 7, 11, 15, 22, 30, …— como un reto estimulante sobre el cual volveremos más adelante. Sus propiedades contribuyeron a consolidar la fama de uno de los personajes más fascinantes de las matemáticas del siglo XX: Srinivasa Ramanujan, que poseía una extraordinaria habilidad para descubrir nuevas estructuras y fórmulas en zonas de las matemáticas en las que otros se habían encallado.

En la Naturaleza no sólo se encuentran los números de Fibonacci: el reino animal también conoce los números primos. Existen dos especies de cigarras llamadas Magicicada septendecim y Magicicada tredecim que viven a menudo en el mismo medio. Tienen ciclos de vida de 17 y 13 años respectivamente. Durante todos esos años se alimentan de la savia de las raíces de los árboles. Luego, en el último año del ciclo, se metamorfosean de crisálidas en adultos completamente formados y salen del suelo en masa. Asistimos a un acontecimiento extraordinario cuando, cada 17 años, los ejemplares de Magicicada septendecim se apoderan del bosque en una sola noche. Entonan su potente canto, se aparean, se alimentan, ponen sus huevos, y al cabo de seis semanas, mueren. El bosque vuelve al silencio durante otros 17 años. Pero ¿por qué esas dos especies han elegido como duración de su vida un número primo de años?

Hay diversas explicaciones posibles; como las dos especies han desarrollado ciclos de vida que duran un número primo de años, es raro que aparezcan el mismo año. En efecto, ambas especies deberán compartir el bosque solamente una vez cada 13 x 17 = 221 años. Imaginemos lo que sucedería en el caso de elegir ciclos de años no primos, por ejemplo 18 y 12. En el mismo período de 221 años se habrían encontrado en sincronía seis veces, exactamente en los años 36, 72, 108, 144, 180 y 216, es decir, en los años compuestos de los números primos que son divisores de 18 y de 12. Los números primos 13 y 17, por tanto, evitaban a las dos especies de cigarra una competencia excesiva.

La aparición de un hongo que se presentaba simultáneamente con las cigarras nos ofrece otra posible explicación. Para las cigarras aquel hongo era letal, y por esa razón desarrollaron un ciclo de vida que les permitiera evitarlo. Al pasar a un ciclo de 17 o 13 años, las cigarras se han asegurado de aparecer en el mismo año que el hongo con mucha menor frecuencia de la que se daría si sus ciclos de vida durasen un número no primo de años. Para las cigarras, los números primos no eran una simple curiosidad abstracta, sino la clave de la supervivencia.

Por más que la evolución hubiere descubierto algunos números primos a las cigarras, los matemáticos necesitaban un método más sistemático para obtenerlos. Entre todos los enigmas numéricos, la lista de los números primos era el lugar donde, más que en ningún otro, los matemáticos buscaban una fórmula secreta. Sin embargo, debemos ser cautos al pensar que en el mundo matemático hay estructura y orden en todos los rincones. A lo largo de la historia han sido muchos los que se han perdido en el vano intento de determinar una estructura escondida en la expresión decimal de π, uno de los números más importantes de las matemáticas. Precisamente ha sido su importancia la que ha alimentado intentos desesperados por descubrir mensajes bajo su caótica expresión decimal. Si una vida alienígena utilizaba los números primos para atraer la atención de Ellie Arroway al principio de la novela de Carl Sagan Contacto, el mensaje último del libro está escondido en las profundidades de la sucesión decimal de π, en la que repentinamente aparece una serie de ceros y de unos definiendo unas pautas que revelarían «la existencia de una inteligencia anterior al Universo». En la película π, Darren Aronofsky también juega con este célebre icono cultural.

A modo de advertencia para aquellos que se sientan fascinados ante la idea de descubrir mensajes escondidos en números como π, los matemáticos han conseguido demostrar que la mayoría de los números decimales esconden, en alguna parte de sus expresiones decimales infinitas, cualquier secuencia de números que deseemos. Por ello, existe una elevada probabilidad de que π contenga el programa informático para escribir el libro del Génesis si lo buscamos con paciencia suficiente. En resumen, para buscar estructuras escondidas en las matemáticas es preciso determinar el punto de vista correcto; su importancia se hace evidente cuando se examina desde perspectivas distintas. Lo mismo ocurría con los números primos. Armado con sus tablas de números primos y con su talento para el pensamiento lateral, Gauss estaba preparado para determinar el ángulo y la perspectiva correctos desde donde examinar los números primos de forma que, tras su fachada caótica, pudiera surgir un orden antes oculto.

LA DEMOSTRACIÓN, GUÍA DE VIAJE DEL MATEMÁTICO

Si una parte del trabajo de los matemáticos consiste en hallar esquemas y estructuras en el mundo de las matemáticas, la otra parte consiste en demostrar que cierta estructura será siempre válida. El concepto de demostración marca quizás el auténtico principio de las matemáticas como arte de la deducción en lugar de la simple observación de los números; el punto en el cual la alquimia matemática cede el puesto a la química matemática. Los antiguos griegos fueron los primeros en comprender que era posible demostrar que ciertos hechos siguen siendo ciertos por muy lejos que contemos, por muchos ejemplos que examinemos.

El proceso creativo matemático empieza con una suposición. A menudo ésta emerge como resultado de la intuición que el matemático ha desarrollado durante años de exploración del mundo de las matemáticas, cultivando una sensibilidad como consecuencia de sus idas y venidas. Quizá simples experimentos numéricos revelen una regla que se suponga válida para siempre: en el siglo XVII, por ejemplo, los matemáticos descubrieron lo que creyeron un método seguro para verificar la primalidad de un número N: elevar 2 a la N y dividir el resultado por N. Si el resto es 2, entonces N sería un número primo. En términos de la calculadora de reloj de Gauss, aquellos matemáticos querían calcular 2N con un reloj de N horas. El reto consistía en demostrar si tal suposición era cierta o falsa. Estas suposiciones o predicciones son lo que los matemáticos denominan conjeturas o hipótesis.

Una suposición matemática recibe el nombre de teorema sólo después de haber sido demostrada; este paso de conjetura o hipótesis a teorema es lo que indica la madurez matemática de un enunciado. Fermat legó a las matemáticas una montaña de predicciones: generaciones enteras de matemáticos se han labrado un nombre demostrando la verdad o la falsedad de las hipótesis de Fermat. Ciertamente, el último teorema de Fermat siempre ha recibido el nombre de teorema y no de conjetura, pero se trata de un caso insólito, que probablemente se debe a que en sus notas garabateadas en la copia de la Arithmetica de Diofanto, Fermat afirmaba poseer una maravillosa demostración que desgraciadamente era demasiado larga para caber en el margen de la página. Fermat nunca transcribió en parte alguna su presunta demostración, y esos comentarios al margen se convirtieron en la mayor broma matemática de la historia. Hasta que Andrew Wiles proporcionó una argumentación, una demostración del porqué de la inexistencia de soluciones interesantes de la ecuación de Fermat, el último teorema siguió siendo una mera hipótesis, simplemente un buen deseo.

La anécdota escolar de Gauss resume perfectamente el paso de la suposición al teorema mediante la demostración. Gauss concibió una fórmula que, según su previsión, podía producir cualquier número triangular. ¿Cómo podía tener la seguridad de que la fórmula siempre funcionaría? Evidentemente, puesto que la sucesión tiene una longitud infinita, no podía verificar la fórmula sobre cada número de la sucesión para comprobar la corrección del resultado. Por tanto, recurrió a la potente arma de la demostración matemática. Su método de combinar dos triángulos para construir un rectángulo aseguraba que la fórmula funcionaría siempre sin necesidad de hacer un número infinito de cálculos. Por el contrario, el método ideado en el siglo XVII para verificar la primalidad con base en el cálculo de 2N fue rechazado por el tribunal de las matemáticas en 1819: el método funciona correctamente hasta 340, pero a continuación determina 341 como número primo. Ahí es donde falla la verificación, ya que 341 = 11 × 31. Esta excepción no pudo ser descubierta hasta que fue posible usar una calculadora de reloj de Gauss con 341 horas para simplificar el análisis de un número como 2341, que en una calculadora convencional tiene más de 100 cifras.

El matemático de Cambridge G. H. Hardy, autor de la Apología de un matemático, solía comparar el proceso de descubrimiento y demostración matemáticos con el trabajo de un cartógrafo que estudia paisajes lejanos: «Siempre he pensado en el matemático en primer lugar como un observador: un hombre que escruta una remota cadena montañosa y anota sus observaciones». Cuando el matemático ha observado la montaña a distancia, su siguiente labor consiste en explicar a los demás cómo alcanzarla.

Se comienza en un lugar donde el paisaje nos es familiar y no hay sorpresas que temer; en esa región conocida se encuentran los axiomas de las matemáticas, las verdades numéricas evidentes, junto con las proposiciones que ya han sido demostradas. Una demostración es como un sendero que, a través del paisaje matemático, conduce desde ese territorio familiar hasta cumbres remotas. El avance está ligado al respeto de las reglas de la deducción que, al igual que los movimientos permitidos a una pieza de ajedrez, prescriben qué pasos está permitido dar en ese mundo. A veces se llega a lo que parece un punto muerto, lo que obliga a uno de los característicos pasos laterales, cambios de dirección o incluso retrocesos para superar el obstáculo. Quizá para continuar el ascenso es necesario esperar a que se inventen nuevos instrumentos, como las calculadoras de reloj de Gauss.

En palabras de Hardy, el observador matemático

Ve nítidamente A, mientras que de B sólo consigue breves visiones momentáneas. Finalmente elige una cresta que parte de A y, siguiéndola hasta el final, descubre que culmina en B. Si quiere que los demás lo vean lo indica, o bien directamente o bien a través de la cadena de cumbres que lo han conducido a él mismo a reconocerlo. Cuando su discípulo también lo ve, la búsqueda, la argumentación, la demostración ha terminado.

La demostración es la historia del viaje y el mapa que registra sus coordenadas: es el cuaderno de bitácora del matemático. Los que lean la demostración experimentarán la misma emergencia de la comprensión que experimentó su autor; no sólo verán finalmente la ruta que conduce a la cumbre, sino que además comprenderán que ningún futuro desarrollo podrá comprometer el nuevo recorrido. Muy a menudo una demostración no pretende poner todos los puntos sobre las íes: se trata de una reconstrucción del viaje y no necesariamente la reconstrucción de cada uno de sus pasos. Las argumentaciones que los matemáticos dan como demostraciones pretenden entusiasmar al lector. Hardy acostumbraba a describir las argumentaciones que damos los matemáticos como «cháchara, florituras retóricas construidas para golpear la psicología, figuras en la pizarra durante las clases, instrumentos para estimular la imaginación de los alumnos».

Los matemáticos están obsesionados con la demostración, y la simple prueba experimental de una hipótesis no basta para satisfacerlos. A menudo esta actitud provoca estupor e incluso burlas en otras disciplinas científicas. La conjetura de Goldbach ha sido verificada para todos los números hasta 400.000.000.000.000, pero no está aceptada como teorema; en casi cualquier otra disciplina científica estarían encantados de considerar estos aplastantes datos numéricos como argumento más que convincente y pasarían a otra cosa: si un día aparecieran nuevos datos que obligaran a reconsiderar aquel canon matemático, pues adelante. Si para las demás ciencias basta con eso, ¿por qué no para las matemáticas?

Muchísimos matemáticos se estremecerían sólo con plantearse tal herejía. Dicho en palabras del matemático francés André Weil: «el rigor es para los matemáticos lo que la moral es para los humanos». En parte ello se debe a que, en matemáticas, a menudo los indicios son difíciles de valorar. Más que cualquier otra parte de las matemáticas, los números primos se resisten a revelar su auténtica naturaleza. Incluso Gauss se dejó llevar por una corazonada ante la enorme cantidad de datos que había obtenido sobre los números primos, pero un posterior análisis teórico lo despertó de su error. Por esta razón es esencial la demostración: las primeras impresiones pueden ser engañosas. Mientras que el ethos de cualquier otra ciencia establece que las pruebas experimentales son lo único realmente fiable, los matemáticos han aprendido a no fiarse nunca de los datos numéricos sin una demostración.

En cierto sentido, la naturaleza etérea de las matemáticas como disciplina de la mente hace al matemático más propenso a proporcionar demostraciones para dar una sensación de realidad a ese mundo. Los químicos pueden estudiar tranquilamente la molécula real de futboleno, la secuencia del genoma supone un problema concreto para el genetista, incluso los físicos pueden comprobar la realidad de las minúsculas partículas subatómicas o de un remoto agujero negro; en cambio, el matemático se encuentra en la tesitura de tener que comprender objetos que no poseen ninguna realidad física evidente: formas geométricas en ocho dimensiones o números primos tan grandes que superan el número de átomos del universo. Ante tan monstruosa lista de conceptos abstractos la mente puede hacer jugarretas extrañas, y sin una demostración se correría el riesgo de crear auténticos castillos de naipes. En las demás disciplinas científicas la observación y el experimento sirven para validar la realidad de un objeto de estudio, pero si los demás científicos pueden usar los ojos para ver esa realidad física, los matemáticos tienen que confiar en la demostración matemática, como si de un sexto sentido se tratara, para gestionar su invisible objeto de estudio.

Intentar demostrar pautas que ya han sido identificadas es, además, un gran catalizador para ulteriores descubrimientos matemáticos. Muchos matemáticos opinan que sería mejor si los problemas de ese tipo no se resolvieran nunca, habida cuenta de las nuevas maravillas matemáticas que se encuentran por el camino. Tales problemas le ofrecen al matemático pionero la posibilidad de explorar territorios cuya existencia jamás habría imaginado cuando empezó su travesía.

Pero quizás el argumento más convincente para justificar por qué la cultura matemática da tanto valor al hecho de demostrar la verdad de un aserto sería que, a diferencia del resto de las ciencias, puede permitirse el lujo de hacerlo. ¿En cuántas disciplinas existe algo comparable a la posibilidad de afirmar que la fórmula de Gauss para los números triangulares no dejará nunca de dar la respuesta correcta? Es posible que las matemáticas sean una materia etérea, circunscrita a la mente, pero su falta de realidad tangible está más que compensada por la certeza que proporcionan las demostraciones.

A diferencia de lo que sucede en otras ciencias cuyo modelo del mundo puede desmoronarse en una generación, la demostración en matemáticas nos permite establecer con certeza absoluta que los hechos relativos a los números primos no cambiarán a la luz de futuros descubrimientos. Las matemáticas son una pirámide en la que cada generación edifica sobre lo realizado por la que la precedió sin necesidad de temer ningún hundimiento. Es esta indestructibilidad lo que hace tan apasionante el hecho de ser matemático: para ninguna otra ciencia se puede afirmar que lo que establecieron los antiguos griegos continúa siendo cierto. Hoy en día podemos reírnos de su idea de la materia compuesta por fuego, aire, agua y tierra; y quizá las futuras generaciones contemplarán la lista de 109 átomos de los que consta la tabla periódica de los elementos de Mendeleyev con el mismo desprecio con que nosotros consideramos el modelo del mundo químico que elaboraron los griegos. En cambio, todo matemático empieza su formación aprendiendo lo que los antiguos griegos demostraron sobre los números primos.

Los miembros de otros departamentos universitarios envidian la certeza que la demostración da al matemático al menos tanto como se burlan de ella. La estabilidad que crea la demostración matemática conduce a la auténtica inmortalidad citada por Hardy; a menudo es ésa la razón por la cual personas que están rodeadas de un mundo de inseguridades se sienten atraídas por esta disciplina. En muchos casos el mundo matemático ha ofrecido refugio a jóvenes mentes deseosas de evadirse de un mundo real que no conseguían afrontar.

Nuestra fe en la indestructibilidad de una demostración se refleja en las reglas que gobiernan la asignación de los premios para quien resuelva los Problemas del Milenio de Clay: el premio monetario se ingresa al cabo de dos años de la publicación de la demostración, y una vez que ésta ha recibido la aceptación general de la comunidad matemática. Naturalmente, ello no garantiza completamente que la demostración esté libre de errores, pero reconoce un hecho que todos aceptamos: es posible determinar la existencia de errores en una demostración sin tener que esperar durante años a que aparezcan nuevas pruebas. Si hay un error deberá estar ahí, en la página que tenemos delante.

¿Son arrogantes los matemáticos por opinar que tienen acceso a demostraciones absolutas? ¿Puede sostenerse que la demostración de que cualquier número puede expresarse como producto de números primos tiene la misma probabilidad de ser refutada que la física newtoniana o la teoría de la indivisibilidad del átomo? La mayoría de los matemáticos creen que las investigaciones futuras nunca supondrán la destrucción de los axiomas relativos a los números, que se consideran verdades incontestables. Según ellos, si se aplican correctamente las leyes de la lógica para edificar sobre aquellas bases, se producirán demostraciones de los asertos sobre números que nunca serán invalidadas por nuevas intuiciones. Es posible que se trate de una idea ingenua desde el punto de vista filosófico, pero ciertamente se trata del principio fundamental de la secta de los matemáticos.

Mencionemos además la excitación emotiva que se adueña del matemático al trazar nuevos recorridos en el mapa de las matemáticas: hay una increíble sensación de euforia al descubrir una vía para alcanzar la cima de una montaña lejana que ha sido atisbada desde hace generaciones. Es como crear una historia maravillosa o una pieza musical que transporta a la mente desde lo familiar hasta lo desconocido. Es grandioso ser el primero en entrever la posible existencia de una montaña remota como el último teorema de Fermat o la hipótesis de Riemann, pero no se puede comparar con la satisfacción de explorar las tierras que nos conducen a tal fin. Quizá los que más adelante recorran la pista trazada por aquel pionero experimentarán en parte el sentido de elevación espiritual que acompañó el primer momento de epifanía en el descubrimiento de una nueva demostración. Esa es la razón por la cual los matemáticos siguen valorando la búsqueda de la demostración aunque estén absolutamente convencidos de la certeza de cosas como la hipótesis de Riemann: en matemáticas, el viaje es tan importante como la conquista de la meta.

Las matemáticas ¿son un acto de creación o de descubrimiento? Muchos matemáticos oscilan entre la sensación de ser creativos y la de descubrir verdades científicas absolutas. A menudo las ideas matemáticas pueden parecer muy personales y ligadas a la mente creativa que las concibió; sin embargo, esta impresión tiene su contrapeso en la convicción de que la naturaleza lógica de la disciplina implica que todos los matemáticos viven un mismo mundo matemático, un mundo lleno de verdades inmutables. Esas verdades sólo esperan a ser desenterradas, y no existe ningún pensamiento creativo que pueda plantearse la discusión sobre su existencia. Hardy expresa perfectamente esta tensión entre creación y descubrimiento con la que luchan los matemáticos: «Defiendo que la realidad matemática se sitúa fuera de nosotros, que nuestra función es descubrirla u observarla y que los teoremas que demostramos y describimos con grandilocuencia como nuestras “creaciones” no son más que las notas de nuestras observaciones». Pero en otros momentos opta por una descripción más artística del proceso de hacer matemáticas: «Las matemáticas no son una disciplina contemplativa, sino creativa», escribe en Apología de un matemático, un libro que Graham Greene colocó junto a los diarios de Henry James como los mejores ejemplos de lo que significa ser un artista creativo.

Por más que los números primos, junto con otros elementos de las matemáticas, sobrepasen las barreras culturales, mucha matemática es creativa y producto de la psique humana. Ocurre a menudo que las demostraciones, las historias que cuentan los matemáticos sobre su disciplina, pueden ser narradas de diversas maneras: probablemente la demostración de Wiles del último teorema de Fermat resultará a oídos extraños tan misteriosa como el ciclo del Anillo de Wagner. Las matemáticas son un arte creativo sujeto a reglas rígidas, como escribir poesía o tocar blues: los matemáticos están limitados por los pasos lógicos que tienen que seguir para dar forma a sus demostraciones; pero a pesar de todo, en el interior de esas rígidas reglas aún existe una gran libertad. De hecho, la belleza de crear obedeciendo a un sistema de reglas está en que nos vemos empujados hacia nuevas direcciones y hallamos cosas que nunca esperaríamos descubrir si no nos hubiéramos dejado llevar. Los números primos son como las notas de una escala musical, y cada cultura ha elegido tocar esas notas de una determinada manera, revelando más de lo que era de esperar sobre influencias sociales e históricas. La historia de los números primos es un espejo social como lo es el descubrimiento de verdades eternas. El floreciente amor por las máquinas en los siglos XVII y XVIII se reflejó en un enfoque muy práctico, experimental, del estudio de los números primos; en contraste, la Europa de las revoluciones produjo una atmósfera que favoreció la aplicación de ideas abstractas, nuevas y audaces, en su análisis. La elección sobre cómo narrar el viaje es específica de cada cultura particular.

LAS FÁBULAS DE EUCLIDES

Los antiguos griegos fueron los primeros en narrar esas historias. Comprendieron el poder de las demostraciones en la búsqueda de los caminos definitivos que en el mundo matemático conducen a las montañas. Una vez coronadas, se desvanece para siempre el miedo de que aquellas montañas sean un remoto espejismo matemático. Por ejemplo, ¿cómo podemos estar realmente seguros de la inexistencia de ciertos números anómalos que no puedan construirse multiplicando números primos? Los antiguos griegos concibieron un razonamiento que no habría de permitir dudas ni en sus mentes ni en las de generaciones posteriores sobre la posibilidad de que tales números aparecieran jamás.

A menudo los matemáticos descubren una demostración aplicando a un caso particular la teoría general que intentan demostrar, e intentando después comprender por qué la teoría es válida en ese caso: tienen la esperanza de que la argumentación o la receta que ha funcionado una vez funcione siempre, con independencia del caso particular que hayan elegido para ser analizado. Por ejemplo, para demostrar que cualquier número es producto de números primos podríamos empezar por considerar el caso particular del número 140. Supongamos que hemos comprobado que cualquier número menor que 140 o bien es primo o bien es producto de números primos: ¿qué podemos decir del número 140? ¿Es posible que se trate de un número anómalo, que no sea ni primo ni producto de primos? Empezaremos por comprobar que no se trata de un número primo. ¿Cómo? Demostrando que puede ser expresado como producto de dos números menores que él. Por ejemplo, es igual a 4 × 35. Ya hemos conseguido lo más importante al establecer que 4 y 35, números inferiores a la presunta anomalía, 140, pueden escribirse como producto de números primos: 4 es igual a 2 × 2 y 35 es igual a 5 × 7. Uniendo esas informaciones verificamos que efectivamente 140 es producto de 2 × 2 × 5 × 7. Por tanto, en definitiva, 140 no es un número anómalo.

Los antiguos griegos hallaron la manera de traducir este ejemplo particular en un razonamiento que es de aplicación general a todos los números. Lo más curioso es que su razonamiento empieza por pedirnos que imaginemos que existen números anómalos, números que ni son primos ni pueden escribirse como producto de primos. Si esos números anómalos existen, entonces cuando revisemos la secuencia completa de los números daremos antes o después con el menor de ellos, que llamaremos N. Dado que este número hipotético N no es un número primo, estaremos en condiciones de expresarlo como producto de dos números A y B menores que N. Si ello no fuera posible, N sería un número primo.

Como A y B son menores que N, nuestra definición de N exige que A y B puedan expresarse como producto de números primos. Por tanto, si multiplicamos entre sí todos los primos que componen A por todos los primos que componen B obtendremos necesariamente el número N y, por tanto, habremos demostrado que N puede expresarse como producto de números primos, lo cual es contradictorio con la definición de N. En consecuencia, nuestra hipótesis de partida, la existencia de números anómalos, no se puede sostener y, en definitiva, cualquier número, o bien es primo, o bien puede expresarse como producto de números primos.

Cuando he intentado explicar este razonamiento a mis amigos, siempre han tenido la sensación de que les estaba haciendo trampa. Hay algo vagamente falaz en nuestro gambito de apertura: se supone que existen cosas que no queremos que existan y se termina por demostrar que no existen. Esta estrategia de pensar lo impensable se convirtió en un potente instrumento para la construcción de demostraciones por parte de los antiguos griegos. Está basada en un principio lógico: una afirmación debe ser cierta o falsa. Si partimos del supuesto de que la afirmación es falsa y terminamos en una contradicción, podemos deducir de ello que nuestro supuesto era erróneo y concluir que la afirmación tenía que ser cierta.

La técnica de demostración que idearon los antiguos griegos se apoya en la pereza de muchos matemáticos: en lugar de afrontar la tarea imposible de realizar infinitos cálculos explícitos para demostrar que todos los números pueden ser construidos utilizando números primos, el razonamiento abstracto captura la esencia de cada uno de esos cálculos; es como conocer la manera de subirse a lo alto de una escalera infinita sin tener que llevar a término la empresa físicamente.

Euclides, más que cualquier otro matemático griego, es considerado el padre de la demostración. Vivió en Alejandría alrededor del 300 a. C., en la época en la que Ptolomeo I acababa de fundar allí lo que hoy llamaríamos un gran instituto de investigación. Ahí escribió uno de los manuales más influyentes de toda la historia conocida: Elementos. En la primera parte del libro, Euclides fijó los axiomas de la geometría que describen las relaciones entre puntos y líneas. Estos axiomas se enuncian como verdades evidentes sobre los objetos geométricos, para que luego la geometría pueda dar una descripción matemática del mundo físico. A continuación Euclides utilizó las reglas de la deducción para enunciar quinientos teoremas geométricos.

La parte central de los Elementos de Euclides se refiere a las propiedades de los números, y ahí hallamos lo que muchos consideran el primer ejemplo realmente brillante de razonamiento matemático. En la proposición 20, Euclides describe una verdad simple, pero fundamental, sobre los números primos: que hay infinitos. Parte del supuesto de que cualquier número puede construirse multiplicando entre sí números primos. Sobre esto edifica la demostración. Si los números primos son los elementos básicos de todos los demás números, se pregunta: ¿es posible que sólo exista un número finito de tales elementos básicos? La tabla periódica de los elementos químicos fue obra de Mendeleyev, y en su forma actual clasifica 109 átomos distintos con los que se puede construir toda la materia. ¿No podría suceder lo mismo con los números primos? ¿Y si un Mendeleyev de las matemáticas hubiera presentado a Euclides una lista de 109 números primos y lo hubiera retado a demostrar que faltaba alguno en la lista?

¿Por qué, por ejemplo, no es posible construir todos los números simplemente multiplicando diversas combinaciones de los números primos 2, 3, 5 y 7? Euclides reflexionó sobre cómo se podrían buscar números que no fueran producto de esos cuatro primos. «Bueno, es fácil», podríamos decir. «Basta con tomar el siguiente primo, que es 11»; ciertamente no se puede obtener 11 utilizando 2, 3, 5 y 7. Pero antes o después esa estrategia está condenada al fracaso ya que, todavía hoy, no tenemos una idea nítida sobre cómo establecer con certeza dónde se encontrará el siguiente número primo. Y precisamente por esa impredecibilidad fue por lo que Euclides tuvo que intentar un camino distinto en su búsqueda de un método que funcionase con independencia de lo larga que fuera la lista de los primos.

No tenemos forma de saber si la idea fue realmente de Euclides o si él se limitó a poner por escrito las ideas que otros habían tenido en Alejandría. En cualquier caso, Euclides consiguió mostrar cómo podía construirse un número imposible de calcular utilizando cualquier lista de números primos dada. Tomemos, por ejemplo, los primos 2, 3, 5 y 7; Euclides calculó su producto, con lo que obtuvo 2 × 3 × 5 × 7 = 210 y a continuación —y aquí está el golpe genial— sumó 1 al producto para obtener 211, que no era divisible por ninguno de los primos de la lista, es decir, 2, 3, 5 y 7. Al añadir 1 al producto garantizaba que la división entre un número primo de la lista daría siempre 1 de resto.

Ahora bien, dado que Euclides sabía que todos los números se construyen multiplicando números primos entre sí, esto también tenía que ser cierto para 211. Y como 211 no es divisible por 2, 3, 5 ni 7, tenía que haber forzosamente otros números primos tales que al multiplicarlos entre sí dieran 211 como resultado. En este ejemplo en particular, 211 es en sí mismo un número primo. Euclides no afirmaba que el número así obtenido sería siempre primo, sino que tenía que estar formado por un producto de números primos que no estaban en la lista proporcionada por nuestro Mendeleyev de las matemáticas.

Por ejemplo, supongamos que alguien afirme que todos los números se pueden construir utilizando la lista finita de números primos 2, 3, 5, 7, 11 y 13. En este caso, el número que se obtiene con el método pensado por Euclides es 2 × 3 × 5 × 7 × 11 × 13 + 1 = 30.031, que no es primo. Todo lo que Euclides afirmaba es que, dada una lista finita cualquiera de números primos, él siempre podía construir un número que fuese el producto de números primos no comprendidos en esa lista. En el caso particular de 30.031, los números primos necesarios para construirlo son 59 y 509. Sin embargo, en general Euclides no tenía manera de conocer el valor exacto de esos nuevos números primos: sólo sabía que tenían que existir.

Era una argumentación maravillosa: Euclides no sabía cómo producir explícitamente números primos, pero podía demostrar que los primos no se terminarían jamás. Un hecho sorprendente es que todavía hoy no sabemos si los números de Euclides contienen infinitos números primos, pero en cambio son suficientes para demostrar que tienen que existir infinitos números primos. Con la demostración de Euclides se desvanecía la posibilidad de construir una tabla periódica que comprendiera todos los números primos o de descubrir un genoma de los números primos capaz de codificarlos por millones. Si nos limitamos a coleccionar ejemplares no llegaremos jamás a comprender estos números. He ahí, pues, el reto final: el matemático, dotado de armamento limitado, se lanza sobre la extensión infinita de los números primos. ¿Cómo podremos algún día conseguir trazar un recorrido a través de este caos infinito de números y determinar una estructura que nos permita prever su comportamiento?

A LA CAZA DE LOS NÚMEROS PRIMOS

Durante generaciones se ha intentado sin éxito superar a Euclides en la comprensión de los números primos y se han planteado especulaciones interesantes, pero, como le gustaba decir a Hardy, profesor de matemáticas de Cambridge, «cualquier bobo puede plantear preguntas sobre los números primos a las cuales el más inteligente de los hombres no puede responder». Con la conjetura de los primos gemelos, por ejemplo, se nos pregunta si existen infinitos números primos p tales que p + 2 sea también un número primo. Un par de números primos gemelos está formado por 1.000.037 y 1.000.039 (observemos que esa es la mínima distancia entre dos números primos, ya que N y N + 1 no pueden ser ambos primos —excepto en el caso N = 2— ya que al menos uno de ellos es divisible por 2), ¿es posible que los hermanos gemelos de Sacks, los sabios autistas, poseyeran una especial capacidad para determinar esos primos gemelos? Euclides demostró hace dos mil años que hay infinitos números primos, pero nadie sabe si existe un número más allá del cual no hay más de esas parejas de primos vecinos. Pero si las suposiciones son una cosa, el objetivo final sigue siendo la demostración.

Con diferentes grados de éxito, los matemáticos buscaron inventar fórmulas que, aunque no generaran todos los números primos, al menos produjeran una lista de primos. Fermat creyó haber hallado una: su hipótesis era que elevando 2 a la potencia 2N y sumándole 1, el número resultante sería un número primo; este número recibe el nombre de enésimo número de Fermat. Por ejemplo, si tomamos N = 2 y lo elevamos a la potencia 22 = 4, obtenemos 16 y, al añadirle 1, obtenemos 17, que es el segundo número primo de Fermat. Fermat creía que su fórmula siempre le proporcionaría un número primo, pero ésta resultó una de las pocas ocasiones en que se equivocó. Los números de Fermat se hacen enormes muy rápidamente: el quinto número de Fermat tiene ya diez cifras, y estaba fuera del alcance de sus cálculos. Se trata además del menor número de Fermat que no es primo, ya que es divisible entre 641.

Los números de Fermat eran muy estimados por Gauss. El hecho de que 17 sea uno de los primeros números de Fermat es la clave gracias a la cual Gauss consiguió construir su figura geométrica perfecta de 17 lados. En su gran tratado Disquisitiones arithmeticae, Gauss demuestra por qué, si el enésimo número de Fermat es un número primo, se puede realizar una construcción geométrica de N lados utilizando sólo la regla y el compás. El cuarto número de Fermat, 65.537, es primo, y ello significa que con estos instrumentos realmente elementales es posible construir una figura geométrica perfecta con 65.537 lados.

Hasta la fecha los números de Fermat apenas nos han dado más de cuatro números primos, pero Fermat tuvo mayor éxito en determinar algunas de las propiedades muy especiales que poseen. Descubrió un hecho curioso relativo a los números primos que, como 5, 13, 17 o 29, al dividirlos entre 4 dan 1 de resto: tales números se pueden escribir como la suma de dos cuadrados, por ejemplo: 29 = 22 + 52. Esta es otra de las bromas de Fermat: aunque afirmó poseer la demostración, le faltó poner por escrito la mayoría de sus pormenores.

El día de Navidad de 1640 Fermat escribió sobre su descubrimiento —que ciertos números primos podían expresarse como suma de dos cuadrados— en una carta que envió a un monje francés llamado Marín Mersenne. Los intereses de Mersenne no se limitaban a las cuestiones litúrgicas, amaba la música y fue el primero en elaborar una teoría de los armónicos coherente. También amaba los números. Mersenne y Fermat mantenían correspondencia regular sobre sus descubrimientos matemáticos: Mersenne se hizo famoso por su papel de intermediario en la comunidad científica internacional: los matemáticos de la época difundieron sus ideas a través de él.

Tal como ha sucedido a generaciones enteras de matemáticos, también Mersenne fue poseído por la obsesión de descubrir un orden en los números primos. Y, a pesar de no conseguir una fórmula que produjera todos los primos, ideó una que a la larga se ha demostrado mucho más eficaz para descubrir números primos que la fórmula de Fermat. También él, como Fermat, empezó por considerar las potencias de 2. Pero en lugar de sumar 1 al resultado, como había hecho Fermat, Mersenne decidió restar 1, por ejemplo: 23 − 1 = 8 − 1 = 7, que es un número primo. Es posible que Mersenne se apoyara en su intuición musical: doblando la frecuencia de una nota se la aumenta una octava y, por tanto, las potencias de 2 producen notas armónicas; por otra parte, es natural esperar que un desplazamiento de frecuencias de 1 dé lugar a una nota disonante, incompatible con todas las frecuencias anteriores, una «nota prima».

Mersenne descubrió enseguida que su fórmula no siempre daba un número primo, por ejemplo: 24 − 1 = 15. Entendió que si n no era primo, entonces tampoco lo era 2n − 1, pero afirmó con osadía que, para valores de n no superiores a 257, 2n − 1 sería primo si y sólo si n era uno de los siguientes números: 2, 3, 5, 7, 13, 19, 31, 67, 127, 257. Había descubierto un hecho engorroso: aunque n fuera un número primo, ello no garantizaba que lo fuera 2n − 1. Mersenne podía calcular a mano 211 − 1 obteniendo 2.047, que es 23 × 89. Generaciones de matemáticos se han quedado estupefactas ante la capacidad de Mersenne de afirmar que un número grande como 2257 − 1 era primo. Se trata de un número de setenta y siete cifras. ¿Podría ser que el monje hubiera accedido a una fórmula mística aritmética que le dijera por qué aquel número, absolutamente fuera de las capacidades humanas, era primo?

Los matemáticos opinan que si continuáramos con la lista de Mersenne, hallaríamos infinitos valores de n tales que sus correspondientes números de Mersenne 2n − 1 serían primos, pero todavía falta una demostración de la veracidad de tal suposición. Todavía estamos a la espera de un Euclides de nuestros días que demuestre que los primos de Mersenne no se terminarán nunca. O quizás esa cumbre remota es sólo un espejismo.

Muchos matemáticos de la generación de Fermat y Mersenne se recrearon en las interesantes propiedades numerológicas de los números primos, pero sus métodos no estaban a la altura del ideal de demostración de los antiguos griegos. Ello explica en parte por qué Fermat no proporcionó los detalles de muchas demostraciones que decía haber descubierto: en su época había una manifiesta falta de interés en proporcionar tales explicaciones lógicas. Los matemáticos quedaban satisfechos plenamente con una aproximación más empírica a su disciplina, una disciplina en la que, de manera cada vez más mecánica, los resultados se justificaban a partir de sus aplicaciones prácticas. Sin embargo, en el siglo XVIII apareció en escena un personaje que habría de recuperar el sentido de la demostración en matemáticas: el matemático suizo Leonard Euler, nacido en 1707, encontró explicación a muchas de las regularidades que Fermat y Mersenne habían descubierto pero no habían conseguido justificar. Los métodos de Euler habrían de tener más adelante un papel fundamental en la apertura de nuevas ventanas teóricas a nuestra comprensión de los números primos.

EULER, EL ÁGUILA MATEMÁTICA

Los años centrales del siglo XVIII fueron un período de mecenazgo cortesano. Se trata de la Europa prerrevolucionaria, cuando los países estaban regidos por déspotas ilustrados: Federico el Grande en Berlín, Pedro el Grande y Catalina la Grande en San Petersburgo, Luis XV y Luis XVI en París. Bajo su mecenazgo se financiaron las academias que dieron impulso intelectual a la Ilustración. Para aquellos soberanos, el rodearse de intelectuales en sus cortes era un signo de distinción y eran conscientes de la potencialidad de las ciencias y de las matemáticas para aumentar las capacidades militares e industriales de los países que regían.

El padre de Euler era pastor, y esperaba que su hijo lo siguiese en su carrera eclesiástica; sin embargo, los precoces talentos matemáticos de Euler habían reclamado la atención de los poderosos: bien pronto las academias de toda Europa empezaron a hacerle ofertas. Estuvo tentado de inscribirse en la Academia de París, que en aquella época se había convertido en el centro mundial de la actividad matemática, pero eligió aceptar la oferta que recibió en 1726 de la Academia de Ciencias de San Petersburgo, piedra angular de la campaña que Pedro el Grande promovió para la mejora de la instrucción en Rusia. Allí, Euler se reencontraría con distintos amigos de Basilea que habían estimulado su interés por las matemáticas cuando era niño. Le escribieron desde San Petersburgo pidiéndole que trajera de Suiza quince libras de café, una libra del mejor té verde, seis botellas de brandy, doce docenas de pipas de buen tabaco y algunas docenas de paquetes de naipes. Cargado de regalos, el joven Euler necesitó siete semanas para completar su largo viaje en barco, a pie y en diligencia; finalmente, llegó a San Petersburgo en mayo de 1727 para continuar sus sueños matemáticos. La producción posterior de Euler fue tan vasta que, cincuenta años después de su muerte, acaecida en 1783, la Academia de San Petersburgo estaba todavía publicando los materiales que se guardaban en sus archivos.

El papel del matemático cortesano queda reflejado a la perfección en una anécdota que habría tenido lugar mientras Euler se encontraba en San Petersburgo: Catalina la Grande tenía como huésped al famoso filósofo ateo francés Denis Diderot; Diderot tuvo siempre una actitud más bien despreciativa hacia las matemáticas, manteniendo que éstas no añadían nada a la experiencia y que únicamente servían para interponer un velo entre los hombres y la naturaleza; Catalina se cansó pronto de su huésped, pero no por sus ideas denigratorias hacia las matemáticas sino por sus irritantes intentos de hacer tambalear la fe religiosa de los cortesanos. Euler fue llamado a la corte para que contribuyera a silenciar a aquel ateo insoportable; por gratitud al mecenazgo de Catalina, Euler aceptó rápidamente y, ante la corte reunida, se dirigió a Diderot en tono solemne: «Señor, (a + bn)/n = x; por tanto, Dios existe: responda». Se dice que, ante un asalto matemático tan impetuoso, Diderot se batió en retirada.

Es probable que esta anécdota, que fue narrada por el famoso matemático inglés Augustus De Morgan en 1872, haya sido adornada para hacerla más ocurrente, y refleja sobre todo el hecho de que muchísimos matemáticos gozan humillando a los filósofos; pero demuestra que las cortes reales europeas no se consideraban completas sin un ramillete de matemáticos junto a los astrónomos, los artistas y los compositores.

Catalina la Grande estaba menos interesada en las demostraciones matemáticas de la existencia de Dios que en la obra de Euler en el campo de la hidráulica, de las construcciones navales y de la balística. Los intereses del matemático suizo se dirigían a todos los rincones de las matemáticas de su tiempo: además de dedicarse a las matemáticas militares, Euler escribió sobre teoría de la música, aunque se da la paradoja de que su tratado fue considerado demasiado matemático por los músicos y demasiado musical por los matemáticos.

Uno de sus triunfos más populares fue la solución del problema de los puentes de Königsberg. El río Pregel, hoy conocido con el nombre de Pregolya, cruza la ciudad prusiana de Königsberg (hoy se encuentra en Rusia, y se llama Kaliningrado). Como, al dividirse, el río crea dos islas en el centro de la ciudad, los habitantes de Königsberg habían construido siete puentes para cruzarlo (véase figura).

Los puentes de Königsberg.

Para sus ciudadanos se había convertido en un reto saber si era posible pasear por la ciudad cruzando por cada puente una y sólo una vez y volver al punto de partida. Finalmente, en 1735, Euler demostró que se trataba de una empresa imposible. A menudo se cita su demostración como el origen de la topología, en la que las dimensiones físicas reales son irrelevantes para el problema: lo que contaba para la solución de Euler era la red de conexiones entre las diversas partes de la ciudad, y no sus localizaciones reales ni las distancias respectivas. El mapa del metro de Londres nos muestra un ejemplo de este principio.

Pero lo que cautivaba por encima de todo el corazón de Euler eran los números. Como escribiría Gauss:

Las particulares bellezas de estos campos han atraído a todos los que se han dedicado activamente a su cultivo; pero ninguno ha expresado este hecho tan a menudo como Euler quien, en casi todos sus numerosos escritos dedicados a la teoría de los números, cita continuamente el placer que obtiene de esas investigaciones, y el grato cambio que halla respecto a las labores más directamente ligadas a aplicaciones prácticas.

La pasión de Euler por la teoría de los números había sido estimulada por su correspondencia con Christian Goldbach, un matemático aficionado alemán que vivía en Moscú con el empleo no oficial de secretario de la Academia de Ciencias de San Petersburgo. Igual que el matemático aficionado Mersenne antes que él, Goldbach encontraba fascinante jugar con los números y ejecutar experimentos numéricos. Fue a Euler a quien Goldbach comunicó su propia conjetura: según él, era posible escribir cualquier número par como producto de dos números primos. Como respuesta, Euler escribiría a Goldbach para pedirle que verificara muchas de las demostraciones que él había formulado con el objeto de validar el misterioso catálogo de los descubrimientos de Fermat. En contraste con la reticencia de Fermat para informar al mundo de sus presuntas demostraciones, Euler estuvo encantado de mostrar a Goldbach su demostración del hecho de que ciertos números primos se pueden expresar como la suma de dos cuadrados, como había afirmado Fermat. Euler consiguió incluso demostrar un caso particular del último teorema de Fermat.

A pesar de su pasión por las demostraciones, en lo más profundo Euler seguía siendo, por encima de todo, un matemático experimental: muchas de sus argumentaciones contenían pasos que no eran totalmente rigurosos; que andaban, a fin de cuentas, sobre el filo de la navaja. Ello no le preocupaba, a condición de que condujeran a nuevos descubrimientos interesantes. Como matemático, poseía excepcionales capacidades de cálculo y era extraordinariamente hábil manipulando fórmulas hasta conseguir que aparecieran extrañas conexiones. Como hizo notar el académico francés François Arago: «Euler calculaba sin esfuerzo aparente, como los hombres respiran o las águilas se sostienen en el viento».

Más que cualquier otra cosa, a Euler le gustaba calcular números primos. Confeccionó tablas de todos los primos menores de 100.000, y de algunos mayores. En 1732 fue también el primero en demostrar que la fórmula de Fermat para calcular números primos, 22N, dejaba de ser válida cuando N = 5. Empleando nuevas ideas teóricas consiguió mostrar que es posible descomponer aquel número de diez cifras como producto de dos primos menores. Uno de sus descubrimientos más curiosos fue una fórmula que parecía generar una inexplicable cantidad de números primos. En 1772 calculó todos los resultados que se obtienen cuando se sustituyen todos los números comprendidos entre 0 y 39 en la fórmula x2 − 1 − x + 41. Obtuvo la lista siguiente:

41, 43, 47, 53, 61, 71, 83, 97, 113, 131, 151, 173, 197, 223, 251, 281, 313, 347, 383, 421, 461, 503, 547, 593, 641, 691, 743, 797, 853, 911, 971, 1.033, 1.097, 1.163, 1.231, 1.301, 1.373, 1.447, 1.523, 1.601.

A Euler le pareció extraño que fuera posible generar tantos números primos utilizando aquella fórmula. Comprendió que el proceso estaba destinado a interrumpirse en un cierto punto. Es probable que el lector ya haya notado que, cuando se sustituye x por 41 en la fórmula, obtenemos un resultado que es divisible entre 41. También cuando x = 40 la fórmula produce un número que no es primo.

De todas formas, Euler se sorprendió de la capacidad de su fórmula para generar tantos números primos. Empezó a preguntarse con qué números distintos de 41 podría obtener un resultado similar. Descubrió que, además de 41, podía elegir también q = 2, 3, 5, 11, 17 para que la fórmula x2 + x + q nos diera números primos para cualquier valor de x comprendido entre 0 y q − 2.

Sin embargo, hallar una fórmula así de simple que generara todos los números primos era una empresa imposible, incluso para el gran Euler. Como escribió en 1751: «Hay algunos misterios que la mente humana no penetrará jamás. Para convencernos de ello basta con que echemos un vistazo a las tablas de números primos. Observaremos que en ellas no reina orden ni ley». Resulta paradójico que los objetos fundamentales sobre los que construimos el mundo lleno de orden de las matemáticas se comporten de un modo tan salvaje e impredecible.

Más adelante se descubrió que Euler estaba prácticamente sentado sobre una ecuación que terminaría por sacar a los números primos del punto muerto. Pero tendrían que pasar otros cien años, y se necesitaría otra gran mente para hacer evidente lo que Euler no consiguió mostrar: esa mente era la de Bernhard Riemann. Sin embargo, fue Gauss quien en uno de sus clásicos movimientos laterales, terminó por sugerir a Riemann la nueva perspectiva.

LA ESTIMACIÓN DE GAUSS

Si muchos siglos de investigaciones no habían servido para alumbrar una fórmula mágica que generara la lista de los números primos, quizá había llegado ya el momento de adoptar una estrategia distinta. Esto es lo que pensaba Gauss a los quince años, en 1792. El año anterior le habían regalado un libro de logaritmos. Hasta hace pocas décadas, las tablas de logaritmos les resultaban familiares a todos los adolescentes que efectuaban cálculos escolares. Después, con la aparición de las calculadoras de bolsillo, estas tablas han perdido su papel como instrumentos fundamentales en la vida cotidiana, sin embargo, desde hace centenares de años los navegantes, banqueros y mercaderes venían utilizándolas para convertir difíciles multiplicaciones en simples sumas. Al final del nuevo libro de Gauss había también una tabla de números primos. Para Gauss, el hecho de que los números primos y los logaritmos aparecieran juntos tenía algo de misterioso. De hecho, tras muchos cálculos, había llegado a tener la sensación de que había alguna conexión entre estos dos objetos aparentemente independientes.

La primera tabla de logaritmos se concibió en 1614, en una época en que magia y ciencia eran compañeras inseparables. Su creador, el barón escocés John Napier, era considerado por sus vecinos como un brujo que practicaba las ciencias ocultas. Vestido de negro, con un gallo negro como el carbón sobre el hombro, rondaba con aires furtivos por los alrededores de su castillo farfullando lo que predecía su álgebra apocalíptica: que entre 1688 y 1700 tendría lugar el Juicio Universal. Pero además de aplicar sus habilidades matemáticas a la práctica del ocultismo, Napier descubrió la magia de la función logarítmica.

Si introducimos un número en nuestra calculadora, por ejemplo 100, y a continuación pulsamos la tecla «log», la calculadora nos dará un nuevo número, el logaritmo de 100. Lo que la calculadora ha hecho es resolver un pequeño enigma: ha buscado el número x que es solución de la ecuación 10x = 100. En este caso específico la respuesta que nos da la calculadora es 2. Si introducimos 1.000, un número diez veces mayor que 100, la respuesta de la calculadora será 3: el logaritmo ha aumentado en 1 unidad. Esta es la característica fundamental del logaritmo: transforma la multiplicación en suma. Cada vez que multiplicamos el número original por diez, obtenemos el nuevo resultado sumando una unidad al resultado anterior.

Para los matemáticos fue un paso importante comprender que era posible considerar logaritmos de números que no fueran potencias enteras de 10. Por ejemplo, Gauss podía ir a sus tablas de logaritmos para descubrir que si elevaba 10 a la potencia 2,10721 obtendría un número muy próximo a 128. Esos eran los cálculos que Napier había recogido en sus tablas de 1614.

Las tablas logarítmicas contribuyeron a acelerar el desarrollo del mundo del comercio y de la navegación que florecía en el siglo XVII. Gracias al diálogo que los logaritmos permiten entre multiplicación y suma, las tablas transformaban el complejo problema de multiplicar dos números grandes en la tarea más sencilla de sumar sus logaritmos. Para multiplicar números grandes, el mercader sumaba sus logaritmos, y a continuación utilizaba las tablas logarítmicas a la inversa para hallar el resultado de la multiplicación original. El tiempo que un marinero o un vendedor ahorraba gracias a las tablas podía evitar el naufragio de una nave o el fracaso de un negocio.

Pero lo que realmente fascinó a Gauss fue la tabla de los números primos que se adjuntaba al final de su libro de logaritmos. Al contrario de lo que sucedía con los logaritmos, para los que se interesaban en las aplicaciones prácticas de las matemática, esas tablas de números primos no eran sino una curiosidad. (¡Las tablas de números primos confeccionadas en 1776 por Antonio Felkel se consideraron tan inútiles que terminaron por ser utilizadas como cartuchos en la guerra entre Austria y Turquía!). Los logaritmos eran muy predecibles; los números primos eran completamente azarosos: parecía que no hubiera forma de predecir el menor número primo mayor que 1.000, por ejemplo.

El importante paso que dio Gauss fue plantearse una pregunta distinta. En lugar de intentar prever la posición precisa de un número primo respecto del anterior, intentó comprender si era posible averiguar cuántos números primos existirían inferiores a 100, cuántos inferiores a 1.000, y así sucesivamente. Dado un número N cualquiera, ¿había alguna forma de estimar el número de primos comprendidos entre 1 y N? Por ejemplo, los números primos menores que 100 son 25; es decir, si elegimos un número al azar comprendido entre 1 y 100, tenemos una posibilidad sobre cuatro de dar con un número primo, ¿cómo cambia esta proporción cuando se consideran los números comprendidos entre 1 y 1.000, o entre 1 y 10.000? Armado con sus tablas de números primos, Gauss empezó la búsqueda. Al observar la fracción de números primos comprendidos entre intervalos cada vez mayores, descubrió que empezaba a aparecer una estructura. Dejando aparte el azar de aquellos números, parecía como si una sorprendente regularidad apareciera entre la niebla. Si observamos la tabla de valores de los números primos comprendidos entre 1 y diversas potencias de diez que transcribimos a continuación, que está basada en métodos de cálculo más modernos, esa regularidad resulta evidente.

N Número de primos comprendidos entre 1 y N, que se suele indicar como π(N). Distancia media entre dos números primos consecutivos.
10 4 2,5
100 25 4,0
1.000 168 6,0
10.000 1.229 8,1
100.000 9.592 10,4
1.000.000 78.498 12,7
10.000.000 664.579 15,0
100.000.000 5.761.455 17,4
1.000.000.000 50.847.534 19,7
10.000.000.000 455.052.511 22,0

Esta tabla, que contiene mucha más información de la que tenía Gauss a su disposición, nos muestra claramente la regularidad que descubrió. Esta se manifiesta sobre todo en la última columna, que representa la proporción de números primos sobre la totalidad de los números considerados. Por ejemplo, cuando se cuenta hasta 100, uno de cada cuatro números es primo, es decir, en este intervalo deberemos contar 4, en promedio, para pasar de un número primo al siguiente. Entre los números menores a 10 millones, 1 de cada 15 es primo. (Es decir, por ejemplo, que hay una probabilidad sobre 15 de que un número telefónico de siete cifras sea primo). Para N mayor que 10.000, el incremento de valores de esta última columna es siempre aproximadamente igual a 2,3.

O sea que, cada vez que Gauss multiplicaba N por 10, tenía que añadir 2,3 a la relación entre los números primos y N; este nexo entre multiplicación y suma es precisamente la relación subyacente en un logaritmo. Gauss, con su libro de logaritmos, debió tropezar con esta conexión que lo miraba directamente a la cara.

La razón por la que las fracciones de números primos aumentaban en 2,3 en lugar de hacerlo en 1 cada vez que Gauss multiplicaba N por 10 está en el hecho de que los números primos prefieren los logaritmos basados en potencias de un número distinto de 10. Cuando tecleamos el número 100 en nuestra calculadora y pulsamos a continuación la tecla «log», el resultado que obtenemos es 2, es decir, la solución de la ecuación. Pero nada nos impide elegir un número distinto de 10 para elevarlo a la potencia x: lo que hace al número 10 tan atrayente es nuestra obsesión por los diez dedos. El número que se eleva a la potencia x recibe el nombre de base del logaritmo. Podemos calcular el logaritmo de un número en una base distinta de 10; si, por ejemplo, queremos calcular el logaritmo de 128 en base 2 en lugar de la base 10, tendremos que resolver un problema distinto: hallar un número x tal que 2x = 128. Si nuestra calculadora tuviera una tecla «log en base 2», la pulsaríamos y obtendríamos 7 como respuesta, ya que tenemos que elevar 2 a la séptima potencia para obtener 128: 27 = 128.

Lo que Gauss descubrió es que para contar los números primos se pueden usar los logaritmos en base e, un número especial que, hasta la duodécima cifra decimal, vale 2,718 281 828 459… (igual que π, este número tiene una expresión decimal infinita y no periódica). En matemáticas e resulta ser tan importante como π, y hace su aparición en cualquier rincón del mundo matemático. Por esta razón, los logaritmos en base e reciben el nombre de logaritmos «naturales».

La tabla que Gauss había construido a los quince años lo llevó a formular la siguiente hipótesis: para los números comprendidos entre 1 y N, cada log(N) números se dará en promedio uno que será primo (donde log(N) indica el logaritmo de N en base e). En consecuencia, podía estimar que la cantidad de números primos comprendidos entre 1 y N es aproximadamente N/log(N). Gauss no afirmaba que ello le diera por arte de magia una fórmula exacta para calcular cuántos números primos hay entre 1 y N; sólo que parecía proporcionar una óptima estimación aproximada.

Su filosofía era similar a la que había aplicado para calcular el reencuentro con Ceres: aquel método astronómico proporcionaba una buena previsión para la observación de una pequeña región del espacio, sobre la base de los datos disponibles, de modo que Gauss adoptó la misma actitud al analizar los números primos. Para generaciones de matemáticos, el hecho de intentar prever la posición exacta de un número primo respecto del anterior e idear fórmulas que generen números primos se había convertido en una obsesión. Al evitar fijar su atención en el detalle insignificante de establecer qué números eran o no primos, Gauss había identificado una especie de orden. Si en lugar de preguntarnos qué números son primos, damos un paso atrás y nos planteamos la cuestión más amplia de cuántos números primos hay menores que un millón aparece una notable regularidad.

Gauss había introducido una importante modificación psicológica en la observación de los números primos. Era como si las generaciones anteriores hubieran escuchado una nota de la música de los números primos cada vez, sin conseguir oír la composición completa. Al concentrarse en la cantidad de números primos que se localizan cada vez que contamos cifras más altas, Gauss descubrió una nueva forma de escuchar el tema principal.

Siguiendo el ejemplo de Gauss, se ha convertido en práctica habitual indicar la cantidad de números primos comprendidos entre 1 y N con el símbolo π(N) (que no tiene nada que ver con el número π). Fue muy desafortunado que adoptara un símbolo que recuerda la circunferencia y el número 3,1415… Para evitar malas interpretaciones, pensémoslo sólo como una nueva tecla de nuestra calculadora, escribamos el número N y pulsemos la tecla π(N) para que la calculadora nos revele el número de primos menores o iguales que N. Por ejemplo, π(100) = 25 es el número de primos no mayores que 100, y π(1.000) = 168.

Observemos que también podemos utilizar esta nueva tecla «cuentaprimos» para identificar con precisión la posición de un número primo. Si tecleamos 100 y pulsamos nuestra tecla para contar los números primos entre 1 y 100, obtendremos 25. Si ahora tecleamos el número 101 la respuesta aumentará en una unidad y obtendremos 26, lo cual significa que 101 es un nuevo número primo. Es decir, cada vez que hay diferencia entre π(N) y π(N + 1) sabremos que N + 1 ha de ser un nuevo número primo.

Para ilustrar hasta qué punto es sorprendente la regularidad que descubrió Gauss, podemos observar un gráfico de la función π(N). Veamos el aspecto de la gráfica de π(N) para valores de N entre 1 y 100:

La escalinata de los números primos. La gráfica representa las cantidades acumuladas de números primos que hay contando desde 1 hasta 100.

A esta pequeña escala, el resultado de la gráfica es una escalinata caprichosa, en la que es difícil prever cuánto habrá que esperar antes de encontrar el siguiente escalón. Con estas dimensiones todavía conseguimos ver los pequeños detalles de los números primos, las notas individuales.

Demos ahora un paso atrás y observemos la gráfica de la misma función cuando N toma valores comprendidos en un intervalo mucho mayor. Contemos, por ejemplo, los números primos hasta 100.000:

La escalinata de los números primos en el intervalo que va de 1 a 100.000.

Cada escalón particular se vuelve insignificante y podemos observar la tendencia general de esta función: un ascenso lento y regular. Este era el gran tema que había oído Gauss y que era capaz de imitar utilizando la función logarítmica.

La revelación del crecimiento regular de la gráfica, a pesar de la extrema impredecibilidad de los números primos, es uno de los hechos más milagrosos de las matemáticas y supone uno de los hitos de la historia de los números primos. En la última página de su libro de logaritmos, Gauss anotó el descubrimiento de su fórmula para conocer la cantidad de números primos comprendidos entre 1 y N en términos de la función logarítmica. Sin embargo, y a pesar de la importancia del descubrimiento, Gauss no le contó a nadie lo que había encontrado. Lo único que el mundo supo de la revelación que Gauss había tenido fueron estas enigmáticas palabras: «No os podéis imaginar cuánta poesía hay en una tabla de logaritmos».

El porqué de la discreción de Gauss sobre un asunto de tanta importancia permanece envuelto en el misterio. Es cierto que únicamente había identificado los primeros indicios de una conexión entre números primos y logaritmos. Sabía que no poseía absolutamente ninguna explicación ni demostración del motivo por el que esas dos entidades tenían algo en común. No había certeza de que aquel patrón no pudiera desaparecer de repente al considerar valores de N aún mayores. En cualquier caso la renuencia de Gauss a anunciar resultados no demostrados supuso un punto de inflexión en la historia de las matemáticas. Si bien los antiguos griegos habían introducido la idea de la importancia de la demostración como componente del proceso matemático, antes de la época de Gauss los matemáticos se interesaban mucho más por la especulación científica sobre su disciplina. Si las matemáticas funcionaban, no se preocupaban demasiado de justificar de forma rigurosa por qué lo hacían. Las matemáticas seguían siendo el instrumento de las demás ciencias.

Al poner el acento sobre el valor de la demostración, Gauss rompió con el pasado. Para él, el objetivo principal de las matemáticas era ofrecer demostraciones, y tal regla sigue siendo fundamental hasta hoy. Sin una demostración, para Gauss, el descubrimiento de la conexión entre logaritmos y números primos no tenía ningún valor. La libertad de acción que suponía para él el apoyo financiero del duque de Brunswick le permitía ser muy selectivo, casi darse el lujo de cierta complacencia. Su motivación primaria no estaba en la fama ni en el reconocimiento sino en la comprensión personal de la disciplina que amaba. En su sello llevaba el lema Pauca sed matura [«poco pero maduro»]. Hasta que hubiera alcanzado la plena madurez, un resultado no pasaba de ser un mero apunte en su diario o un garabato en la contraportada de su tabla de logaritmos.

Para Gauss, la matemática era una búsqueda personal: llegó a proteger las notas de su diario con un lenguaje cifrado. La interpretación de algunas de esas notas es fácil, por ejemplo, el 10 de julio de 1796 escribió la famosa exclamación de Arquímedes, «¡Eureka!», seguida por la ecuación núm = ∆ + ∆ + ∆, para representar su descubrimiento de que todo número puede expresarse como suma de tres números triangulares —1, 3, 6, 10, 15, 21, 28, …—, es decir, los números cuya fórmula había ideado Gauss en sus años escolares. Por ejemplo: 50 = 1 + 21 + 28. Sin embargo otras de sus notas permanecen en un absoluto misterio: nadie ha conseguido entender lo que se esconde tras el escrito de Gauss del 11 de octubre de 1796: «Vicimus GEGAN». En opinión de algunos, la falta de difusión de los descubrimientos de Gauss ha provocado un retraso de medio siglo en el desarrollo de las matemáticas: si Gauss se hubiera preocupado de explicar la mitad de lo que había descubierto y no hubiera sido tan críptico en sus explicaciones, quizá las matemáticas habrían avanzado más rápidamente.

Algunos mantienen que Gauss se reservó sus resultados porque la Academia de París había rechazado su gran tratado de la teoría de los números: las Disquisitiones arithmeticae, juzgándolo oscuro y denso. Ofendido por el rechazo, para protegerse de más humillaciones decidió no considerar siquiera la posibilidad de publicar algo antes de que todas las piezas del rompecabezas matemático encajaran a la perfección. Una de las causas de que las Disquisitiones arithmeticae no recibieran el aplauso inmediato es que Gauss se mantuvo críptico incluso en las obras a las que dio publicidad. Sostuvo siempre que las matemáticas eran como una obra arquitectónica: un arquitecto jamás dejará los andamios para que la gente vea cómo se construyó el edificio. Desde luego, esta filosofía no ayudó a los matemáticos en su comprensión de la obra de Gauss.

Pero había otras razones por las que París no fuese tan receptiva como podía esperarse con las ideas de Gauss. A finales del siglo XVIII, en París más que en cualquier otro sitio, las matemáticas estaban consagradas a satisfacer las demandas de un Estado cada vez más industrializado. La revolución de 1789 y sus consecuencias confirmaron a Napoleón la necesidad de una enseñanza centralizada de la ingeniería militar. Respondió a tal necesidad con la militarización de la École Polytechnique. «El progreso y el perfeccionamiento de las matemáticas están íntimamente vinculados con la prosperidad del Estado», declaró Napoleón. De esta forma, las matemáticas francesas quedaron, a partir de 1805, consagradas a la resolución de problemas de balística e hidráulica. Pero a pesar del énfasis que ponía en las necesidades prácticas del Estado, París ensalzaba aún a algunos de los matemáticos puros más eminentes de Europa.

Una de las mayores autoridades parisienses era Adrien-Marie Legendre, veinticinco años mayor que Gauss. Los retratos de Legendre nos muestran el rostro redondo y regordete de un gentilhombre de aspecto engreído. Al contrario que Gauss, Legendre procedía de una familia rica, pero había perdido su patrimonio durante la Revolución y no había tenido más remedio que utilizar sus propias capacidades matemáticas para ganarse la vida. También estaba interesado en la teoría de los números, y en 1798, con seis años de retraso sobre los cálculos del jovencísimo Gauss, anunció el descubrimiento de un nexo experimental entre números primos y logaritmos.

Aunque más tarde se probó la precedencia de Gauss en el descubrimiento, Legendre perfeccionó la estimación sobre el número de primos comprendidos entre 1 y N. Gauss había supuesto que los números primos comprendidos entre 1 y N eran aproximadamente N/log(N). Aunque su fórmula proporcionaba una buena aproximación, se comprobó que se alejaba progresivamente de los datos reales a medida que aumentaba el valor de N. Vemos a continuación una comparación entre la estimación juvenil de Gauss (la curva inferior del diagrama siguiente) y el número efectivo de números primos (la curva superior):

Comparación entre la estimación de Gauss y el número efectivo de números primos.

Esta gráfica revela que, aunque ciertamente Gauss había descubierto algo, todavía quedaba espacio para la mejora.

Legendre sustituyó la aproximación dada de N/log(N) por la fórmula

introduciendo así una pequeña corrección que conseguía elevar la curva de Gauss, acercándola a la de la distribución real de los números primos. Con los valores de estas funciones susceptibles de ser calculados en aquella época, era imposible distinguir la gráfica de π(N) de la correspondiente a la estimación de Legendre. Éste, centrado en su preocupación principal de hallar aplicaciones prácticas de las matemáticas, era mucho menos reacio a arriesgarse y a aventurar alguna hipótesis sobre la relación entre números primos y logaritmos. No era persona que temiera poner en circulación ideas no demostradas, incluso demostraciones con lagunas. En 1808 publicó su hipótesis sobre los números primos en un libro titulado Théorie des nombres.

La controversia sobre quién había sido el primero en descubrir la conexión entre los números primos y los logaritmos provocó una agria disputa entre Legendre y Gauss. No se limitaba a la cuestión de los números primos: Legendre afirmaba que también había sido él el primero en descubrir el método de Gauss para determinar el movimiento de Ceres. Ocurría con gran frecuencia que, si Legendre afirmaba haber descubierto una nueva verdad matemática, Gauss lo rebatía afirmando que ya había saqueado tal tesoro. En una carta escrita el 30 de julio de 1806 a una colega astrónomo llamado Schumacher, Gauss comentaba: «Parece como si yo estuviese destinado a coincidir con Legendre en casi todos mis trabajos teóricos».

Durante toda su vida, Gauss fue demasiado orgulloso como para meterse en guerras abiertas sobre la precedencia de sus descubrimientos. Cuando, tras su muerte, se estudiaron sus notas y su correspondencia, quedó claro que la razón estaba invariablemente de su parte. Sólo en 1849 el mundo supo que Gauss había ganado a Legendre en el descubrimiento de la relación entre números primos y logaritmos, un descubrimiento que él reveló a su colega, el matemático y astrónomo Johann Encke, en una carta escrita la Nochebuena de aquel año.

Teniendo en cuenta los datos disponibles al principio del siglo XIX, la función de Legendre proporcionaba, respecto de la fórmula de Gauss, una aproximación mucho mejor del número de primos menores o iguales que N. Pero la presencia de un término de corrección tan feo como 1,08366 indujo a los matemáticos a pensar que tenía que existir un método mejor, más natural, para describir el comportamiento de los números primos.

Desde luego, números feos como éste seguramente son muy comunes en otras ciencias, pero es extraordinaria la frecuencia con la cual el mundo matemático opta por la formulación más elegante posible. Como veremos, la hipótesis de Riemann puede tomarse como ejemplo de una filosofía muy difundida entre los matemáticos: ante la alternativa de un mundo feo y otro bello, la naturaleza elige siempre el segundo. Es motivo de asombro para la mayoría de los matemáticos que las matemáticas deban ser así, y explica por qué a menudo les entusiasma la belleza de su disciplina.

Por este motivo, no nos sorprende que, en los últimos años de su vida, Gauss perfeccionara su estimación del número de primos, llegando a una fórmula todavía más precisa, que además era mucho más bella. En la misma carta que escribió a Encke en Nochebuena, Gauss explica cómo había encontrado una forma de hacerlo mejor que Legendre: había vuelto a sus primeras investigaciones sobre los números primos, las que había hecho de joven. Había calculado que la cuarta parte de los números comprendidos entre 1 y 100 eran primos, pero cuando consideraba los números comprendidos entre 1 y 1.000, la probabilidad de que uno de ellos fuera primo descendía a 1 entre 6: Gauss comprendió que a medida que ascendía en la cuenta disminuía la probabilidad de que un número fuera primo.

De esta forma, Gauss formó en su mente una imagen de cómo la naturaleza podía haber decidido qué números estaban destinados a ser primos y cuáles no. Ya que su distribución parecía tan aleatoria, ¿no podría ser que lanzar una moneda al aire fuera un buen modelo para la elección de números primos? ¿Y si realmente la naturaleza hubiera lanzado una moneda (cara, número primo, cruz no)? Podríamos ahora, pensó Gauss, trucar la moneda de forma que el resultado no fuera «cara» en la mitad de los casos, sino con una probabilidad parecida a 1/log(N). Así, la probabilidad de que el número 1.000.000 fuera primo debería ser 1/log(1.000.000), que es próximo a 1/15. Las posibilidades de que un número N sea primo disminuyen al crecer N, ya que disminuye el valor de 1/log(N), es decir, la probabilidad de que el resultado del lanzamiento sea «cara».

Se trata de una pura especulación, ya que 1.000.000, igual que cualquier otro número, o es primo o no lo es, y el lanzamiento de una moneda no podrá nunca modificar este hecho. Aunque su modelo conceptual no servía para predecir si un número era primo, Gauss descubrió que era muy eficaz para hacer previsiones sobre la cuestión mucho menos específica de cuántos números primos se espera encontrar a medida que los contamos. Lo utilizó pues para estimar la cantidad de números primos que deberíamos encontrar tras lanzar la moneda de los números primos N veces. Con una moneda normal, que cae en cara con probabilidad y, el número de caras debería ser 1/2 N. Pero con la moneda de los números primos la probabilidad disminuye a cada lanzamiento. El modelo de Gauss prevé que la cantidad de números primos menores o iguales que N sea

En realidad, Gauss fue un paso más allá para crear una función que llamó logaritmo integral y que se indica como Li(N). La formulación de esta nueva función se basaba en una ligera variación de la anterior suma de probabilidades y resultó increíblemente precisa.

Cuando Gauss, ya con más de setenta años, escribió a Encke, había construido tablas de números primos hasta 3.000.000: «Con mucha frecuencia yo utilizaba un cuarto de hora de inactividad para revisar otra chilíada [intervalo de mil números] a la búsqueda de números primos». La estimación de los números primos inferiores a 3.000.000 que hizo mediante su logaritmo integral Li(N) se desviaba apenas siete centésimas del uno por ciento de la realidad. Legendre había logrado manipular su fea fórmula de forma que igualara a π(N) para valores relativamente pequeños de N; por esta razón, con los datos disponibles en la época, parecía que su fórmula fuera superior. Cuando se empezaron a confeccionar tablas más extensas, se descubrió que la estimación de Legendre resultaba mucho menos precisa para los números primos mayores que 10.000.000. Un profesor de la Universidad de Praga, Jakub Kulik, dedicó veinte años de su vida exclusivamente a la confección de tablas de números primos hasta 100.000.000. Los ocho volúmenes de esta obra faraónica, completada en 1863, nunca se publicaron, pero quedaron custodiados en los archivos de la Academia de Ciencias de Viena. A pesar de que el segundo volumen se perdió, aquellas tablas eran ya suficientes para revelar que el método de Gauss, basado en la función Li(N), se mostraba una vez más superior al de Legendre. Las tablas modernas muestran hasta qué punto fue mejor la intuición de Gauss. Por ejemplo, su estimación de los números primos menores que 1016 (es decir, 10.000.000.000.000.000) se aparta del valor correcto en apenas una diezmillonésima del uno por ciento, mientras que con la estimación de Legendre está cerca de la décima parte del uno por ciento. El análisis teórico de Gauss había triunfado sobre los intentos de Legendre de manipular su fórmula para que coincidiera con los datos disponibles.

Gauss observó una curiosa característica en su propio método. A partir de lo que sabía sobre los números primos menores que 3.000.000 podía ver que la función Li(N) parecía sobreestimar la cantidad de números primos. Supuso entonces que siempre sería así; y, ¿quién pondría en duda la intuición de Gauss ahora que las modernas comprobaciones numéricas la confirman hasta 1016? Indudablemente, cualquier experimento que diera el mismo resultado 1016 veces se consideraría muy convincente en casi todos los laboratorios; pero no en el de un matemático. Una vez más, una de las hipótesis de Gauss se reveló errónea. Pero a pesar de que hoy los matemáticos han demostrado que, antes o después, π(N) tomará valores mayores que Li(N), nadie lo ha visto suceder nunca, ya que todavía no estamos en situación de poder llegar suficientemente lejos con los cálculos.

La comparación entre las gráficas de π(N) y de Li(N) muestra tal concordancia que es casi imposible distinguirlas por un largo trecho. Sin embargo, debo subrayar que si se observa con una lente de aumento una porción cualquiera de esta imagen, la diferencia entre las funciones se hace evidente. La gráfica de π(N) se parece a una escalinata, mientras que la de Li(N) es una curva lisa, sin saltos bruscos.

Gauss había mostrado las pruebas de la existencia de la moneda que la naturaleza había lanzado para elegir los números primos. Se trataba de una moneda hecha de manera que un número N tenía una probabilidad de 1 entre log(N) de ser primo. Pero a Gauss todavía le faltaba un método para predecir el resultado preciso de los lanzamientos. Serían necesarias las capacidades de penetración de una generación entera de matemáticos para descubrirlo.

Al cambiar su perspectiva, Gauss había percibido un patrón en los primos: su hipótesis fue llamada conjetura de los números primos. Para conseguir el trofeo de Gauss, los matemáticos tenían que demostrar que el porcentaje de error que separa el logaritmo integral de la verdadera cantidad de números primos se reduce siempre conforme se va contando. Gauss había visto aquella cumbre remota, pero quedaba para las futuras generaciones el deber de obtener una demostración, de revelar el sendero para alcanzarla o, en caso contrario, de desenmascarar el carácter ilusorio del nexo.

Muchos atribuyen a la aparición de Ceres la responsabilidad de haber distraído a Gauss del intento de demostrar por su cuenta la Conjetura de los números primos. La fama inmediata que alcanzó con sólo veinticuatro años lo dirigió hacia la astronomía. En 1806, cuando su mecenas, el duque Ferdinand, fue asesinado por Napoleón, Gauss tuvo que buscar otro empleo para alimentar a su familia. A pesar de las propuestas de la Academia de San Petersburgo, que estaba buscando un sucesor para Euler, decidió aceptar el puesto de director del Observatorio de Gotinga, una pequeña ciudad universitaria de la Baja Sajonia. Dedicó su tiempo a seguir el rastro de otros asteroides en el cielo nocturno y a realizar reconocimientos topográficos para los gobiernos de Hannover y Dinamarca, pero nunca dejó de pensar en las matemáticas: mientras trazaba los mapas de las montañas de Hannover, meditaba sobre el axioma euclidiano de las rectas paralelas, y de vuelta al observatorio continuaba ampliando su tabla de números primos.

Gauss había oído el primer gran tema de la música de los números primos, pero sería uno de sus pocos discípulos, Riemann, quien revelaría la verdadera fuerza de los armónicos que se escondían bajo la cacofonía de los números primos.