1
¿QUIÉN QUIERE SER MILLONARIO?
¿Sabemos cuál es la secuencia de números? Bien, vamos a hacerlo mentalmente… cincuenta y nueve, sesenta y uno, sesenta y siete… setenta y uno… ¿No son todos estos números primos?». Un murmullo de conmoción recorrió la sala de control. La expresión de Ellie reveló por un instante el aleteo de una emoción intensa, que sin embargo fue rápidamente sustituido por la templanza, por el temor de verse superada, por una inquietud de parecer boba, no científica.
CARL SAGAN
Contacto
Una cálida y húmeda mañana de agosto de 1900 David Hilbert, de la Universidad de Gotinga, tomó la palabra en el Congreso Internacional de Matemáticos, en una atestada sala de conferencias en la Sorbona. Hilbert, que ya entonces era reconocido como uno de los más grandes matemáticos de la época, había preparado un importante discurso: se proponía hablar no de lo que había sido demostrado, sino de lo que todavía era desconocido. Esto iba contra todas las reglas, y cuando Hilbert empezó a exponer su propia visión sobre el futuro de las matemáticas el público pudo percibir el nerviosismo en su voz: «¿Quién de nosotros no gozaría descorriendo el velo tras el cual se oculta el porvenir, dejando caer su mirada sobre los futuros progresos de nuestra ciencia y sobre los secretos de su desarrollo durante los próximos siglos?». Para anunciar el nuevo siglo, Hilbert proponía como reto a sus oyentes una lista de veintitrés problemas que, según él, trazarían el camino de los exploradores matemáticos del siglo XX.
Los siguientes decenios pudieron ver la respuesta a muchos de aquellos problemas, y los que descubrieron las soluciones forman un ilustre grupo de matemáticos conocidos como «Los primeros de la clase». El grupo cuenta con personajes del calibre de Kurt Gödel y de Henri Poincaré, junto con muchos otros pioneros cuyas ideas han revolucionado radicalmente el paisaje matemático. Pero había un problema, el octavo de la lista de Hilbert, que parecía destinado a sobrevivir al siglo sin que apareciera un campeón capaz de vencerlo: la hipótesis de Riemann.
De todos los retos que Hilbert había propuesto, el octavo ocupaba un lugar especial en su corazón. Existe un mito germánico sobre Federico Barbarroja, un emperador muy querido por los alemanes. Tras su muerte, acaecida durante la Tercera Cruzada, se difundió la leyenda de que en realidad Federico continuaba con vida, que yacía dormido en una cueva del monte Kyffhäuser y despertaría cuando Alemania lo necesitara. Se dice que alguien preguntó a Hilbert: «Si usted, como Barbarroja, despertara dentro de quinientos años, ¿qué sería lo primero que haría?». «Preguntaría si alguien ha demostrado la hipótesis de Riemann», respondió.
A finales del siglo XX la mayor parte de los matemáticos se había convencido de que, entre todos los problemas propuestos por Hilbert, aquella piedra preciosa no sólo tenía grandes posibilidades de sobrevivir al siglo, sino que quizá no estaría resuelta cuando Hilbert se despertara de su sueño de quinientos años. Con su revolucionario discurso, cargado de misterio, había provocado el desconcierto en el primer Congreso Internacional del siglo XX. Sin embargo, a los matemáticos que tenían intención de participar en el último Congreso del siglo les aguardaba una sorpresa.
El 7 de abril de 1997 una noticia excepcional apareció en las pantallas de los ordenadores de toda la comunidad matemática mundial. En la página de Internet del Congreso Internacional que tenía que celebrarse al año siguiente en Berlín se anunció que habían encontrado el Santo Grial de las matemáticas: alguien había demostrado la hipótesis de Riemann. Era una noticia destinada a tener efectos muy profundos. La hipótesis de Riemann es un problema fundamental para las matemáticas en su conjunto. Al leer su correo electrónico los matemáticos temblaban de emoción ante la perspectiva de comprender al fin uno de los más grandes misterios de su disciplina.
La noticia se anunciaba en una carta del profesor Enrico Bombieri. No era posible contar con una fuente más fiable: Bombieri es uno de los albaceas de la hipótesis de Riemann y forma parte del Institute for Advanced Study de Princeton, de cuyo equipo formaron parte Einstein y Gödel. Habla muy pausadamente, pero los matemáticos escuchan con atención todo lo que tenga que decir.
Bombieri creció en Italia, donde los viñedos de su acaudalada familia le hicieron adquirir el gusto por la belleza de la vida. Los colegas lo llaman afectuosamente «el aristócrata de las matemáticas». Cuando era joven, su elegancia llamaba siempre la atención en las reuniones europeas, donde llegaba a menudo a bordo de costosos automóviles deportivos. Por otra parte, a él le encantaba alimentar los rumores que contaban que alguna vez había llegado sexto en un rallye de veinticuatro horas celebrado en Italia. Con el tiempo, sus éxitos en el circuito de las matemáticas fueron más tangibles, de modo que en los años setenta le valieron una invitación a Princeton, donde se encuentra todavía. Ha sustituido el entusiasmo por las carreras por la pasión de pintar, sobre todo retratos.
Pero lo que procura a Bombieri la mayor emoción es el arte creativo de las matemáticas, y en particular el reto de la hipótesis de Riemann, que lo tiene obsesionado desde la tierna edad de quince años, cuando oyó hablar de la cuestión por vez primera. Las propiedades de los números lo fascinaron desde que comenzó a ojear los libros de matemáticas que su padre, economista, tenía en su inmensa biblioteca. Descubrió que la hipótesis de Riemann era considerada el problema más profundo y fundamental de la teoría de los números. Su pasión por el problema se vio acrecentada cuando su padre le prometió un Ferrari si lo resolvía, en un desesperado intento de evitar que condujera su Ferrari.
Volviendo al mensaje electrónico de Bombieri, alguien se le había adelantado haciéndole perder el premio. «Se han producido fantásticos acontecimientos tras la conferencia que Alain Connes pronunció el pasado miércoles en el Institute for Advanced Study», empezaba Bombieri. Muchos años atrás, la noticia de que Connes fijaba su atención en la hipótesis de Riemann con intención de resolverla había puesto en tensión al mundo matemático. Connes es uno de los revolucionarios de la disciplina, un benigno Robespierre de las matemáticas respecto del Luis XVI que encarnaría Bombieri. Se trata de un personaje dotado de un extraordinario carisma, cuyo estilo fogoso dista mucho de la imagen tradicional del matemático serio y circunspecto. Está dotado de la pasión de un fanático profundamente convencido de su propia visión del mundo, y deja hipnotizados a cuantos asisten a sus clases. Para sus seguidores es casi una figura de culto; les encantaría unirse a él en las barricadas matemáticas para defender a su héroe de cualquier contraofensiva que fuera lanzada desde las posiciones del Antiguo Régimen.
El lugar de trabajo de Connes es la respuesta francesa al Instituto de Princeton: el Institut des Hautes Études Scientifiques de París. Desde su llegada, en el año 1979, Connes ha creado un lenguaje totalmente nuevo para la comprensión de la geometría. La idea de llevar esta disciplina hasta el extremo de la abstracción no le espanta en absoluto. Incluso entre los matemáticos, que están habituados a las aproximaciones fuertemente conceptuales de su disciplina con relación a la realidad, en muchos casos existen dudas sobre la revolución abstracta que propone Connes. Sin embargo, según ha demostrado a los que dudan de la necesidad de una teoría tan árida, su nuevo lenguaje geométrico contiene muchos elementos útiles para comprender el mundo real de la física cuántica. Si resulta que provoca el terror de las masas matemáticas, paciencia.
La audaz convicción de Connes de que su nueva geometría no sólo podría descorrer el velo de la física cuántica, sino también explicar la hipótesis de Riemann —el mayor misterio numérico— produjo sorpresa e incluso turbación. El simple hecho de osar aventurarse en el corazón de la teoría de los números y enfrentarse directamente con el más difícil de los problemas irresueltos de las matemáticas reflejaba su desprecio por los límites convencionales. Desde su aparición en escena, a finales de los noventa, flotaba en el aire la sensación de que, si alguna vez había existido alguien con recursos suficientes para enfrentarse a un problema de tamaña dificultad, ése era Alain Connes.
Pero, según parecía, no había sido Connes quien había hallado la última pieza del complicado rompecabezas. En su correo, Bombieri narraba que un joven físico que asistía a la conferencia había percibido «como un relámpago» un modo de utilizar su extraño mundo de «sistemas supersimétricos fermiónico-bosónicos» para atacar la hipótesis de Riemann. Pocos eran los matemáticos que conocían el significado de aquel cóctel de tecnicismos, pero Bombieri explicaba que describían «la física correspondiente a un conjunto muy próximo al cero absoluto de una mezcla de aniones y morones con spins opuestos». La cuestión seguía sonando un tanto oscura, pero ya que se trataba de la solución del problema más difícil de la historia de las matemáticas, nadie esperaba que se tratara de una cosa simple. Volviendo a Bombieri, afirmaba que, después de seis días de trabajo ininterrumpido y, gracias a un nuevo lenguaje de programación llamado MISPAR, el joven físico había desentrañado por fin el problema más arduo de las matemáticas.
Bombieri terminaba su correo con las palabras: «¡Guau! Por favor, den la máxima difusión a esta noticia». Aunque parezca extraordinario que un joven físico hubiera acabado demostrando la hipótesis de Riemann, después de todo la noticia no era tan sorprendente: en los últimos decenios había sucedido con frecuencia que las matemáticas y la física se entretejieran. Por más que se trataba de un problema central de la teoría de los números, desde hacía algunos años la hipótesis de Riemann mostraba relaciones inesperadas con algunos problemas de la física de partículas.
Los matemáticos se prepararon para cambiar sus planes de viaje y volar a Princeton para compartir el momento. Todavía se mantenía fresco el recuerdo de la emoción de pocos años atrás, cuando Andrew Wiles, matemático inglés, anunció la demostración del último teorema de Fermat durante una conferencia celebrada en Cambridge en junio de 1993. Wiles demostró que la afirmación de Fermat, según la cual la ecuación xn + yn = zn no tiene soluciones para cualquier valor de n mayor que 2, era correcta. Apenas soltó Wiles la tiza al final de la conferencia, saltaron los tapones de las botellas de champán y empezaron a dispararse los flashes de las cámaras.
Los matemáticos eran conscientes de que la demostración de la hipótesis de Riemann tendría una importancia enormemente mayor para el futuro de las matemáticas de la que tuvo saber que la ecuación de Fermat no admite soluciones. Tal y como Bombieri había descubierto a la tierna edad de quince años, con la hipótesis de Riemann se intentaba comprender los objetos más fundamentales de las matemáticas: los números primos.
Los números primos son los auténticos átomos de la aritmética. Se definen como primos los números enteros indivisibles, es decir, los que no pueden expresarse como producto de dos enteros menores. Los números 13 y 17 son primos, mientras que el número 15 no lo es, ya que puede expresarse como producto de 3 y 5. Los números primos son joyas engarzadas en la inmensa extensión de los números, el universo infinito que los matemáticos exploran desde la antigüedad. Los números primos producen en los matemáticos una sensación maravillosa: 2, 3, 5, 7, 11, 13, 17, 19, 23…, números sin tiempo que existen en un mundo independiente de nuestra realidad física. Son un don que la naturaleza ha entregado al matemático.
Su importancia para las matemáticas descansa en el hecho de que tienen la capacidad de construir todos los demás números. Cualquier otro número entero que no sea primo puede construirse multiplicando estos números de base primitiva. Cualquier molécula existente en el mundo físico puede construirse utilizando los átomos de la tabla periódica de los elementos químicos. La lista de los números primos es la tabla periódica del matemático. Los números 2, 3 y 5 son el hidrógeno, el helio y el litio de su laboratorio. Dominar esos elementos básicos ofrece al matemático la esperanza de poder descubrir nuevos métodos para trazar un recorrido a través de la desmesurada complejidad del mundo matemático.
Sin embargo, a pesar de su aparente simplicidad y de su carácter fundamental, los números primos siguen siendo los objetos más misteriosos que estudian los matemáticos. En una disciplina que se dedica a investigar patrones y orden, los números primos suponen el supremo reto. Probemos a examinar una lista de números primos y descubriremos que es imposible prever cuándo aparecerá el siguiente. La lista parece caótica, y no nos proporciona ninguna pista sobre cómo determinar el siguiente elemento. La lista de los números primos es el ritmo cardíaco de las matemáticas, pero sus pulsaciones parecen estimuladas por un potente cóctel de cafeína:
Los números primos comprendidos entre 1 y 100: el ritmo cardíaco irregular de las matemáticas.
¿Y si intentamos hallar una fórmula que genere los números primos de esta lista, una regla mágica que nos diga cuál es el centésimo número primo? Este es un problema que obsesiona a los matemáticos desde hace muchos siglos. Tras más de dos mil años de esfuerzos, los números primos se resisten a cualquier intento de insertarlos en un esquema sencillo y regular. Generaciones enteras han escuchado con atención el redoble de los primos emitiendo su secuencia de números: dos golpes, después tres, más adelante cinco, siete, once. A medida que continúa la secuencia, fácilmente terminaremos por pensar que el redoble de los números primos no es más que un ruido aleatorio, sin ninguna lógica. En el centro de las matemáticas, de la búsqueda del orden, los matemáticos sólo consiguen oír el sonido del caos.
Los matemáticos se resisten a admitir la posibilidad de que no exista una explicación de cómo la naturaleza elige los números primos. Si las matemáticas no tuvieran una estructura, si no poseyeran una maravillosa simplicidad, no merecerían ser estudiadas. Escuchar un ruido nunca se ha considerado un pasatiempo agradable. Como escribió el matemático francés Henri Poincaré: «el científico no estudia la naturaleza por la utilidad de hacerlo; la estudia porque obtiene placer, y obtiene placer porque la naturaleza es bella. Si no fuera bella no valdría la pena conocerla, y si no valiera la pena conocer la naturaleza, la vida no sería digna de ser vivida».
Es de esperar que, tras un inicio nervioso, el latido de los números primos se regularice. No es así: cuanto más avanzamos en la secuencia, más empeoran las cosas. Consideremos, por ejemplo, los números primos comprendidos en el intervalo de los cien números anteriores a 10.000.000 y en el intervalo de los cien números posteriores a 10.000.000. Empecemos por los números primos anteriores a 10.000.000:
9.999.901, | 9.999.907, | 9.999.929, | |
9.999.931, | 9.999.937, | 9.999.943, | |
9.999.971, | 9.999.973, | 9.999.991 |
Sin embargo, observemos qué pocos son los números primos comprendidos entre 10.000.000 y 10.000.100:
10.000.019, 10.000.079
Es difícil pensar en una fórmula capaz de generar una secuencia de este tipo. En efecto, esta serie de números primos recuerda mucho más a una sucesión aleatoria de números que a una estructura bien ordenada. Así como noventa y nueve lanzamientos de una moneda son de muy poca utilidad para establecer el resultado del centésimo lanzamiento, del mismo modo los números primos parecen hacer inútil cualquier intento de previsión.
Los números primos presentan a los matemáticos una de las contraposiciones más extrañas que existen en su disciplina. Por un lado, un número o es primo o no lo es. No es lanzando al aire una moneda como sabremos si un número es divisible por otro menor. Por otra parte, es imposible negar que la sucesión de los números primos aparece de manera indudable como una secuencia de números al azar. Es cierto que los físicos están cada vez más habituados a la idea de que un dado cuántico puede decidir el futuro del universo y de que cada lanzamiento de ese dado determina el lugar donde los científicos encontrarán materia. Pero provoca una cierta incomodidad el hecho de tener que admitir que los números fundamentales, los números sobre los que se basan las matemáticas, hayan sido elegidos por la naturaleza lanzando una moneda, decidiendo en cada lanzamiento el destino de un número. Azar y caos son anatema para un matemático.
Si dejamos de lado su aleatoriedad, los números primos poseen —más que cualquier otra parte de nuestro acervo matemático— un carácter inmutable, universal. Los números primos existirían aunque nosotros no hubiéramos evolucionado lo suficiente como para reconocerlos. Como afirmó el matemático de Cambridge G. H. Hardy en su famoso libro Apología de un matemático: «317 es un número primo no porque nosotros pensemos que lo es o porque nuestra mente esté conformada de un modo o de otro, sino porque es así, porque la realidad matemática está hecha así».
Es probable que algunos filósofos estén en desacuerdo con esta visión platónica del mundo —la convicción de que se trata de una realidad absoluta y eterna más allá de la existencia humana— pero, en mi opinión, es precisamente eso lo que los hace filósofos y no matemáticos. En Materia de reflexión hay un diálogo fascinante entre Alain Connes, el matemático al que se citaba en el correo electrónico de Bombieri, y el neurobiólogo Jean-Pierre Changeux. En el libro se palpa la tensión, con Connes sosteniendo la existencia de las matemáticas fuera de la mente humana y Changeux decidido a refutar cualquier idea similar: «¿Por qué no vemos “π = 3,1416” escrito en el cielo con letras de oro o “6,02 × 1023” apareciendo en los reflejos de una bola de cristal?». Changeux expresa su frustración ante la insistencia de Connes en sostener que «existe, con independencia de la mente humana, una realidad matemática pura e inmutable» y que en el corazón del mundo se halla la secuencia inmutable de los números primos. Las matemáticas, afirma Connes, «son indiscutiblemente el único lenguaje universal». Puede concebirse que en otra parte del universo existan una química o una biología distintas, pero los números primos seguirán siendo números primos en cualquier galaxia que elijamos.
En la conocida novela de Carl Sagan, Contacto, los extraterrestres usan los números primos para entrar en contacto con la Tierra. Ellie Arroway, la heroína del libro, trabaja en el SETI (Search for Extraterrestrial Intelligence), el programa internacional para la búsqueda de señales de vida inteligente provenientes del espacio. De pronto una noche, cuando están dirigidos hacia Vega, los radiotelescopios captan extraños impulsos que emergen del ruido de fondo. Ellie reconoce al instante el ritmo de esas señales de radio: dos latidos seguidos por una pausa, luego tres latidos, cinco, siete, once… y así sucesivamente, reproduciendo la secuencia de los números primos hasta el 907. Después la secuencia vuelve a empezar.
Aquel redoble cósmico interpretaba una música que los terrícolas no podrían dejar de reconocer. Ellie está convencida de que sólo una forma de vida inteligente puede generar tal ritmo: «Es difícil imaginar un plasma irradiante que envíe una serie regular de señales matemáticas como ésta. Los números primos sirven para atraer nuestra atención». Si una civilización alienígena hubiera transmitido los números ganadores de una lotería extraterrestre durante los últimos diez años, Ellie no hubiera sido capaz de distinguirlos del ruido de fondo; pero a pesar de que la lista de números primos parece tan aleatoria como la de la lotería, su invariabilidad universal ha determinado su elección en la trasmisión alienígena. Es en esa estructura que Ellie reconoce la firma de una vida inteligente.
La comunicación mediante números primos no sólo es ciencia ficción. En el libro El hombre que confundió a su mujer con un sombrero, Oliver Sacks documenta el caso de John y Michael, dos gemelos autistas de veintiséis años cuya más profunda forma de comunicación consistía en el intercambio de números primos de seis cifras. Sacks narra su sorpresa cuando los descubrió por primera vez, en el rincón de una habitación, intercambiando números primos en secreto: «A primera vista parecían dos expertos catadores degustando vinos raros de añadas prestigiosas». En un principio, Sacks no consigue imaginar qué es lo que traman los gemelos; sin embargo, en cuanto consigue descifrar su código, memoriza algunos números primos de ocho cifras que, en la siguiente entrevista, deja caer astutamente en medio de la conversación. La sorpresa de los gemelos es seguida por una intensa concentración que se transforma en emoción cuando reconocen que se trata de nuevos números primos. Ahora, si bien Sacks había recurrido a tablas numéricas para determinar sus números primos, es un misterio la forma en que los gemelos consiguieron los suyos: ¿podría ser que aquellos sabios autistas estuvieran en posesión de una fórmula secreta desconocida por generaciones y generaciones de matemáticos?
La historia de los gemelos está entre las preferidas de Bombieri:
Para mí es difícil oír esta historia sin sentirme intimidado y pasmado ante el funcionamiento del cerebro humano. Sin embargo, me pregunto: mis amigos no matemáticos ¿tienen la misma reacción que yo? ¿Tienen la menor idea de hasta qué punto es sorprendente, prodigioso e incluso sobrehumano el talento singular que poseen los dos gemelos de manera tan natural? ¿Son conscientes de que desde hace siglos los matemáticos se esfuerzan por encontrar una forma de hacer lo que John y Michael hacían espontáneamente: generar y reconocer números primos?
A los treinta y siete años, antes de que alguien pudiera descubrir cómo lo conseguían, los gemelos fueron separados por los médicos, convencidos de que su lenguaje numerológico privado estaba obstaculizando su desarrollo. Si esos médicos hubieran oído las conversaciones habituales de las salas de profesores en los departamentos universitarios de matemáticas, probablemente también habrían recomendado su clausura.
Cabe la posibilidad de que los gemelos, para verificar si un número era primo, utilizaran un truco basado en el llamado teorema menor de Fermat. Este método es similar al utilizado por los sabios autistas para averiguar rápidamente, por ejemplo, que el 13 de abril de 1922 cayó en jueves. Los gemelos presentaban habitualmente este número en los programas televisivos de variedades en que participaban. Ambos trucos se basan en la aritmética modular o del reloj. Aunque no tuviesen una fórmula mágica para obtener los números primos, su habilidad sigue siendo asombrosa. Antes de que los separaran habían llegado a determinar primos de veintidós cifras, sobrepasando de mucho el límite más alto de las tablas de números primos de que disponía Sacks.
Igual que la heroína del libro de Sagan, que escucha el latido de los números primos cósmicos, o como Sacks, que espía el misterioso diálogo numérico de los gemelos, desde hace siglos los matemáticos se han esforzado por percibir un orden en este caos. Nada parecía tener sentido: era como escuchar música oriental con oídos occidentales. Más tarde, a mediados del siglo XIX, se llegó a una encrucijada decisiva: Bernhard Riemann empezó a observar el problema de una manera completamente nueva. Con esta nueva perspectiva, Riemann empezó a comprender algunas cosas sobre la estructura que estaba en el origen del caos de los números primos. Bajo el ruido aparente se escondía una armonía fina e inesperada. Pero a pesar de aquel gran paso adelante, muchos de los secretos de la nueva música permanecían todavía fuera de su alcance. Riemann, el Wagner del mundo de las matemáticas, no se desanimó. Hizo una previsión audaz sobre la misteriosa música que había descubierto. Aquella previsión ha pasado a la historia con el nombre de hipótesis de Riemann. Quien consiga demostrar que la intuición de Riemann sobre la naturaleza de aquella música era correcta estará en disposición de explicar por qué los números primos dan una impresión tan convincente de aleatoriedad.
La intuición de Riemann siguió a su descubrimiento de un espejo matemático que le permitía escrutar los primos. Cuando Alicia atravesó su espejo, el mundo se invirtió; en el extraño mundo matemático que se encuentra más allá del espejo de Riemann, en cambio, el caos de los números primos parece transformarse en una estructura ordenada más estable de lo que cualquier matemático podría esperar. Riemann conjeturó que, por más lejos que se mire en el mundo infinito del espejo, aquel orden se mantendrá. La existencia de una armonía interna en el otro lado del espejo explicaría por qué externamente los números primos parecen tan caóticos. Para muchos matemáticos, la metamorfosis que produce el espejo de Riemann, donde el caos se transmuta en orden, es casi milagrosa. La empresa que Riemann encargó al mundo matemático fue demostrar que el orden que él creía haber discernido existía realmente.
El correo electrónico del 7 de abril de 1997 prometía el inicio de una nueva era: la visión de Riemann no había sido un espejismo. El aristócrata de las matemáticas había ofrecido a sus colegas la halagüeña posibilidad de la existencia de una explicación en el aparente caos de los números primos. Los matemáticos esperaban impacientes el momento de apropiarse de todos los tesoros que, como bien sabían, habrían sido desenterrados gracias a la resolución del gran problema.
En efecto, la solución de la hipótesis de Riemann tendrá enormes consecuencias sobre muchos otros problemas matemáticos. Los números primos son tan fundamentales para la actividad del matemático que cualquier progreso en la comprensión de su naturaleza tendría un enorme impacto. La hipótesis de Riemann parece un problema imposible de eludir: cuando uno se mueve en el terreno matemático tiene la impresión de que todos los caminos conducirán necesariamente a algún punto desde el cual divisaremos el imponente panorama de la hipótesis de Riemann.
Muchos han comparado la hipótesis de Riemann con el ascenso al Everest: cuanto más tiempo la cumbre permanece inalcanzada, mayor es el deseo de conquistarla. Y el matemático que finalmente consiga escalar el monte Riemann será ciertamente recordado mucho más que Edmund Hillary. La conquista del Everest produce admiración no porque su cima sea un lugar particularmente emocionante para vivir, sino por el reto que supone. Bajo este aspecto la hipótesis de Riemann difiere significativamente del ascenso a la montaña más alta del mundo. La cima de Riemann es un lugar donde queremos instalarnos porque conocemos ya los panoramas que se abrirán ante nuestros ojos cuando consigamos alcanzarla. Aquel que demuestre la hipótesis de Riemann habrá hecho posible completar las lagunas de miles de teoremas que dependen de su veracidad. Para alcanzar sus propias metas, muchos matemáticos han tenido que suponer que la hipótesis es cierta.
El hecho de que tantos resultados dependan del reto lanzado por Riemann justifica que los matemáticos lo definan como hipótesis en lugar de hablar de conjetura. El término hipótesis tiene la connotación mucho más fuerte de una suposición necesaria que hace un matemático para edificar una teoría. En cambio, una conjetura representa simplemente una previsión sobre cómo el matemático cree que se comportará su mundo. Para muchos no hubo otra solución que aceptar su propia incapacidad para resolver el enigma de Riemann y se han limitado a adoptar su previsión como hipótesis de trabajo. Si alguien consiguiese transformar la hipótesis en teorema, todos aquellos resultados no demostrados se confirmarían.
Cuando apelan a la hipótesis de Riemann, los matemáticos están poniendo en juego su reputación con la esperanza de que algún día alguien demuestre que la intuición de este matemático era correcta. Hay quien no se limita a adoptarla como hipótesis de trabajo: para Bombieri, el hecho de que los números primos se comporten de la manera prevista por la hipótesis de Riemann es un artículo de fe. En pocas palabras, la hipótesis de Riemann se ha convertido en una piedra angular en la búsqueda de la verdad matemática. Si resultase falsa, destruiría completamente nuestra confianza en la capacidad que tenemos de intuir el funcionamiento de las cosas. Estamos ya tan seguros de que Riemann tenía razón que la alternativa exigiría una revisión radical de nuestro modo de concebir el mundo matemático. En particular, todos los resultados que creemos que existen más allá de la cumbre de Riemann se desvanecerían en el vacío.
Sin embargo, una demostración de la hipótesis de Riemann significaría para los matemáticos sobre todo la posibilidad de disponer de un procedimiento muy rápido y absolutamente cierto para determinar, por ejemplo, un número primo de cien cifras o de cualquier otra cantidad de cifras que elijamos. «¿Y qué?», se preguntará usted, con toda la razón. A menos que sea matemático, la idea de que este hecho pueda tener importantes consecuencias en su vida le parecerá harto improbable.
Encontrar números primos de cien cifras parece tan inútil como contar los granos de arena de una playa. La mayor parte de la gente reconoce que las matemáticas están en la base de la construcción de un avión o del desarrollo de la tecnología electrónica, pero pocos esperarían que el esotérico mundo de los números primos tenga un impacto directo en sus vidas. En realidad, todavía en los años cuarenta del pasado siglo, G. H. Hardy opinaba igual: «Tanto un Gauss como otros matemáticos menos importantes pueden alegrarse con razón del hecho de que, de todos modos, hay una ciencia [la teoría de los números] cuya propia lejanía de las actividades humanas ordinarias debería mantenerla amable y pura».
Sin embargo, más recientemente, los acontecimientos han tomado un nuevo cariz que ha permitido a los números primos conquistar el centro del escenario del mundo sucio y despiadado del comercio. Los números primos ya no están encerrados en la ciudadela matemática. En los años setenta tres científicos —Ron Rivest, Adi Shamir y Leonard Adleman— transformaron la investigación sobre los números primos de un juego desinteresado que se practicaba en las torres de marfil del mundo académico en una aplicación comercial seria: explotando un descubrimiento de Pierre de Fermat en el siglo XVII, los tres idearon un modo de utilizar los números primos para proteger los números de nuestras tarjetas de crédito mientras viajan por los centros comerciales electrónicos del mercado global. Cuando se propuso la idea por primera vez en los años setenta nadie podía ni remotamente imaginar las dimensiones que alcanzaría el comercio electrónico, pero hoy ese comercio no podría existir sin el poder de los números primos. Cada vez que usted compra algo en una página de Internet, su ordenador usa la seguridad que proporciona la existencia de números primos de cien cifras. El sistema se llama RSA, a partir de las iniciales de sus tres inventores. Actualmente se han usado ya más de un millón de números primos para proteger el mundo del comercio electrónico.
Cualquier actividad comercial en Internet depende de los números primos de cien cifras para mantener la seguridad de la transacción. Finalmente, la expansión del comercio en Internet llevará a identificar a cada uno de nosotros mediante un número primo personal. El hecho de saber cómo una demostración de la hipótesis de Riemann puede contribuir a conocer la distribución de los números primos en el universo de los números ha adquirido de pronto un interés comercial.
Lo extraordinario es que, si bien la construcción de ese código de seguridad depende de los descubrimientos sobre números primos que Fermat realizó hace más de trescientos años, su decodificación depende de un problema que todavía somos incapaces de resolver. La seguridad de la codificación RSA depende de nuestra incapacidad de responder a cuestiones fundamentales sobre los números primos. Somos capaces de comprender la mitad de la ecuación, pero no la otra mitad. Por tanto, cuanto más penetramos en el misterio de los números primos tanto menos seguros se vuelven los códigos usados en Internet. Los números primos son la llave del cerrojo que protege los secretos electrónicos del mundo. Por eso empresas como AT&T o Hewlett-Packard están invirtiendo ingentes cantidades de dinero para comprender las sutilezas de los números primos y de la hipótesis de Riemann: lo que termine por descubrirse podría servir para descifrar códigos. Por esta razón la teoría de los números y el mundo de los negocios han sellado tan extraña alianza. El mundo de los negocios y los servicios de seguridad vigilan atentamente a los matemáticos puros.
En consecuencia, no sólo los matemáticos se agitaron ante el anuncio de Bombieri: ¿aquella solución de la hipótesis de Riemann iba a provocar el descalabro del comercio electrónico? Enviaron a Princeton agentes de la NSA, la agencia de seguridad nacional estadounidense, para averiguarlo. Sin embargo, mientras matemáticos y agentes del contraespionaje se dirigían a Princeton, algunas personas empezaron a notar algo sospechoso en el correo electrónico de Bombieri. Ciertamente se han asignado nombres extravagantes a algunas partículas elementales descubiertas: gluones, hiperones csi, mesones encantados, quark —este último gentileza del Finnegan’s Wake de James Joyce—. ¿Pero morones?[1] ¡Desde luego que no! Bombieri tiene la reputación de conocer al dedillo la hipótesis de Riemann, pero quienes lo tratan personalmente saben que posee además un pérfido sentido del humor.
Incluso el último teorema de Fermat había sido motivo de una inocentada cuando se descubrió una laguna en la demostración que Andrew Wiles había propuesto en Cambridge. Con el correo de Bombieri, la comunidad matemática se había dejado embaucar otra vez: el ansia de volver a vivir la emoción levantada por la demostración del último teorema de Fermat había llevado a los matemáticos a precipitarse sobre el anzuelo que Bombieri había puesto a su alcance. Además, el placer de reenviar un correo electrónico tan singular hizo que, mientras éste se difundía rápidamente, la fecha del 1 de abril desapareciera del texto. Todo lo anterior, en combinación con el hecho de que el correo se difundió en países en los que no se celebra el April Fool’s Day[2] provocó que la burla tuviera un éxito mucho mayor de lo que su autor podía prever. Finalmente, Bombieri tuvo que confesar que su mensaje era una broma. Mientras se aproximaba el siglo XXI, los números más fundamentales de las matemáticas se mantenían en la más profunda oscuridad: quien reía el último eran los números primos.
¿Cómo es posible que los matemáticos fuesen tan ingenuos como para creer a Bombieri? Desde luego, no se trata de personas dispuestas a conceder trofeos fácilmente. Antes de declarar que se ha demostrado un resultado, los matemáticos exigen severísimas verificaciones, mucho más severas que cualquier otra disciplina. Wiles lo comprendió cuando apareció la laguna en su primera demostración del último teorema de Fermat: completar el noventa y nueve por ciento del rompecabezas no es suficiente; la historia sólo recordará a quien coloque la última pieza. Y muy a menudo la última pieza permanece oculta durante años.
La búsqueda del manantial secreto de donde brotaban los números primos estaba en marcha desde hacía más de dos milenios; el aroma de aquel elixir había vuelto a los matemáticos demasiado vulnerables al engaño de Bombieri. Durante años, la simple idea de enfrentarse de algún modo a aquel problema tan difícil había aterrorizado a muchos de ellos; sin embargo, con el fin de siglo ocurrió un hecho singular: cada vez eran más numerosos los matemáticos dispuestos a hablar de la posibilidad de abordarlo, y la demostración del último teorema de Fermat alimentó todavía más la esperanza de resolver los grandes problemas.
Los matemáticos habían disfrutado de la atención que la solución de Wiles al problema de Fermat había atraído sobre su gremio, y no cabe duda de que esa sensación contribuyó a su deseo de creer a Bombieri. Un buen día, le propusieron a Andrew Wiles que posase para un anuncio de pantalones. Ser matemático casi te hacía sentir sexy. Los matemáticos pasan mucho tiempo en un mundo que los colma de emoción y de placer y, sin embargo, se trata de un placer que raramente pueden compartir con el resto del mundo; ahora se presentaba la ocasión de levantar un trofeo, de mostrar los tesoros que habían descubierto en sus largos y solitarios viajes.
La demostración de la hipótesis de Riemann hubiera sido un digno colofón matemático al siglo XX, un siglo que se había iniciado con el reto de Hilbert a los matemáticos de todo el mundo para que resolvieran aquel enigma. De los veintitrés problemas de la lista de Hilbert, la hipótesis de Riemann era el único que alcanzaba invicto el siglo XXI.
El 24 de mayo de 2000, con motivo del centenario del reto de Hilbert, matemáticos y periodistas se reunieron en el Collège de France de París para escuchar el anuncio de una nueva colección de siete problemas con los que se retaba a la comunidad matemática ante el tercer milenio. Los proponía un pequeño grupo de matemáticos de fama mundial formado, entre otros, por Andrew Wiles y Alain Connes. Se trataba de problemas inéditos en todos los casos excepto uno, que ya había formado parte de la lista de Hilbert: la hipótesis de Riemann. En homenaje a los ideales capitalistas que caracterizaron el siglo XX, estos retos aumentaban su interés con el añadido de un premio de un millón de dólares para cada uno: un incentivo seguro para el joven físico inventado por Bombieri, en caso de que no se conformara con la gloria.
La idea de los Problemas del Milenio se le ocurrió a Landon T. Clay, un hombre de negocios de Boston que hizo fortuna con la compraventa de fondos de inversión en un momento en que la bolsa iba viento en popa. A pesar de haber abandonado sus estudios de matemáticas en Harvard, Clay siente una auténtica pasión por esta disciplina, y quiere compartirla. Sabe que la fuerza que motiva a los matemáticos no es el dinero: «Lo que espolea a los matemáticos es el deseo de verdad, la sensibilidad ante la belleza, el poder y la elegancia de las matemáticas». Pero Clay no es ingenuo, y como hombre de negocios sabe bien que un millón de dólares podrían inducir a un nuevo Andrew Wiles a incorporarse a la cacería de soluciones de los grandes problemas irresueltos. Y así ha sido: la página de Internet del Instituto Clay de Matemáticas, donde se exponen al público los Problemas del Milenio, quedó bloqueado por la gran cantidad de visitas que recibió.
Los siete Problemas del Milenio tienen un espíritu distinto de los veintitrés problemas que Hilbert eligió un siglo antes: Hilbert había señalado el camino para los matemáticos de su siglo; muchos de sus problemas eran inéditos, y alentaban un cambio de actitud significativo respecto de las matemáticas. A diferencia del último teorema de Fermat, que obligaba a concentrarse en un detalle, los veintitrés problemas de Hilbert dirigían a la comunidad matemática hacia un modo de pensar más conceptual. Hilbert ofrecía a los matemáticos la oportunidad de efectuar un paseo en globo a gran altura sobre su disciplina, incitándolos a comprender la configuración global del terreno en lugar de examinar una a una las rocas presentes en el paisaje matemático. Este nuevo punto de vista debe mucho a Riemann, quien cincuenta años antes había iniciado ya la revolucionaria transición de las matemáticas de una disciplina de fórmulas y ecuaciones a una disciplina de ideas y teorías abstractas.
La elección de los siete Problemas del Milenio fue más conservadora: son los Turner de la galería de arte de los problemas matemáticos, mientras que las cuestiones de Hilbert constituían una colección más revolucionaria, más vanguardista. El conservadurismo de los nuevos problemas es imputable en parte al deseo de que las soluciones sean suficientemente definidas como para que quienes las planteen puedan recibir el premio de un millón de dólares. Los Problemas del Milenio son cuestiones que los matemáticos conocen desde hace ya décadas y, en el caso de la hipótesis de Riemann, desde hace más de un siglo: se trata de un compendio de clásicos.
Los siete millones de dólares que Clay puso sobre la mesa no suponen el primer caso en que se ofrece dinero para la solución de un problema matemático. Por haber demostrado el último teorema de Fermat, Wiles ingresó 75.000 marcos alemanes del premio que ofreció Paul Wolfskehl en 1908. De hecho, fue la historia del premio Wolfskehl lo que hizo que Wiles se fijara en Fermat a la impresionable edad de diez años. Clay cree que, si consigue otro tanto con la hipótesis de Riemann, será un dinero bien gastado. Más recientemente, dos editoriales, Faber & Faber de Gran Bretaña y Bloomsbury de los Estados Unidos, han ofrecido un millón de dólares a quien logre demostrar la conjetura de Goldbach, como reclamo publicitario para el lanzamiento de la novela El tío Petros y la conjetura de Goldbach, de Apostolos Doxiadis. Para ganar el premio había que explicar por qué todo número par puede expresarse como suma de dos números primos. Sin embargo, los editores no concedieron mucho tiempo a los posibles concursantes: la solución debía presentarse antes de la medianoche del 15 de marzo de 2002 y, cosa absurda, el concurso sólo estaba abierto a los residentes en Gran Bretaña y los Estados Unidos.
Según Clay, los matemáticos reciben escasas recompensas y poco reconocimiento a sus desvelos; por ejemplo, no existe un premio Nobel de Matemática al que puedan aspirar. En cambio, la medalla Fields puede ser considerada como el más importante reconocimiento en el mundo matemático. A diferencia de los Nobel, que acostumbran a concederse a científicos que se acercan al término de su carrera por los resultados que han obtenido mucho antes, las medallas Fields están reservadas a los matemáticos que todavía no hayan cumplido cuarenta años. Esta elección no está basada en la opinión muy extendida de que los matemáticos se queman muy jóvenes: John Fields, que concibió y dotó el premio, quería que los fondos sirvieran para incentivar a los matemáticos más prometedores para que obtuvieran resultados aún más importantes. Las medallas se otorgan cada cuatro años con motivo del Congreso Internacional de Matemáticos, y las primeras se entregaron en Oslo en 1936.
El límite máximo de edad se respeta estrictamente. A pesar de lo extraordinario de la labor desarrollada por Andrew Wiles al demostrar el último teorema de Fermat, el comité del premio no pudo otorgarle una medalla en el Congreso de Berlín de 1998, es decir, en la primera ocasión posible tras la aceptación definitiva de su demostración, porque Wiles había nacido en 1953. Por supuesto, se acuñó una medalla especial para conmemorar su empresa, pero no es comparable con el hecho de ser miembro del ilustre club de los agraciados con una medalla Fields. Entre éstos hay muchos de los protagonistas principales de nuestra historia: Enrico Bombieri, Alain Connes, Atle Selberg, Paul Cohen, Alexandre Grothendieck, Alan Barker, Pierre Deligne. Estos nombres suponen casi la quinta parte de la totalidad de las medallas concedidas hasta ahora.
Pero los matemáticos no aspiran a la medalla Fields por dinero. En lugar de las importantes sumas que ingresan los ganadores de un Nobel, la dotación que acompaña a una medalla Fields es de unos modestos 15.000 dólares canadienses. Sin embargo, los millones de Clay contribuirán a competir con el poderío económico de los premios Nobel. Al contrario de lo que ocurre con la medalla Fields o con el premio que ofrecieron Faber & Faber y Bloomsbury por la solución de la conjetura de Goldbach, en este caso cualquiera puede aspirar a ganar el premio, con independencia de su edad o nacionalidad, y sin más límite de tiempo para hallar la solución que el inexorable tic-tac de la inflación.
De todas maneras, la recompensa económica no es el principal motivo que empuja a los matemáticos a la caza de uno de los Problemas del Milenio, sino más bien la embriagadora perspectiva de alcanzar la inmortalidad que las matemáticas pueden conferir. Ciertamente, resolviendo uno de los problemas de Clay ganaría un millón de dólares, pero eso no es nada en comparación con el hecho de inscribir el propio nombre en el mapa intelectual de la civilización. La hipótesis de Riemann, el último teorema de Fermat, la conjetura de Goldbach, el espacio de Hilbert, la función tau de Ramanujan, el algoritmo de Euclides, el método del círculo de Hardy-Littlewood, la serie de Fourier, la numeración de Gödel, un cero de Siegel, la fórmula de la traza de Selberg, la criba de Eratóstenes, los números primos de Mersenne, el producto de Euler, los enteros de Gauss: todos ellos son descubrimientos que han llevado a la inmortalidad a los matemáticos que han desenterrado esos tesoros en el curso de sus exploraciones sobre los números primos. Sus nombres sobrevivirán mucho después de que nos hayamos olvidado de Esquilo, de Goethe o de Shakespeare. Como explicaba G. H. Hardy, «las lenguas mueren, pero las ideas matemáticas no. Inmortalidad quizá sea una palabra ingenua, pero un matemático tiene más probabilidades que cualquier otro ser humano de alcanzar lo que aquella palabra designa».
Los matemáticos que han luchado larga y fatigosamente en esta aventura épica para comprender que los números primos son algo más que simples nombres inscritos en el firmamento matemático. El tortuoso camino que ha seguido la historia de los números primos es el resultado de vidas concretas, de un conjunto rico y variado de dramatis personae. Figuras históricas de la Revolución francesa y amigos de Napoleón dan paso a modernos magos y a empresarios de Internet. Las historias de un contable indio, de un espía francés que se libró de ser ejecutado y de un judío húngaro fugitivo de la persecución de la Alemania nazi, tienen como denominador común la obsesión por los números primos. Cada uno de estos personajes ofrece una perspectiva única en su intento de añadir el propio nombre al cuadro de honor matemático. Los números primos han unido a los matemáticos a través de muchas fronteras nacionales: China, Francia, Grecia, América, Noruega, Australia, Rusia, India y Alemania son sólo algunos de los países que han aportado miembros prominentes a la tribu nómada de los matemáticos que cada cuatro años se reúne en un congreso internacional para narrar las historias de sus viajes.
No sólo es el deseo de dejar una impronta en el pasado lo que motiva a los matemáticos. Igual que ocurrió cuando Hilbert osó posar su mirada sobre lo desconocido, la demostración de la hipótesis de Riemann supondría el comienzo de una nueva aventura. Cuando Wiles tomó la palabra en la conferencia de prensa convocada para anunciar los premios Clay, insistió en subrayar que los problemas no son la meta final:
Allá afuera hay todo un mundo de matemáticas esperando a que lo descubran. Piensen, por favor, en los europeos de 1600. Sabían que al otro lado del Atlántico había un Nuevo Mundo; ¿qué clase de premio habrían otorgado para contribuir al descubrimiento y al desarrollo de los Estados Unidos? No un premio a la invención del aeroplano, no un premio a la invención del ordenador, no un premio a la fundación de Chicago, no un premio a la construcción de máquinas capaces de trillar campos de trigo; todas estas cosas han pasado a formar parte de Estados Unidos, pero en 1600 no podían ni imaginárselas: no, habrían dado un premio a la solución de problemas como el de la longitud.
La hipótesis de Riemann es la longitud de las matemáticas. Su solución abre la perspectiva de dibujar un mapa de las brumosas aguas del inmenso océano de los números primos. Representa apenas el comienzo de nuestra comprensión de los números de la naturaleza. Una vez que descubramos el secreto para orientarnos entre los números primos, quién sabe qué otras cosas podría haber allá afuera esperando a que las descubramos.