Singularidades y otros universos

¿QUÉ hay dentro de un agujero negro?

¿Cómo podemos saberlo, y por qué nos debería preocupar? Ninguna señal puede salir nunca del agujero para darnos la respuesta. Ningún intrépido explorador que pudiera entrar en el agujero para descubrirlo puede regresar y decírnoslo, ni siquiera transmitirnos la respuesta. Sea lo que sea lo que pueda haber en el corazón del agujero nunca puede salir e influir en nuestro Universo en modo alguno.

La curiosidad humana apenas queda satisfecha con estos argumentos. Especialmente cuando disponemos de las herramientas que pueden darnos la respuesta: las leyes de la física.

John Archibald Wheeler nos enseñó la importancia de la búsqueda para comprender el corazón de un agujero negro. En los años cincuenta planteaba «la cuestión del estado final» de la implosión gravitatoria como un Santo Grial para la física teórica, uno que podría enseñarnos detalles del «apasionado matrimonio» de la relatividad general con la mecánica cuántica. Cuando J. Robert Oppenheimer insistió en que el estado final queda oculto a la vista por un horizonte, Wheeler se resistió (capítulo 6), y sospecho que una razón importante de esa resistencia era su angustia por perder la posibilidad de ver en acción este matrimonio apasionado desde el exterior del horizonte.²

Aun después de aceptar el horizonte, Wheeler mantuvo su convicción de que la comprensión del corazón del agujero era un Santo Grial digno de ser buscado.³ Del mismo modo que la lucha para comprender la evaporación de agujeros negros nos ha ayudado a descubrir un matrimonio parcial de la mecánica cuántica con la relatividad general (capítulo 12), la lucha por comprender el corazón de un agujero negro podría ayudarnos a descubrir el matrimonio completo; podría llevarnos a las leyes completas de la gravedad cuántica. Y quizá la naturaleza del corazón guardará las claves para otros misterios del Universo: existe una semejanza entre la implosión del «big crunch», en el que, dentro de varios eones, nuestro Universo podría morir, y la implosión de la estrella que crea el corazón de un agujero negro. Enfrentándonos a una podríamos aprender acerca de la otra.

Durante treinta y cinco años los físicos han perseguido el Santo Grial de Wheeler, pero sólo con éxito modesto. Aún no sabemos con certeza qué hay en el corazón de un agujero, y la lucha por comprenderlo aún no nos ha enseñado con claridad las leyes de la gravedad cuántica. Pero hemos aprendido mucho; y no es lo menos importante la consideración de que, haya lo que haya en el interior de un agujero negro, ello está de hecho íntimamente ligado con las leyes de la gravedad cuántica.

Este capítulo describe algunos de los giros y recovecos más interesantes en la búsqueda del Santo Grial de Wheeler, y dónde nos ha llevado dicha búsqueda.

La primera respuesta provisional a la pregunta «¿Qué hay dentro de un agujero negro?» vino de J. Robert Oppenheimer y Hartland Snyder,4en su cálculo clásico de 1939 sobre la implosión de una estrella esférica (capítulo 6). Aunque la respuesta estaba contenida en las ecuaciones que publicaron, Oppenheimer y Snyder prefirieron no discutirla. Quizá temían que sólo añadiera leña a la controversia sobre su predicción de que la estrella en implosión «se aísla del resto del Universo» (es decir, forma un agujero negro). Quizá el conservadurismo científico innato de Oppenheimer, su poca disposición a especular,5les contuvo. Cualquiera que fuera la razón, no dijeron nada. Pero sus ecuaciones hablaban.

Después de crear un horizonte de agujero negro a su alrededor, decían sus ecuaciones, la estrella esférica continúa implosionando, inexorablemente, hasta alcanzar densidad infinita y volumen cero, después de lo cual crea y se funde en una singularidad espacio-temporal.

Una singularidad es una región donde —según las leyes de la relatividad general— la curvatura del espacio-tiempo se hace infinitamente grande, y el espacio-tiempo deja de existir. Puesto que la gravedad de marea es una manifestación de la curvatura espacio-temporal (capítulo 2), una singularidad es también una región de gravedad de marea infinita, es decir, una región en donde la gravedad ejerce un tirón infinito sobre todos los objetos a lo largo de algunas direcciones y una compresión infinita a lo largo de otras.

Uno puede imaginar una variedad de tipos diferentes de singularidades espacio-temporales, cada una de ellas con su forma peculiar de estiramiento y compresión de marea, y encontraremos varios tipos diferentes en este capítulo.

La singularidad predicha por los cálculos de Oppenheimer-Snyder6es muy sencilla. Su gravedad de marea tiene esencialmente la misma forma que la dela Tierra o la de la Luna o la del Sol; es decir, la misma forma que la gravedad de marea que da lugar a las mareas en los océanos de la Tierra (recuadro 2.5): la singularidad estira todos los objetos radialmente (tanto en dirección hacia el objeto como en dirección opuesta), y comprime todos los objetos transversalmente.

Imaginemos un astronauta que cae inicialmente de pie hacia el tipo de agujero negro descrito por las ecuaciones de Oppenheimer y Snyder. Cuanto mayor es el agujero, más tiempo puede sobrevivir el astronauta, así que para que éste tenga una longevidad máxima dejemos que el agujero sea de los más grandes que residen en los núcleos de los cuásares (capítulo 9): 10.000 millones de masas solares. Entonces el astronauta en caída cruza el horizonte y entra en el agujero alrededor de 20 horas antes de su muerte final, pero cuando entra aún está demasiado lejos de la singularidad para sentir su gravedad de marea. A medida que continúa cayendo cada vez con más velocidad, y se acerca cada vez más a la singularidad, la gravedad de marea se hace cada vez mayor hasta que, exactamente 1 segundo antes de llegar a la singularidad, el astronauta empieza a sentir que la gravedad le estira de pies a cabeza y le comprime lateralmente (imagen inferior en la figura 13.1). Al principio, el estiramiento y la compresión son soportables, pero continúan creciendo hasta que, unas centésimas de segundo antes de la singularidad (imagen intermedia), se hacen tan fuertes que su carne y sus huesos ya no pueden resistir por más tiempo. Su cuerpo se rompe y él muere. En la última centésima de segundo, el estiramiento y la compresión continúan aumentando y, cuando el astronauta llega a la singularidad, se hacen infinitamente fuertes, primero en sus pies, luego en su tronco y luego en su cabeza; su cuerpo se distiende infinitamente, y luego, según la relatividad general, se funde con la singularidad y se hace parte de ella.

Es completamente imposible para el astronauta atravesar la singularidad y salir por el otro lado porque, según la relatividad general, no hay «otro lado». El espacio, el tiempo y el espacio-tiempo dejan de existir en la singularidad. La singularidad es un límite abrupto, muy parecido al borde de una hoja de papel. No hay papel más allá de su borde; no hay espacio-tiempo más allá de la singularidad. Pero aquí termina la analogía. Una hormiga puede caminar sobre el papel directamente hasta llegar al borde y luego regresar, pero nada puede regresar de la singularidad; los astronautas, las partículas, las ondas, todas las cosas que llegan ahí son instantáneamente destruidas según las leyes de la relatividad general de Einstein.

El mecanismo de destrucción no queda completamente claro en la figura 13.1 debido a que en la figura se ignora la curvatura del espacio. De hecho, cuando el cuerpo del astronauta llega a la singularidad es estirado hasta una longitud verdaderamente infinita y aplastado transversalmente hasta un tamaño verdaderamente nulo. La extrema curvatura del espacio cerca de la singularidad le permite hacerse infinitamente largo sin que su cabeza sobresalga del horizonte del agujero. Tanto su cabeza como sus pies son atraídos hacia la singularidad, pero son atraídos manteniendo una distancia infinita entre aquélla y estos.

No es sólo el astronauta lo que es estirado y comprimido infinitamente en la singularidad, de acuerdo con las ecuaciones de Oppenheimer-Snyder; todas las formas de materia son estiradas y comprimidas infinitamente, incluso un átomo individual; incluso los electrones, protones y neutrones que forman los átomos; incluso los quarks que forman los protones y los neutrones.

¿Existe alguna forma de que el astronauta escape a este estiramiento y compresión infinitos? No; no después de que haya cruzado el horizonte. En cualquier lugar dentro del horizonte, según las ecuaciones de Oppenheimer-Snyder, la gravedad es tan fuerte (el espacio-tiempo está tan fuertemente distorsionado) que el propio tiempo (el tiempo de cualquiera) fluye hacia la singularidad.* Puesto que el astronauta, como cualquier otro, debe moverse inexorablemente hacia adelante en el tiempo, él es llevado con el flujo del tiempo hacia la singularidad. No importa lo que haga, no importa cómo accione sus motores a reacción, el astronauta no puede evitar el estiramiento y compresión infinitos de la singularidad.

___________________

* En la jerga técnica decimos que la singularidad es de «tipo-espacio».

Cada vez que los físicos vemos que nuestras ecuaciones predicen algo infinito sospechamos de las ecuaciones. Casi nada en el Universo real puede llegar a hacerse realmente infinito (pensamos nosotros). Por lo tanto, un infinito es casi siempre señal de que hay un error.

El estiramiento y la compresión infinitos de la singularidad no eran una excepción. Los pocos físicos que estudiaron la publicación de Oppenheimer y Snyder durante los años cincuenta y principios de los sesenta coincidieron unánimemente en que algo estaba mal. Pero ahí terminaba la unanimidad.

Un grupo, dirigido enérgicamente por John Wheeler, identificó el estiramiento y la compresión infinitos como un mensaje inequívoco de que lo relatividad general falla dentro de un agujero negro, en el punto final de la implosión estelar.8La mecánica cuántica debería impedir que la gravedad de marea se haga realmente infinita ahí, afirmaba Wheeler; ¿pero cómo? Saber la respuesta, argumentaba Wheeler, requeriría casar las leyes de la mecánica cuántica con las leyes de la gravedad de marea, es decir, con las leyes del espacio-tiempo curvo de la relatividad general de Einstein. La progenie de dicho matrimonio, las leyes de la gravedad cuántica, deben gobernar la singularidad, afirmaba Wheeler, y estas nuevas leyes podrían dar lugar a nuevos fenómenos físicos dentro del agujero negro, fenómenos diferentes de cualquiera que hayamos encontrado nunca.

Un segundo grupo, conducido por Isaac Markovich Khalatnikov y Evgeny Michailovich Lifshitz (miembros del grupo de investigación de Lev Landau en Moscú), vieron el estiramiento y la compresión infinitos como una advertencia de que el modelo idealizado de Oppenheimer y Snyder de una estrella en implosión no era digno de crédito.9Recordemos que Oppenheimer y Snyder exigían, como base para sus cálculos, que la estrella fuera exactamente esférica y sin rotación y que tuviera densidad uniforme, presión nula, no hubiera ondas de choque, no hubiera materia expulsada y no hubiera radiación derramada (figura 13.2). Estas idealizaciones extremas eran responsables de la singularidad, argumentaban Khalatnikov y Lifshitz. Cualquier estrella real tiene deformaciones aleatorias y minúsculas (minúsculas inhomogeneidades aleatorias en su forma, velocidad, densidad y presión), y a medida que la estrella implosiona, afirmaban ellos, estas deformaciones se harán mayores y detendrán la implosión antes de que pueda formarse una singularidad. Análogamente, aseguraban Khalatnikov y Lifshitz, las deformaciones aleatorias detendrán la implosión del big crunch (el «gran crujido») de nuestro Universo entero en unos eones y de este modo salvarán al Universo de su destrucción en una singularidad.

Khalatnikov y Lifshitz llegaron a estos puntos de vista en 1961 preguntándose si, según las leyes de la relatividad general de Einstein, las singularidades son estables frente a pequeñas perturbaciones.10En otras palabras, plantearon la misma cuestión acerca de las singularidades que la que encontramos en el capítulo 1 acerca de los agujeros negros: si al resolver la ecuación de campo de Einstein introducimos alguna pequeña pero aleatoria alteración en la forma de la estrella o el Universo en implosión y en la velocidad, densidad y presión de su material, y si insertamos en el marterial minúsculas pero aleatorias cantidades de radiación gravitatoria, ¿cómo afectarán estos cambios (estas perturbaciones) al punto final predicho de la implosión?

Para el horizonte del agujero negro, como vimos en el capítulo 7, las perturbaciones no suponen ninguna diferencia. La estrella en implosión perturbada sigue formando un horizonte y, aunque el horizonte esté deformado al principio, todas sus deformaciones serán radiadas hacia el exterior rápidamente, dejando detrás un agujero negro completamente «calvo». En otras palabras, el horizonte es estable frente a pequeñas perturbaciones.

No sucede lo mismo para la singularidad en el centro del agujero o en el crujido final del Universo, concluían Khalatnikov y Lifshitz. Sus cálculos parecían mostrar que minúsculas perturbaciones aleatorias empezarán a crecer cuando la materia en implosión intente crear una singularidad; crecerán tanto, de hecho, que impedirán que se forme la singularidad. Presumiblemente (aunque los cálculos no podían decirlo con seguridad), las perturbaciones detendrán la implosión y la transformarán en una explosión.

¿Cómo es posible que las perturbaciones inviertan la implosión? El mecanismo físico no estaba claro en absoluto en los cálculos de Khalatnikov-Lifshitz. Sin embargo, otros cálculos utilizando las leyes de la gravedad de Newton, que son más fáciles que los cálculos utilizando las leyes de Einstein, proporcionaban sugerencias. Por ejemplo (véase la figura 13.3), si la gravedad fuera suficientemente débil dentro de una estrella en implosión para que las leyes de Newton sean exactas, y si la presión de la estrella fuera demasiado pequeña para tener importancia, entonces las pequeñas perturbaciones darían lugar a que los diferentes átomos implosionasen hacia puntos ligeramente diferentes próximos al centro de la estrella. La mayoría de los átomos en implosión no se dirigirían exactamente hacia el centro sino que lo rodearían y saldrían hacia afuera, convirtiendo de este modo la implosión en una explosión. Parecía concebible que, incluso si las leyes de la gravedad de Newton fallan dentro de un agujero negro, algún mecanismo análogo a éste podría convertir la implosión en una explosión.

Me uní al grupo de investigación de John Wheeler como estudiante licenciado en 1962, poco después de que Khalatnikov y Lifshitz hubieran publicado su cálculo, y poco después de que Lifshitz junto con Landau hubiese consagrado el cálculo y su conclusión de «no singularidad» en un famoso libro de texto, La teoría clásica de los campos.¹¹ Recuerdo vivamente a Wheeler animando a su grupo de investigación a estudiar el cálculo. Si es correcto, sus consecuencias son profundas, nos dijo. Por desgracia, el cálculo era extremadamente largo y complicado, y los detalles publicados eran demasiado esquemáticos para permitir verificarlos (y Khalatnikov y Lifshitz estaban confinados dentro del telón de acero de la Unión Soviética, así que no podíamos sentarnos con ellos y discutir los detalles).

De todas formas, empezamos a contemplar la posibilidad de que el Universo en implosión, al alcanzar algún tamaño muy pequeño, pudiera «rebotar» y reexplotar en un nuevo «big bang» y, análogamente, que una estrella en implosión, después de hundirse dentro de su horizonte, pudiera rebotar y reexplotar. Pero ¿dónde podría ir la estrella si reexplotase? Ciertamente no podría explotar hacia atrás a través del horizonte del agujero. Las leyes de la gravedad de Einstein prohíben que cualquier cosa (excepto las partículas virtuales) salga del horizonte. Sin embargo, había otra posibilidad: la estrella podría arreglárselas para explosionar en alguna otra región de nuestro Universo o incluso en otro universo.

La figura 13.4 muestra una tal implosión y reexplosión utilizando una secuencia de diagramas de inserción. (Los diagramas de inserción, que son completamente diferentes de los diagramas espacio-temporales, fueron introducidos en las figuras 3.2 y 3.3.)

Cada diagrama en la figura 13.4 muestra el espacio curvo de nuestro Universo, y el espacio curvo de otro universo, como dos superficies bidimensionales insertadas en un hiperespacio de más dimensiones. [Recordemos que el hiperespacio es un producto de la imaginación de los físicos: nosotros, como seres humanos, estamos siempre confinados a vivir en el espacio de nuestro propio Universo (o, si pudiéramos estar allí, en el espacio del otro universo); nunca podemos salir de dichos espacios hacia el hiperespacio de más dimensiones que les rodea; ni siquiera podemos recibir nunca señales o información del hiperespacio. El hiperespacio sirve sólo como ayuda para visualizar la curvatura del espacio alrededor de la estrella en implosión y de su agujero negro, y para visualizar la forma en que la estrella puede implosionar en nuestro Universo y luego reexplosionar en otro universo.)

En la figura 13.4, los dos subuniversos son como islas separadas en un océano y el hiperespacio es como el agua del océano. De la misma forma que no hay ninguna conexión terrestre entre las islas, tampoco hay conexión espacial entre los universos.

La secuencia de diagramas en la figura 13.4 muestra la evolución de la estrella. La estrella, en nuestro Universo, está empezando a implosionar en el diagrama (a). En (b) la estrella ha formado un horizonte de agujero negro en torno a sí y sigue implosionando. En (c) y (d) la materia fuertemente comprimida de la estrella curva el espacio estrechamente alrededor de la estrella, formando un pequeño universo cerrado que se parece a la superficie de un globo, y este nuevo pequeño universo se desgaja de nuestro Universo y se mueve, aislado, en el hiperespacio. (Esto es análogo de alguna forma a los nativos de una de las islas que construyen un pequeño barco y emprenden viaje a través del océano.) En (d) y (e) el pequeño universo, con la estrella en su interior, se mueve a través del hiperespacio desde nuestro gran Universo al otro gran universo (como el barco que navega de una isla a otra). En (f) el pequeño universo se une al otro gran universo (como el barco arriba a la otra isla) y se expande, vomitando la estrella. En (g) y (h) la estrella explosiona en el otro universo.

Me siento incómodo al reconocer que este escenario suena a pura ciencia-ficción. Sin embargo, de la misma forma que los agujeros negros eran un resultado natural de la solución de Schwarzschild a la ecuación de campo de Einstein (capítulo 3), también este escenario es un resultado natural de otra solución a la ecuación de Einstein, una solución encontrada en 1916-1918 por Hans Reissner y Gunnar Nordström aunque éstos no la entendieran completamente. En 1960 dos de los estudiantes de Wheeler, Dieter Brill y John Graves,¹³ descifraron el significado físico de la solución de Reissner-Nordström, y pronto quedó claro que, con cambios menores, la solución de Reissner-Nordström describiría la estrella en implosión/explosión de la figura 13.4. Esta estrella sólo diferiría de la de Oppenheimer y Snyder en un aspecto fundamental: contendría dentro de sí suficiente carga eléctrica para producir un campo eléctrico intenso al hacerse altamente compacta, y dicho campo eléctrico parecería ser responsable de alguna forma de la reexplosión de la estrella en otro universo.

Recapitulemos dónde estaban las cosas en 1964 en la búsqueda del Santo Grial de Wheeler, la búsqueda para comprender el destino final de una estrella que implosiona para formar un agujero negro:

1. Conocíamos una solución de la ecuación de Einstein (la solución de Oppenheimer-Snyder) que predice que, si la estrella es de un tipo altamente idealizado, incluyendo una forma perfectamente esférica, entonces creará una singularidad con gravedad de marea infinita en el centro del agujero, una singularidad que captura, destruye y engulle todo lo que cae en el agujero.

2. Conocíamos otra solución de la ecuación de Einstein (una extensión de la solución de Reissner-Nordström) que predice que, si la estrella es de un tipo altamente idealizado pero con ligeras diferencias, incluyendo una forma esférica y carga eléctrica, entonces en el interior profundo del agujero negro la estrella se desgajará de nuestro Universo, se unirá a otro universo (o a una región distante de nuestro propio Universo), y reexplosionará allí.

3. No estaba ni mucho menos claro cuál, si es que había alguna, de estas soluciones era «estable frente a pequeñas perturbaciones aleatorias» y, por lo tanto, era un candidato a darse en el Universo real.

4. Khalatnikov y Lifshitz pretendían haber probado, sin embargo, que las singularidades son siempre inestables frente a pequeñas perturbaciones y, por lo tanto, no ocurren nunca, por lo que la singularidad de Oppenheimer-Snyder nunca podría ocurrir en nuestro Universo real.

5. En Princeton, al menos, había cierto escepticismo sobre la pretensión de Khalatnikov-Lifshitz. Este escepticismo pudo ser impulsado en parte por el deseo de Wheeler hacia las singularidades, pues serían un lugar de «casamiento» para la relatividad general y la mecánica cuántica.

Mil novecientos sesenta y cuatro fue un año decisivo. Fue el año en que Roger Penrose revolucionó las herramientas matemáticas que utilizamos para analizar las propiedades del espacio-tiempo. Su revolución fue tan importante, y tuvo un impacto tan grande en la búsqueda del Santo Grial de Wheeler, que haré una digresión de algunas páginas para describir su revolución y describir al propio Penrose.