La batalla

A la mañana siguiente Chandrasekhar tomó el tren a Londres y un taxi a Burlington House, sede de la Royal Astronomical Society. Mientras él y un amigo, Bill McCrae, estaban esperando el comienzo de la reunión, Eddington llegó andando y McCrae, que acababa de leer el programa, le preguntó: «Bien, profesor Eddington, ¿qué debemos entender por "Degeneración relativista"?». Eddington, por toda respuesta, se volvió a Chandrasekhar y dijo: «Esto es una sorpresa para usted», y siguió andando dejando a Chandrasekhar aún más inquieto.

Por fin, comenzó la reunión. El tiempo fue pasando a medida que el presidente de la Sociedad hacía varios anuncios, y varios astrónomos daban charlas sobre temas diversos. Por fin llegó el turno de Chandrasekhar. Conteniendo su ansiedad hizo una presentación impecable, haciendo énfasis particularmente en su masa máxima para las enanas blancas.

Tras los aplausos de cortesía de los miembros de la Sociedad, el presidente invitó a Eddington a tomar la palabra.

Eddington comenzó despacio, revisando la historia de la investigación sobre enanas blancas. Luego, tomando fuerza, describió las implicaciones perturbadoras del resultado de masa máxima de Chandrasekhar.

En el diagrama de Chandrasekhar con la masa de una estrella representada en el eje vertical y su circunferencia representada en el eje horizontal (figura 4.4), existe sólo un conjunto de masas y circunferencias para el que la gravedad puede ser contrarrestada por la presión de origen no térmico (presión que permanece después de que la estrella se enfríe): el de las enanas blancas. En la región a la izquierda de la curva de enanas blancas de Chandrasekhar (región rayada; estrellas con circunferencias menores), la presión de degeneración no térmica de las estrellas supera abrumadoramente a la gravedad. La presión de degeneración llevará a cualquier estrella en la región rayada a explotar. En la región a la derecha de la curva de las enanas blancas (región blanca; estrellas con circunferencias mayores), la gravedad supera abrumadoramente a la presión de degeneración de la estrella. Cualquier estrella fría que se encuentre en esta región implosionará inmediatamente bajo la compresión de la gravedad.

El Sol puede vivir en la región blanca solamente debido a que ahora está muy caliente; su presión térmica (inducida por el calor) le permite contrarrestar su gravedad. Sin embargo, cuando el Sol finalmente se enfríe, su presión térmica desaparecerá y ya no será capaz de sustentarse. La gravedad le obligará a contraerse cada vez más, confinando los electrones del Sol en celdas cada vez más pequeñas, hasta que al final estos electrones protesten con la presión de degeneración suficiente (presión no térmica) para detener la contracción. Durante esta «muerte» por contracción, la masa del Sol permanecerá aproximadamente constante, pero su circunferencia disminuirá, de modo que se moverá hacia la izquierda en línea horizontal en la figura 4.4, deteniéndose finalmente en la curva de las enanas blancas: su tumba. Allí, como enana blanca, el Sol continuará residiendo para siempre, enfriándose poco a poco y convirtiéndose en una enana negra: un objeto sólido, oscuro y frío, del tamaño aproximado de la Tierra pero un millón de veces más pesado y más denso.

Este destino final del Sol parecía bastante satisfactorio para Eddington. No así el destino último de una estrella más masiva que el límite de 1,4 masas solares establecido por Chandrasekhar para las enanas blancas —por ejemplo, Sirio, el compañero de 2,3 masas solares de Sirio B. Si Chandrasekhar tuviera razón, dicha estrella nunca podría morir con la muerte dulce que espera al Sol. Cuando la radiación que emite hacia el espacio se haya llevado calor suficiente para que la estrella empiece a enfriarse, su presión térmica declinará y la compresión de la gravedad hará que se contraiga cada vez más. Para una estrella tan masiva como Sirio, la contracción no puede ser detenida por la presión de degeneración no térmica. Esto es evidente en la figura 4.4, donde la región rayada no se extiende lo suficiente hacia arriba como para interceptar el camino de la contracción de Sirio. Eddington encontraba perturbadora esta predicción.

La estrella tiene que continuar radiando cada vez más y contrayéndose cada vez más —dijo Eddington a su audiencia—, hasta que, supongo, se reduzca a unos pocos kilómetros de radio, cuando la gravedad se haga suficientemente fuerte para refrenar la radiación y la estrella pueda finalmente encontrar la paz. —En palabras de los años noventa, debe formar un agujero negro—. El doctor Chandrasekhar ha obtenido antes este resultado, pero lo ha suprimido de su último artículo; y cuando lo discutí con él, me sentí llevado a la conclusión de que esto era casi una reductio ad absurdum de la fórmula de degeneración relativista. Accidentes diversos pueden intervenir para salvar la estrella, pero yo quiero más protección que eso. ¡Pienso que debería haber una ley de la naturaleza que impida que una estrella se comporte de esta forma absurda!10

A continuación, Eddington argumentó que la demostración matemática que hacía Chandrasekhar de su resultado no era fiable puesto que estaba basada en un ajuste sofisticado e inadecuado de la relatividad especial con la mecánica cuántica. «Yo no creo que la descendencia de tal unión haya nacido de un matrimonio legítimo —dijo Eddington—. Estoy convencido de que [si el ajuste se hace correctamente] las correcciones de la relatividad se compensan, de modo que volvemos a la fórmula "ordinaria"» (es decir, a una resistencia de 5/3, que permitiría que las enanas blancas fueran arbitrariamente masivas y, de este modo, permitiría que la presión detuviera la contracción de Sirio en la curva de puntos hipotética en la figura 4.4). Eddington esbozó entonces cómo pensaba él que la relatividad especial y la mecánica cuántica deberían ajustarse: un tipo de ajuste bastante diferente del que habían utilizado Chandrasekhar, Stoner y Anderson, y un ajuste, afirmaba Eddington, que salvaría a todas las estrellas del destino del agujero negro.

Chandrasekhar quedó conmocionado. Nunca hubiera esperado un ataque semejante a su trabajo. ¿Por qué Eddington no lo discutió con él por adelantado? Y en cuanto al argumento de Eddington, a Chandrasekhar le pareció artificioso —casi con seguridad erróneo.

Ahora bien, Arthur Eddington era el gran hombre de la astronomía británica. Sus descubrimientos eran casi legendarios. Era el principal responsable de la comprensión que tenían los astrónomos de las estrellas normales como el Sol y Sirio, sus interiores, sus atmósferas y la luz que emiten; por lo tanto, era natural que los miembros de la Sociedad y los astrónomos de todo el mundo le escuchasen con gran respeto. Evidentemente, si Eddington pensaba que el análisis de Chandrasekhar era incorrecto, entonces debía ser incorrecto.

Después de la reunión, un miembro tras otro se acercaron a Chandrasekhar para ofrecerle condolencias. «Presiento que Eddington tiene razón», le dijo Milne.

Al día siguiente, Chandrasekhar empezó a buscar ayuda entre sus amigos físicos. Escribió a León Rosenfeld en Copenhague: «Si Eddington tiene razón, todo el trabajo de mis últimos cuatro meses se va a la basura. ¿Podría Eddington estar en lo cierto? Me gustaría mucho conocer la opinión de Bohr». (Niels Bohr era uno de los padres de la mecánica cuántica y el físico más respetado de los años treinta.) Rosenfeld contestó dos días más tarde asegurando que tanto él como Bohr estaban convencidos de que Eddington estaba equivocado y Chandrasekhar tenía razón: «Puedo decir que tu carta constituyó una cierta sorpresa para mí —le escribió—, pues nadie había siquiera soñado en cuestionarse las ecuaciones [que tú utilizaste para derivar la resistencia 4/3], y el comentario de Eddington que recoges en tu carta es absolutamente oscuro. Por ello, pienso que deberías animarte y no dejarte asustar tanto [sic] por los sumos sacerdotes». En una carta posterior ese mismo día, Rosenfeld escribió: «Bohr y yo somos absolutamente incapaces de encontrar cualquier significado en las afirmaciones de Eddington».¹¹

Pero para los astrónomos la cuestión no estaba tan clara al principio. No eran expertos en estas cuestiones de mecánica cuántica y relatividad, de modo que la autoridad de Eddington prevaleció entre ellos durante varios años. Además, Eddington se mantenía en sus trece. Estaba tan cegado por su oposición a los agujeros negros que su juicio se hallaba totalmente obnubilado. Deseaba tan profundamente que hubiera «una ley de la naturaleza que impida a una estrella comportarse de esta forma absurda» que continuó creyendo durante el resto de su vida que existe tal ley, cuando, de hecho, no existe.

A finales de los años treinta, los astrónomos, después de consultar con sus colegas físicos, comprendieron el error de Eddington, pero su respeto por sus enormes logros anteriores les impidió manifestarlo públicamente. Durante una charla en una conferencia de astronomía en París en 1939, Eddington atacó de nuevo las conclusiones de Chandrasekhar. Mientras Eddington estaba haciendo su ataque, Chandrasekhar le pasó una nota a Henry Norris Russell (un famoso astrónomo de la Universidad de Princeton en Norteamérica), que presidía la sesión. La nota de Chandrasekhar le pedía permiso para responder. Russell le mandó otra nota diciendo: «Prefiero que no lo haga», aunque ese mismo día le había dicho a Chandrasekhar en privado: «Allí ninguno de nosotros creemos en Eddington».¹²

Una vez que los astrónomos más destacados del mundo habían aceptado finalmente —al menos a espaldas de Eddington— la masa máxima de Chandrasekhar para las enanas blancas, ¿estaban dispuestos a admitir que los agujero negros podían existir en el Universo real? En absoluto. Si la naturaleza no proporcionaba ninguna ley contra ellos del tipo de la que Eddington había buscado, entonces la naturaleza seguramente encontraría otra salida: presumiblemente toda estrella masiva expulsaría suficiente materia al espacio interestelar, a medida que envejece o durante sus estertores de muerte, como para reducir su masa por debajo de 1,4 soles y, de este modo, entrar en una tranquila tumba de enana blanca.¹³ Esta era la opinión a la que se adhirieron la mayoría de los astrónomos cuando Eddington perdió su batalla, y la mantuvieron durante los años cuarenta y cincuenta y entrados los sesenta.

En cuanto a Chandrasekhar, salió bastante quemado de la controversia con Eddington. Como recordaba unos cuarenta años más tarde:

Sentí que los astrónomos sin excepción pensaban que yo estaba equivocado. Me consideraban una especie de Don Quijote tratando de matar a Eddington. Como usted puede imaginar fue una experiencia muy desagradable para mí; encontrarme enfrentado a la figura capital de la astronomía y ver que mi trabajo era completamente desacreditado por la comunidad astronómica. Tuve que plantearme lo que iba a hacer. ¿Tendría que pasar el resto de mi vida peleando? Después de todo yo tenía veinticinco años en esa época. Preveía para mí unos treinta o cuarenta años de trabajo científico, y sencillamente no pensé que fuera productivo estar remachando constantemente algo que ya estaba hecho. Era mucho mejor para mí cambiar mi campo de interés y dedicarme a otra cosa.14

Por esta razón, en 1939 Chandrasekhar dio la espalda a las enanas blancas y la muerte de las estrellas y no volvió a ellas hasta un cuarto de siglo más tarde (capítulo 7).

¿Y qué fue de Eddington? ¿Por qué trató tan mal a Chandrasekhar? Es posible que a Eddington el tratamiento no le pareciese malo en absoluto. Para él, el conflicto intelectual agitado y voluble era una forma de vida. Tratar al joven Chandrasekhar de esta forma pudo haber sido, en cierto sentido, una medida de respeto, un signo de que estaba aceptando a Chandrasekhar como un miembro de la comunidad astronómica.15De hecho, desde su primer enfrentamiento en 1935 hasta la muerte de Eddington en 1944, Eddington mostró una calurosa estima personal hacia Chandrasekhar, y Chandrasekhar, aunque quemado en la controversia, le correspondió.

RECUADRO 4.1

Una breve historia de la dualidad onda/partícula

Ya en la época de Isaac Newton (a finales del siglo XVII), los físicos discutían sobre la cuestión de si la luz está constituida por partículas o por ondas. Newton, aunque se mostraba equívoco sobre la cuestión, se inclinó hacia las partículas que llamó corpúsculos, mientras que Christiaan Huygens argumentaba a favor de las ondas. El punto de vista de las partículas de Newton prevaleció hasta comienzos del siglo XIX, cuando el descubrimiento de que la luz puede interferir consigo misma (capítulo 10) convirtió a los físicos al punto de vista ondulatorio de Huygens. A mediados del siglo XIX, James Clerk Maxwell estableció la descripción ondulatoria sobre una base firme con sus leyes unificadas de la electricidad y el magnetismo, y entonces los físicos pensaron que la cuestión había quedado definitivamente zanjada. Sin embargo, eso fue antes de la mecánica cuántica.

En la década de 1890 Max Planck notó indicios, en la forma del espectro de la luz emitida por objetos muy calientes, de que algo podría estar equivocado en la comprensión de la luz por parte de los físicos. Einstein, en 1905, mostró qué era lo que faltaba: la luz se comporta a veces como una onda y a veces como una partícula (hoy denominada fotón). Se comporta como una onda, explicó Einstein, cuando interfiere consigo misma; pero se comporta como una partícula en el efecto fotoeléctrico: cuando un rayo de luz incide sobre una pieza metálica, el haz expulsa electrones del metal uno a uno, precisamente como si partículas individuales de luz (fotones individuales) estuvieran golpeando a los electrones y sacándolos uno a uno de la superficie del metal. A partir de la energía de los electrones, Einstein infirió que la energía del fotón es siempre inversamente proporcional a la longitud de onda de la luz. Por lo tanto, el fotón y las propiedades ondulatorias de la luz están entremezclados; la longitud de onda está inexorablemente ligada a la energía del fotón. El descubrimiento de Einsten de la dualidad onda/partícula de la luz, y las leyes provisionales mecanocuánticas de la física que él empezó a construir en torno a este descubrimiento, le valieron el Premio Nobel de 1921 en 1922*

___________________

*En aquella época no era infrecuente que la concesión del Premio Nobel se aplazase por un año (y en ocasiones quedó definitivamente desierto). Esto hizo posible que a Einstein y a Bohr se les comunicase la concesión de sendos Premios Nobel el mismo día, aunque el premio de Einsten correspondía a 1921, y el de Bohr, a 1922. (N. del T.)

Aunque Einstein formuló la relatividad general casi por sí solo, él fue sólo uno entre los muchos que contribuyeron a las leyes de la mecánica cuántica -la leyes del «reino de lo pequeño».

Cuando Einstein descubrió la dualidad onda/partícula de la luz no se dio cuenta que un electrón o un protón podría también comportarse a veces como una partícula y a veces como una onda. Nadie reconoció esto hasta que, a mediados de los años veinte, Louis de Broglie lo planteó como una conjetura, y luego Erwin Schrödinger lo utilizó como base para un conjunto completo de leyes mecanocuánticas, leyes en las que un electrón es una onda de probabilidad. ¿Probabilidad de qué? De la localización de una partícula. Estas «nuevas» leyes mecanocuánticas (que se han mostrado enormemente satisfactorias en la explicación del comportamiento de los electrones, protones, átomos y moléculas) no nos interesan mucho en este libro. Sin embargo, de vez en cuando algunas de sus características serán importantes. En este capítulo, la característica importante es la degeneración electrónica.

RECUADRO 4.2