5 - La implosión es obligatoria

donde incluso la fuerza nuclear,

supuestamente la más fuerte de todas las fuerzas,

no puede resistir la opresión de la gravedad¹

Zwicky

En los años treinta y cuarenta, muchos de los colegas de Fritz Zwicky le consideraban un bufón irritante. Las futuras generaciones de astrónomos le recordarán como un genio creativo.

«Cuando conocí a Fritz en 1933, él estaba completamente convencido de que tenía la vía interior hacia el conocimiento último, y que cualquier otro estaba equivocado»,² dice William Fowler, entonces estudiante en el Caltech (el Instituto Tecnológico de California) donde Zwicky enseñaba e investigaba. Jesse Greenstein, un colega de Zwicky en el Caltech desde finales de los años cuarenta en adelante, recuerda a Zwicky como

un genio autoproclamado ... No hay duda de que tenía una mente bastante extraordinaria. Pero también era, aunque él no quisiera admitirlo, poco disciplinada y falta de autocontrol ... Impartía un curso de física en el que ser admitido dependía de su voluntad. Si pensaba que una persona era suficientemente devota de sus ideas, entonces dicha persona podía ser admitida ... Estaba demasiado sólo [entre la facultad de físicas del Caltech], y no era popular entre el sistema ... Sus publicaciones incluían a menudo violentos ataques a otras personas.³

Zwicky —un hombre bajo pero robusto, engreído y siempre dispuesto al combate— no dudaba en proclamar su vía interior hacia el conocimiento último ni en anunciar las revelaciones a que conducía. Conferencia tras conferencia durante los años treinta, y artículo tras artículo, pregonaba el concepto de una estrella de neutrones —un concepto que él, Zwicky, había ideado para explicar los orígenes de los fenómenos más energéticos vistos por los astrónomos: las supernovas y los rayos cósmicos. Incluso participó en un programa radiofónico de alcance nacional para popularizar sus estrellas de neutrones.4Pero sus artículos y conferencias no resultaban convincentes cuando se les sometía a un riguroso examen. Contenían poca base comprobable para sus ideas.

Se rumoreaba que cuando, en medio de esta barahúnda, se le preguntó a Robert Millikan (el hombre que había erigido el Caltech como una centro impulsor de las instituciones científicas) por qué mantenía a Zwicky en el Caltech, contestó que bien podría suceder que algunas de las extravagantes ideas de Zwicky fuesen ciertas. Millikan, a diferencia de otros dentro del mundo científico dominante, debió de percibir indicios del genio intuitivo de Zwicky, un genio que fue ampliamente reconocido sólo treinta y cinco años más tarde cuando los astrónomos observacionales descubrieron estrellas de neutrones reales en el cielo y verificaron algunas de las extravagantes afirmaciones de Zwicky sobre ellas.

Entre las afirmaciones de Zwicky, la más relevante para este libro es el papel de las estrellas de neutrones como cadáveres estelares. Como veremos, una estrella normal que es demasiado masiva para tener una muerte de enana blanca puede morir, en su lugar, como estrella de neutrones. Si todas las estrellas masivas tuviesen que morir de esta forma, entonces el Universo se salvaría de los más escandalosos de entre los hipotéticos cadáveres estelares: los agujeros negros. Con las estrellas ligeras convirtiéndose en enanas blancas cuando mueren, y las estrellas pesadas convirtiéndose en estrellas de neutrones, la naturaleza no tendría modo de construir un agujero negro. Einstein y Eddington y la mayoría de los físicos y astrónomos de su época, darían un suspiro de alivio.

Zwicky había sido tentado por Millikan en 1925 para ir al Caltech. Millikan esperaba que hiciera investigación teórica sobre las estructuras mecanocuánticas de átomos y cristales, pero entre finales de los años veinte y principios de los treinta Zwicky se orientó cada vez más hacia la astrofísica. Resultaba difícil no sentirse extasiado ante el Universo astronómico cuando se trabajaba en Pasadena, la sede no sólo del Caltech sino también del Observatorio del Monte Wilson, que disponía del mayor telescopio del mundo, un telescopio reflector de 2,5 metros de diámetro.

En 1931 Zwicky se asoció a Walter Baade, un recién llegado a Monte Wilson procedente de Hamburgo y Gotinga, que era un extraordinario astrónomo observacional. Baade y Zwicky compartían un bagaje cultural común: Baade era alemán, Zwicky era suizo, y ambos hablaban alemán como lengua materna. También compartían un mutuo respeto por la brillantez del otro. Pero ahí terminaban las cosas en común. El carácter de Baade era diferente del de Zwicky. Era reservado, orgulloso, difícil de llegar a conocer, bien informado sobre cualquier cosa; y tolerante con las peculiaridades de sus colegas. Zwicky pondría a prueba la tolerancia de Baade durante los años siguientes hasta que finalmente, durante la segunda guerra mundial, se separaron violentamente. «Zwicky llamó nazi a Baade, cosa que no era, y Baade dijo que tenía miedo de que Zwicky le matase. Se convirtieron en una pareja peligrosa para meter en la misma habitación»,5recuerda Jesse Greenstein.

Durante 1932 y 1933, a Baade y Zwicky se les vio a menudo en Pasadena, conversando animadamente en alemán sobre estrellas llamadas «novas», que repentinamente se encienden en una llamarada y resplandecen con un brillo 10.000 veces mayor que antes; y luego, al cabo de aproximadamente un mes, se oscurecen lentamente hasta volver a la situación normal. Baade, con su conocimiento enciclopédico de la astronomía, sabía de la evidencia provisional de que, además de estas novas «ordinarias», podrían existir también novas superluminosas poco usuales y extrañas. Al principio, los astrónomos no habían sospechado que estas novas fuesen superluminosas, puesto que a través de los telescopios parecían tener aproximadamente el mismo brillo que una nova ordinaria. Sin embargo, residían en nebulosas peculiares («nubes» brillantes); y en los años veinte, las observaciones en el Monte Wilson y en otro lugares empezaron a convencer a los astrónomos de que aquellas nebulosas no eran simplemente nubes de gas en nuestra propia Vía Láctea, como se había pensado, sino que más bien eran galaxias independientes: agregados gigantes de aproximadamente 10¹² (un billón) estrellas, fuera y muy lejos de nuestra propia galaxia. Al estar tan alejadas de las novas ordinarias de nuestra Vía Láctea, las escasas novas vistas en dichas galaxias deberían tener una luminosidad intrínseca mucho mayor que las novas ordinarias para que pudiesen tener un brillo similar vistas desde la Tierra.

Baade recogió de la literatura publicada todos los datos observacionales que pudo encontrar sobre cada una de las seis novas superluminosas que los astrónomos habían detectado desde comienzos de siglo. Combinó estos datos con toda la información observacional que pudo extraer de las distancias a las galaxias en las que residían y, a partir de esta combinación, calculó cuánta luz emitían las novas superluminosas. Su conclusión fue estremecedora: durante el estallido estas novas superluminosas eran típicamente ¡108(100 millones) veces más luminosas que nuestro Sol! (Hoy sabemos, gracias principalmente al trabajo del propio Baade en 1952, que las distancias estaban infravaloradas en los años treinta6en un factor aproximado de 10 y que, en consecuencia,* las novas superluminosas son aproximadamente 1010—10.000 millones— veces más luminosas que nuestro Sol.)

___________________

* La cantidad de luz recibida en la Tierra es inversamente proporcional al cuadrado de la distancia a la supernova, de modo que un error de un factor 10 en la distancia se traduce en un error de un factor 100 en la estimación de Baade de la emisión total de luz.

Zwicky, un amante de los extremos, estaba fascinado por estas novas superluminosas. Él y Baade discutieron incansablemente sobre ellas y acuñaron el nombre de supernovas. Cada supernova, suponían ellos (correctamente), estaba producida por la explosión de una estrella normal. Y la explosión era tan caliente, sospechaban ellos (esta vez incorrectamente), que irradiaba mucha más energía en forma de luz ultravioleta y en forma de rayos X que en forma de luz ordinaria. Debido a que la luz ultravioleta y los rayos X no pueden atravesar la atmósfera de la Tierra, era imposible medir de forma precisa cuánta energía contenían. Sin embargo, sería posible estimar su energía a partir del espectro de la luz observada y de las leyes de la física que gobiernan el gas caliente en las supernovas en explosión.

Combinando los conocimientos de Baade de las observaciones y de las novas ordinarias con la comprensión de Zwicky de la física teórica, Baade y Zwicky concluyeron (incorrectamente) que la radiación ultravioleta y los rayos X de una supernova deben llevar al menos 10.000 y quizá 10 millones de veces más energía incluso que la luz visible. Zwicky, con su amor por los extremos, supuso rápidamente que el factor mayor, 10 millones,7era el correcto y lo citaba con entusiasmo.

Este factor (incorrecto) de 10 millones significaba que durante los días en que la supernova alcanza su mayor brillo emite una enorme cantidad de energía: una energía aproximadamente 100 veces mayor que la que radiará nuestro Sol en forma de calor y de luz durante todos sus 10.000 millones de años de vida. ¡Esta es aproximadamente la energía que se obtendría si se pudiera convertir una décima parte de la masa de nuestro Sol en pura energía luminosa!

(Gracias a décadas de posteriores estudios observacionales de las supernovas —muchos de ellos realizados por el propio Zwicky— sabemos hoy que la estimación de Baade-Zwicky para la energía total de una supernova no estaba muy lejos de la verdad. Sin embargo, sabemos también que su cálculo de esta energía tenía serios errores: casi toda la energía derramada es transportada por partículas llamadas neutrinos, y no por rayos X y radiaciones ultravioletas como ellos pensaban. Baade y Zwicky obtuvieron la respuesta correcta simplemente por azar.)

¿Cuál podría ser el origen de esta enorme energía de la supernova? Para explicarlo, Zwicky inventó la estrella de neutrones.

Zwicky estaba interesado en todas las ramas de la física y la astronomía, y se consideraba a sí mismo un filósofo. Trataba de unir todos los fenómenos que encontraba en lo que posteriormente denominó un «método morfológico». En 1932, el tema más popular en física y astronomía era la física nuclear, el estudio de los núcleos atómicos. De allí extrajo Zwicky el ingrediente clave para su idea de la estrella de neutrones: el concepto de neutrón.

Puesto que el neutrón será tan importante en este capítulo y en el próximo, dejaré brevemente a Zwicky y sus estrellas de neutrones para describir el descubrimiento del neutrón y la relación de los neutrones con la estructura de los átomos.

Después de formular las «nuevas» leyes de la mecánica cuántica en 1926 (capítulo 4), los físicos pasaron los cinco años siguientes utilizando algunas leyes mecanocuánticas para explorar el reino de lo pequeño. Desvelaron los misterios de los átomos (recuadro 5.1) y de materiales tales como las moléculas, metales, cristales y la materia de las enanas blancas, que están hechos de átomos. Luego, en 1931, los físicos dirigieron su atención hacia el interior de los átomos y los núcleos atómicos que allí residen.

La naturaleza del núcleo atómico constituía un gran misterio. La mayoría de los físicos pensaban que estaba hecho de unos cuantos electrones y el doble de protones, unidos de alguna forma todavía mal comprendida. Sin embargo, Ernest Rutherford en Cambridge, Inglaterra, tenía una hipótesis diferente: los núcleos estaban constituidos de protones y neutrones. Ahora bien, era ya sabido que los protones existían. Habían sido estudiados durante décadas en experimentos físicos, y se sabía que eran unas 2.000 veces más pesados que los electrones y tenían cargas eléctricas positivas. Los neutrones eran desconocidos. Rutherford tuvo que postular la existencia del neutrón para obtener las leyes de la mecánica cuántica que explicasen los núcleos satisfactoriamente. Una explicación satisfactoria requería tres cosas: 1) cada neutrón debe tener aproximadamente la misma masa que un protón, pero no debe tener carga eléctrica, 2) cada núcleo debe contener aproximadamente el mismo número de protones que de neutrones, y 3) todos los neutrones y protones deben estar muy estrechamente ligados en sus minúsculos núcleos por un nuevo tipo de fuerza, ni eléctrica ni gravitatoria —una fuerza llamada, naturalmente, la fuerza nuclear. (Ahora también es denominada fuerza fuerte.) Los neutrones y los protones protestarían por su confinamiento en los núcleos con movimientos claustrofóbicos y erráticos de alta velocidad que darían lugar a una presión de degeneración; y esta presión contrarrestaría la fuerza nuclear, manteniendo al núcleo estable en su tamaño de unos 10−13centímetros.

En 1931 y principios de 1932, todos los físicos experimentales competían vivamente entre sí para verificar esta descripción del núcleo. El método consistía en bombardear los núcleos con radiación de alta energía para tratar de golpear alguno de los neutrones postulados por Rutherford y sacarlo fuera del núcleo atómico. La competición fue ganada en febrero de 1932 por James Chadwick, un miembro del propio equipo experimental de Rutherford. El bombardeo de Chadwick tuvo éxito, los neutrones emergieron con profusión y tenían precisamente las propiedades que Rutherford había postulado. El descubrimiento fue anunciado a bombo y platillos en los periódicos de todo el mundo, y naturalmente llamó la atención de Zwicky.

El neutrón entraba en escena el mismo año en que Baade y Zwicky estaban esforzándose por comprender las supernovas. Este neutrón era precisamente lo que necesitaban, estimó Zwicky.8Quizá, razonó él, el núcleo central de una estrella normal con densidades de, digamos, 100 gramos por centímetro cúbico, podría ser forzado a implosionar hasta que alcanzase una densidad similar a la de un núcleo atómico, 1014(100 billones) gramos por centímetro cúbico; y quizá la materia de este núcleo estelar contraído se transformaría entonces en un «gas» de neutrones —una «estrella de neutrones» como Zwicky la denominó. Si así fuera, calculó Zwicky (correctamente en este caso), la intensa gravedad del núcleo central contraído lo mantendría tan estrechamente unido que no sólo se reduciría su circunferencia sino que también lo haría su masa. La masa del núcleo estelar sería ahora un 10 por 100 menor que antes de la implosión. ¿Adonde habría ido a parar ese 10 por 100 de la masa del núcleo central? A la energía de la explosión, razonó Zwicky (de nuevo correctamente; véanse la figura 5.1 y el recuadro 5.2).

Si, como creía Zwicky (correctamente), la masa del núcleo contraído de la estrella es aproximadamente la misma que la masa del Sol, entonces el 10 por 100 de la masa que se convierte en energía explosiva cuando el núcleo central se convierte en una estrella de neutrones produciría 1046julios, un valor próximo a la energía que Zwicky estimaba necesaria para alimentar una supernova. La energía explosiva podría calentar a una enorme temperatura las capas externas de la estrella y arrojarlas al espacio interestelar (figura 5.1) y, cuando la estrella explotara, su alta temperatura podría hacerla brillar intensamente de la manera que lo hacían las supernovas que él y Baade habían identificado.

Zwicky no sabía qué era lo que podría iniciar la implosión del núcleo central de la estrella y convertirla en una estrella de neutrones, ni sabía cómo podía comportarse el núcleo cuando implosionaba; por lo tanto, no podía estimar cuánto tiempo duraría la implosión (¿se trataba de una contracción lenta o de una implosión a gran velocidad?). (Cuando los detalles completos se establecieron finalmente en los años sesenta y posteriores, resultó que el núcleo implosionaba violentamente; su propia gravedad intensa le lleva a implosionar desde un tamaño aproximado al de la Tierra hasta un tamaño de 100 kilómetros de circunferencia en menos de 10 segundos.) Zwicky tampoco comprendía en detalle cómo la energía de la contracción del núcleo estelar podía dar lugar a una explosión de supernova, o por qué los residuos de la explosión brillarían de forma tan intensa durante algunos días y permanecerían brillantes durante algunos meses, en lugar de durante unos segundos o unas horas o unos años.

Sin embargo, sabía —o creía saber— que la energía liberada al formar una estrella de neutrones era la cantidad correcta, y eso bastaba para él. Zwicky no se contentaba con explicar las supernovas; quería explicar todas las cosas del Universo. De todas las cosas inexplicadas, la que llamaba más la atención en el Caltech en 1932-1933 eran los rayos cósmicos: partículas a alta velocidad que bombardean la Tierra procedentes del espacio. Robert Millikan del Caltech era el líder mundial en el estudio de los rayos cósmicos, a los que había dado el nombre, y Carl Anderson del Caltech había descubierto que algunas partículas de los rayos cósmicos estaban constituidas de antimateria.* Zwicky, con su amor por los extremos, intentó convencerse (correctamente como resultó ser) de que la mayoría de los rayos cósmicos proceden del exterior de nuestro Sistema Solar e (incorrectamente) de que la mayoría proceden del exterior de nuestra Vía Láctea —de los confines más distantes del Universo—, y se convenció luego (casi correctamente) de que la energía total transportada por todos los rayos cósmicos del Universo era aproximadamente la misma que la energía total liberada por las supernovas en todo el Universo. La conclusión era obvia para Zwicky (y quizá sea correcta):** los rayos cósmicos se creaban en las explosiones de las supernovas.

___________________

*El nombre de antimateria se debe al hecho de que cuando una partícula de materia se encentra con una partícula de antimateria, ambas partículas se aniquilan mutuamente.

** Ocurre que los rayos cósmicos se producen de muchas formas. No se sabe cuál de ellas produce la mayor parte de los rayos cósmicos, pero es muy posible que sea la aceleración de partículas a altas velocidades por ondas de choque en nubes de gas remanentes de explosiones de supernova, mucho después de que las explosiones hayan concluido. Si es así, entonces Zwicky tenía razón, aunque de un modo indirecto.

Era a finales de 1933 cuando Zwicky se había convencido de estas relaciones entre las supernovas, los neutrones, y los rayos cósmicos. Puesto que el conocimiento enciclopédico de Baade de la astronomía observacional había sido una base crucial para dichas relaciones, y puesto que muchos de los cálculos de Zwicky y muchos de sus razonamientos habían salido de un toma y daca verbal con Baade, Zwicky y Baade acordaron presentar su trabajo conjuntamente en una reunión de la American Physical Society en la Universidad de Stanford, a un día de viaje de Pasadena a lo largo de la costa. El resumen de su charla, publicado en el número de Physical Review del 15 de enero de 1934, se muestra en la figura 5.2. Es uno de los documentos más clarividentes de la historia de la física y la astronomía.

Afirma inequívocamente la existencia de supernovas como una clase diferente de objetos astronómicos —aunque los datos precisos para demostrar firmemente que eran diferentes de las novas ordinarias sólo serían obtenidos por Baade y Zwicky cuatro años más tarde, en 1938. Introduce por primera vez el nombre de «supernovas» para estos objetos. Estima, correctamente, la energía total liberada en una supernova. Sugiere que los rayos cósmicos son producidos por las supernovas —una hipótesis que aún se cree plausible en 1993, aunque no está firmemente establecida (véase la nota al pie de la página anterior). Inventa el concepto de una estrella constituida por neutrones —un concepto que no sería ampliamente aceptado como algo teóricamente viable hasta 1939, y no sería verificado de forma observacional hasta 1968. Acuña el nombre de estrella de neutrones para este concepto. Y sugiere «con toda reserva» (una frase presumiblemente insertada por el prudente Baade) que las supernovas se producen por la transformación de estrellas ordinarias en estrellas de neutrones —una sugerencia que se demostraría teóricamente viable solamente a comienzos de los años sesenta, y sería confirmada por la observación únicamente a finales de los sesenta con el descubrimiento de los pulsares (estrellas de neutrones magnetizadas y en rotación) en el interior del gas en explosión de antiguas supernovas.

Los astrónomos de los años treinta respondieron de forma entusiasta al concepto de supernova de Baade y Zwicky, pero trataron con cierto desdén las ideas de Zwicky sobre las estrellas de neutrones y los rayos cósmicos. «Demasiado especulativas», fue la opinión general. «Basadas en cálculos poco fiables», podría añadirse, con bastante razón. Nada en los escritos o las charlas de Zwicky proporcionaba otra cosa que magros indicios de base fiable para sus ideas. De hecho, para mí resulta evidente, a partir de un estudio detallado de los escritos de Zwicky de aquella época, que él no comprendía suficientemente bien las leyes de la física para poder justificar sus ideas. Volveré a esto un poco más adelante en este capítulo.

Algunos conceptos en ciencia son tan obvios vistos en retrospectiva que resulta sorprendente que nadie los advirtiese antes. Este es el caso de la conexión entre estrellas de neutrones y agujeros negros. Zwicky pudo haber empezado a establecer esta conexión en 1933, pero no lo hizo; la conexión se plantearía de una forma provisional seis años más tarde, y definitivamente un cuarto de siglo después. La ruta tortuosa que finalmente puso a los físicos en la pista de esta conexión ocupará gran parte del resto de este capítulo.

Para apreciar la historia de cómo llegaron los físicos a reconocer la conexión entre estrella de neutrones y agujero negro, será útil saber antes algo de dicha conexión. Por esto, haremos primero una digresión:

¿Cuál es el destino de las estrellas cuando mueren? El capítulo 4 mostró una respuesta parcial, una respuesta incorporada en la parte derecha de la figura 5.3 (que es similar a la figura 4.4). Esta respuesta depende de si la estrella es menos o más masiva que 1,4 soles (masa límite de Chandrasekhar).

Si la estrella es menos masiva que el límite de Chandrasekhar, por ejemplo s¡la estrella es el propio Sol, entonces al final de su vida sigue el camino etiquetado «muerte del Sol» en la figura 5.3. A medida que irradia luz hacia el espacio se enfría gradualmente, perdiendo su presión térmica (inducida por el calor). Con su presión reducida ya no puede soportar por más tiempo la atracción hacia adentro de su propia gravedad; su gravedad la obliga a contraerse. A medida que se contrae se mueve hacia la izquierda en la figura 5.3, hacia circunferencias más pequeñas, mientras que permanece siempre a la misma altura en la figura porque su masa no cambia. (Nótese que en la figura se representa la masa hacia arriba y la circunferencia hacia la derecha.) Y a medida que se contrae, la estrella confina a los electrones de su interior en celdas cada vez más pequeñas, hasta que finalmente los electrones protestan con una presión de degeneración tan fuerte que la estrella ya no puede contraerse más. La presión de degeneración contrarresta la atracción hacia adentro de la gravedad de la estrella, obligando a la estrella a asentarse en una tumba de enana blanca en la curva límite (curva de enana blanca) entre la región blanca de la figura 5.3 y la región rayada. Si la estrella siguiera contrayéndose aún más (es decir, si se moviera hacia la izquierda de la curva de enana blanca y entrase en la región rayada), su presión de degeneración electrónica crecería aún más y haría que la estrella se volviese a expandir hasta la curva de enana blanca. Si la estrella siguiera expandiéndose en la región blanca, su presión de degeneración electrónica se debilitaría, permitiendo que la gravedad la volviese a contraer hasta la curva de enana blanca. De este modo, la estrella no tiene otra elección que permanecer para siempre sobre la curva de enana blanca, donde la gravedad y la presión se equilibran perfectamente, enfriándose poco a poco y convirtiéndose en una enana negra: un cuerpo sólido, frío y oscuro del tamaño aproximado de la Tierra aunque con la masa del Sol.

Si la estrella es más masiva que el límite de Chandrasekhar de 1,4 masas solares, por ejemplo si se trata de la estrella Sirio, entonces al final de su vida seguirá el camino etiquetado como «muerte de Sirio». A medida que emite radiación y se enfría y contrae, moviéndose a la izquierda en este camino hasta circunferencias cada vez más pequeñas, sus electrones se encuentran confinados en celdas cada vez más pequeñas; protestan con una presión de degeneración creciente, pero protestan en vano. Debido a su gran masa, la gravedad de la estrella es suficientemente fuerte para acallar cualquier protesta de los electrones. Los electrones nunca pueden producir presión de degeneración suficiente para contrarrestar la gravedad de la estrella;* la estrella debe, en palabras de Arthur Eddington, «seguir radiando cada vez más y contrayéndose cada vez más hasta que, supongo, se reduce a unos pocos kilómetros de radio, cuando la gravedad se hace suficientemente fuerte para refrenar la radiación, y la estrella puede por fin encontrar la paz».

___________________

* La razón se explicó en el recuadro 4.2.

O más bien ese sería su destino si no fuera por las estrellas de neutrones. Si Zwicky tenía razón en que las estrellas de neutrones pueden existir, entonces deben ser bastante parecidas a las estrellas enanas blancas, pero ahora su presión interna estará producida por neutrones en lugar de electrones. Esto significa que debe haber una curva de estrella de neutrones en la figura 5.3, análoga a la curva de enana blanca pero a circunferencias (marcadas sobre el eje horizontal) de aproximadamente cien kilómetros en lugar de decenas de miles de kilómetros. En esta curva de estrella de neutrones la presión de los neutrones equilibraría perfectamente a la gravedad, de modo que las estrellas de neutrones podrían permanecer allí para siempre.

Supongamos que la curva de estrella de neutrones se extiende hacia arriba en la figura 5.3 hacia la zona de grandes masas; es decir, supongamos que tiene la forma etiquetada B en la figura. Entonces Sirio no puede crear un agujero negro cuando muere. En su lugar, Sirio se contraerá hasta que alcance la curva de estrella de neutrones, y entonces ya no puede contraerse más. Si trata de contraerse aún más (es decir, moverse a la izquierda de la curva de estrella de neutrones entrando en la región rayada), los neutrones en su interior protestarán contra su confinamiento; producirán una gran presión (debida en parte a la degeneración, es decir, a la «claustrofobia», y en parte a la fuerza nuclear); y la presión será suficientemente grande para superar a la gravedad y llevar la estrella de nuevo hacia afuera. Si la estrella trata de reexpandirse hacia la región blanca, la presión de los neutrones disminuirá lo suficiente para que la gravedad la supere y comprima la estrella de nuevo hacia adentro. De este modo, Sirio no tendrá otra elección que asentarse en la curva de estrella de neutrones y permanecer allí para siempre, enfriándose gradualmente y convirtiéndose en una estrella de neutrones sólida, fría y negra.

Supongamos, por el contrario, que la curva de estrella de neutrones no se extiende hacia arriba en la figura 5.3 hasta la zona de masas grandes, sino que se curva del modo de la curva hipotética etiquetada como A. Esto significaría Que existe una masa máxima posible para cualquier estrella de neutrones, análoga al límite de Chandrasekhar de 1,4 soles para las enanas blancas. Como en el caso de las enanas blancas, también en el de las estrellas de neutrones la existencia de una masa máxima anunciaría un hecho de gran importancia: en una estrella más masiva que el valor máximo, la gravedad aplastará por completo a la presión de los neutrones. Por lo tanto, cuando una estrella tan masiva muere, o bien expulsará masa suficiente para llevarla por debajo del máximo, o bien se contraerá inexorablemente, bajo la atracción de la gravedad, hasta cruzar la curva de estrella de neutrones; y luego —si no existen otros posibles cementerios de estrellas, salvo los de las enanas blancas, estrellas de neutrones y agujeros negros— continuará contrayéndose hasta que forme un agujero negro.

De este modo, la cuestión central, la cuestión que encierra la clave del destino último de las estrellas masivas es ésta: ¿Cuan masiva puede ser una estrella de neutrones! Si puede ser muy masiva, más masiva que cualquier estrella normal, entonces los agujeros negros nunca pueden formarse en el Universo real. Si existe una masa máxima posible para las estrellas de neutrones, y dicho máximo no es demasiado grande, entonces se formarán agujeros negros —a menos que exista todavía otro cementerio estelar, insospechado en los años treinta.

Esta línea argumental es tan obvia vista en retrospectiva que parece sorprendente que Zwicky no la siguiera, ni la siguiera Chandrasekhar, y ni siquiera la siguiera Eddington. Sin embargo, si Zwicky hubiera tratado de seguirla no hubiera ido demasiado lejos; sabía demasiado poco de física nuclear y demasiado poco de relatividad para poder descubrir si las leyes de la física establecen o no una masa límite para las estrellas de neutrones. En el Caltech, sin embargo, había otras dos personas que entendían la física suficientemente bien para deducir las masas de las estrellas de neutrones: Richard Chace Tolman, un químico convertido en físico que había escrito un libro de texto clásico llamado Relativity, Thermodynamics and Cosmology; y J. Robert Oppenheimer, quien más tarde dirigiría el programa norteamericano para el desarrollo de la bomba atómica.

Sin embargo, Tolman y Oppenheimer no les prestaron ninguna atención a las estrellas de neutrones de Zwicky. Para ser más preciso, no les prestaron atención hasta 1938, cuando la idea de una estrella de neutrones fue publicada (bajo el nombre ligeramente diferente de núcleo de neutrones) por otro físico, un físico a quien, a diferencia de Zwicky, respetaban: Lev Davidovich Landau, en Moscú.