3 - Los agujeros negros, descubiertos y rechazados

donde las leyes de Einstein

del espacio-tiempo distorsionado

predicen agujeros negros,

y Einstein rechaza la predicción

«El resultado esencial de esta investigación —escribió Albert Einstein en un artículo técnico en 1939— es una comprensión clara de por qué las "singularidades de Schwarzschild" no existen en la realidad física.»¹ Con estas palabras, Einstein hacía claro e inequívoco su rechazo de su propio legado intelectual: los agujeros negros que sus leyes gravitatorias de la relatividad general parecían estar prediciendo.

En aquella época, sólo unas pocas características de los agujeros negros habían sido deducidas a partir de las leyes de Einstein, y todavía no se había acuñado el nombre de «agujeros negros». Entonces se denominaban «singularidades de Schwarzschild». Sin embargo, era evidente que cualquier cosa que cae en un agujero negro nunca puede regresar y no puede enviar luz ni ninguna otra cosa, y esto era suficiente para convencer a Einstein y a la mayoría de los físicos de su tiempo de que los agujeros negros eran objetos escandalosamente extraños que seguramente no existirían en el Universo real. De algún modo, las leyes de la física deben proteger al Universo contra tales monstruos.

¿Qué se sabía acerca de los agujeros negros cuando Einstein los rechazó tan firmemente? ¿Hasta qué punto era su existencia una predicción firme de la relatividad general? ¿Cómo pudo rechazar Einstein esta predicción y seguir manteniendo la confianza en sus leyes de la relatividad general? Las respuestas a estas preguntas tienen sus raíces en el siglo XVIII.

Durante dicho siglo los científicos (entonces llamados filósofos naturales)creyeron que la gravedad estaba gobernada por las leyes de Newton, y que la luz estaba constituida por corpúsculos (partículas) que eran emitidos por sus fuentes a una velocidad universal muy alta. Se sabía que dicha velocidad era de unos 300.000 kilómetros por segundo gracias a las medidas telescópicas de la luz emitida por los satélites de Júpiter cuando describen sus órbitas en torno a su planeta padre.

En 1783 John Michell, un filósofo natural británico, se atrevió a combinar la descripción corpuscular de la luz con las leyes de la gravitación de Newton y predecir así qué aspecto tendrían las estrellas muy compactas.² Hizo esto mediante un experimento mental que repito aquí algo modificado.

Láncese una partícula desde la superficie de una estrella con cierta velocidad inicial, y déjesela mover libremente hacia arriba. Si la velocidad inicial es demasiado baja, la gravedad de la estrella frenará la partícula hasta detenerla y luego la hará caer hacia la superficie de la estrella. Si la velocidad inicial es suficientemente alta, la gravedad frenará la partícula pero no llegará a detenerla; la partícula podrá escapar. El valor límite, la mínima velocidad inicial necesaria para que la partícula pueda escapar, se denomina «velocidad de escape». Para una partícula expulsada desde la superficie de la Tierra, la velocidad de escape es de unos 11 kilómetros por segundo; para una partícula expulsada desde la superficie del Sol, es de 617 kilómetros por segundo, o un 0,2 por 100 de la velocidad de la luz.

Michell pudo calcular la velocidad de escape utilizando las leyes de la gravedad de Newton, y pudo demostrar que es proporcional a la raíz cuadrada de la masa de la estrella dividida por su circunferencia. Por consiguiente, para una estrella de masa fija, cuanto más pequeña es la circunferencia mayor es la velocidad de escape. La razón es simple: cuanto más pequeña es la circunferencia, más cerca está la superficie de la estrella de su centro y, por lo tanto, mayor es la gravedad en la superficie y más trabajo tiene que hacer la partícula para escapar de la atracción gravitatoria de la estrella.

Existe una circunferencia crítica, razonó Michell, para la que la velocidad de escape es igual a la velocidad de la luz. Si los corpúsculos de la luz se ven afectados por la gravedad de la misma forma que otros tipos de partículas, entonces la luz apenas puede escapar de una estrella que tenga esta circunferencia crítica. Para una estrella un poco más pequeña, la luz no puede escapar en absoluto. Cuando un corpúsculo de luz es lanzado desde una estrella semejante con la velocidad estándar de la luz de 299.792 kilómetros por segundo, volará hacia arriba al principio, luego se frenará hasta detenerse y volverá a caer a la superficie de la estrella; véase la figura 3.1.

Michell pudo calcular fácilmente la circunferencia crítica; era de 18,5 kilómetros si la estrella tuviera la misma masa del Sol, y proporcionalmente mayor si la masa era mayor.

Nada en las leyes de la física del siglo XVIII impedía que existiera una estrella tan compacta. Por consiguiente, Michell fue llevado a especular que el Universo podría contener un número enorme de tales estrellas oscuras, cada una de ellas habitando felizmente en el interior de su propia circunferencia crítica e invisible desde la Tierra debido a que los corpúsculos de luz emitidos desde su superficie quedaban inexorablemente atrapados. Tales estrellas oscuras eran las versiones del siglo XVIII de los agujeros negros.

Michell, que era Rector de Thornhill en Yorkshire, Inglaterra, informó de su predicción acerca de la posible existencia de las estrellas oscuras a la Royal Society de Londres el 27 de noviembre de 1783. Su informe causó algún revuelo entre los filósofos naturales británicos. Trece años más tarde, el filósofo natural francés Pierre Simón Laplace popularizó la misma predicción en la primera edición de su famosa obra El sistema del mundo, sin referencia al trabajo anterior de Michell. Laplace mantuvo su predicción de estrellas oscuras en la segunda edición (1799), pero en la época de la tercera edición (1808), el descubrimiento de Thomas Young de la interferencia de la luz consigo misma (capítulo 10) estaba obligando a los filósofos naturales a abandonar la descripción corpuscular de la luz en favor de una nueva descripción ondulatoria propugnada por Christiaan Huygens —y no estaba claro en absoluto cómo esta descripción ondulatoria podría hacerse encajar con las leyes de la gravedad de Newton para calcular el efecto de la gravedad de una estrella sobre la luz que emite. Presumiblemente por esta razón, Laplace suprimió el concepto de estrella oscura de la tercera y sucesivas ediciones de su libro.³

Sólo en noviembre de 1915, después de que Einstein hubiera formulado sus leyes de la gravedad en la relatividad general, volvieron los físicos a confiar en que tenían un conocimiento suficiente de la gravitación y la luz como para calcular el efecto de la gravedad de una estrella sobre la luz que emite. Sólo entonces pudieron volver confiados a las estrellas oscuras (agujeros negros) de Michell y Laplace.

El primer paso fue dado por Karl Schwarzschild, uno de los más distinguidos astrofísicos de comienzos del siglo XX. Schwarzschild, que entonces estaba sirviendo en el ejército alemán en el frente ruso de la primera guerra mundial, leyó la formulación de Einstein de la relatividad general en el número del 25 de noviembre de 1915 de las Actas de la Academia Prusiana de Ciencias. Casi inmediatamente se puso a la tarea de descubrir qué predicciones podrían hacer las nuevas leyes de la gravitación de Einstein con respecto a las estrellas.

Puesto que sería muy complicado analizar matemáticamente una estrella que gire o que no sea esférica, Schwarzschild se limitó a estrellas que no giran en absoluto y que son exactamente esféricas; y para facilitar su cálculos buscó en primer lugar una descripción matemática de la región exterior a la estrella y dejó su interior para más tarde. En pocos días tuvo la respuesta. A partir de la nueva ecuación de campo de Einstein, había calculado en sus detalles exactos la curvatura del espacio-tiempo en el exterior de cualquier estrella esférica y sin rotación. Su cálculo era bello y elegante, y la geometría espacio-temporal curvada que predecía, la geometría de Schwarzschild como pronto iba a ser conocida, estaba destinada a tener un enorme impacto sobre nuestra comprensión de la gravedad y el Universo.

Schwarzschild envió a Einstein un artículo donde describía sus cálculos, y Einstein lo presentó en su nombre en una reunión de la Academia Prusiana de Ciencias en Berlín el 13 de enero de 1916. Varias semanas más tarde, Einstein presentó a la Academia un segundo artículo de Schwarzschild: un cálculo exacto de la curvatura del espacio-tiempo en el interior de la estrella.4Tan sólo cuatro meses después, la notable productividad de Schwarzschild se detuvo bruscamente: el 19 de junio, Einstein tuvo la ingrata tarea de informar a la Academia de que Karl Schwarzschild había muerto a causa de una enfermedad contraída en el frente ruso.

La geometría de Schwarzschild es el primer ejemplo concreto de curvatura del espacio-tiempo que hemos encontrado en este libro. Por esta razón, y puesto que resulta capital para las propiedades de los agujeros negros, la examinaremos en detalle.

Si durante toda nuestra vida hubiéramos estado pensando en el espacio y el tiempo como un «tejido» espacio-temporal tetradimensional, unificado y absoluto, entonces sería apropiado describir la geometría de Schwarzschild inmediatamente en el lenguaje del espacio-tiempo tetradimensional curvado (distorsionado). Sin embargo, nuestra experiencia cotidiana se refiere a un espacio tridimensional y un tiempo unidimensional no unificados; por lo tanto, daré una descripción en la que el espacio-tiempo distorsionado está desdoblado en un espacio distorsionado más un tiempo distorsionado.

Puesto que el espacio y el tiempo son «relativos» (mi espacio difiere de su espacio y mi tiempo difiere de su tiempo, si nos estamos moviendo uno respecto a otro),* un desdoblamiento semejante requiere ante todo escoger un sistema de referencia; es decir, escoger un estado de movimiento. Para una estrella hay una elección natural, un sistema en el que la estrella está en reposo; es decir, el propio sistema de referencia de la estrella. En otras palabras, resulta natural examinar el espacio propio de la estrella y el tiempo propio de la estrella en lugar del espacio y el tiempo de alguien que se mueve a gran velocidad a través de la estrella.

___________________

* Véanse la figura 1.3 y las lecciones del cuento de Mledina y Serona en el capítulo 2.

Como ayuda para visualizar la curvatura (distorsión) del espacio de la estrella, utilizaré un dibujo denominado un diagrama de inserción. Puesto que los diagramas de inserción tendrán un papel capital en futuros capítulos, introduciré el concepto cuidadosamente, con ayuda de una analogía.

Imagínese una familia de criaturas humanoides que viven en un universo con sólo dos dimensiones espaciales. Su universo es la superficie curvada y cóncava mostrada en la figura 3.2. Ellos, al igual que su universo, son bidimensionales; son infinitesimalmente finos en dirección perpendicular a la superficie. Además, no pueden ver fuera de la superficie; ven mediante rayos de luz que se mueven a lo largo de la superficie y nunca la abandonan. Por consiguiente, estos «seres 2D», como les llamaré, no tienen ningún método de obtener ninguna información sobre cualquier cosa que pueda haber fuera de su universo bidimensional.

Estos seres 2D pueden explorar la geometría de su universo bidimensional haciendo medidas de líneas rectas, triángulos y círculos. Sus líneas rectas son las «geodésicas» discutidas en el capítulo 2 (figura 2.4 y texto asociado): las líneas más rectas que existen en su universo bidimensional. En el fondo del «cuenco» de su universo, que en la figura 3.2 vemos como un casquete esférico, sus líneas rectas son segmentos de círculos máximos como el ecuador o los meridianos de la Tierra. Fuera del borde de la región cóncava su universo es plano, de modo que sus líneas rectas son las que reconoceríamos como líneas rectas ordinarias.

Si los seres 2D examinan cualquier par de líneas rectas paralelas en la parte exterior plana de su universo (por ejemplo, L1 y L2 de la figura 3.2), entonces, por mucho que los seres sigan dichas líneas, nunca las verán cortarse. De este modo, los seres 2D descubren la planitud de la región exterior. Por otro lado, si ellos construyen las líneas rectas paralelas L3 y L4 fuera del borde de la región cóncava, y luego siguen estas líneas en el interior de la concavidad, manteniéndolas siempre tan rectas como sea posible (manteniéndolas geodésicas), verán que las líneas se cortan en el fondo de la concavidad. De este modo descubren que la región cóncava interna de su universo está curvada.

Los seres 2D pueden descubrir también la planitud de la región exterior y la curvatura de la región interior midiendo círculos y triángulos (figura 3.2). En la región exterior, las circunferencias de todos los círculos son igual a p(3,14159265...) veces sus diámetros. En la región interior, las circunferencias de los círculos son menores que p veces sus diámetros; por ejemplo, el gran círculo dibujado cerca del fondo de la concavidad en la figura 3.2 tiene una circunferencia igual a 2,5 veces su diámetro. Cuando los seres 2D construyen un triángulo cuyos lados son líneas rectas (geodésicas) y luego suman los ángulos internos del triángulo, obtienen 180 grados en la región plana exterior y más de 180 grados en la región curva interior.

Tras descubrir mediante tales medidas que su universo está curvado, los seres 2D podrían empezar a especular sobre la existencia de un espacio tridimensional en el que reside su universo, en el que está insertado. Podrían dar a dicho espacio tridimensional el nombre de hiperespacio, y especular sobre sus propiedades; por ejemplo, podrían suponer que es «plano» en el sentido euclidiano de que, en él, las líneas rectas paralelas nunca se cortan. Usted y yo no tenemos dificultad para visualizar semejante hiperespacio; es el espacio tridimensional de la figura 3.2, el espacio de nuestra experiencia cotidiana. Sin embargo, los seres 2D, con su experiencia bidimensional limitada, tendrán grandes dificultades para visualizarlo. Además, no hay ninguna forma por la que pudieran saber alguna vez si tal hiperespacio existe realmente. Nunca pueden salir de su universo bidimensional y entrar en la tercera dimensión del hiperespacio y, puesto que sólo pueden ver mediante rayos de luz que permanecen siempre en su universo, nunca pueden ver dentro del hiperespacio. Para ellos, el hiperespacio sería completamente hipotético.

La tercera dimensión del hiperespacio no tiene nada que ver con la dimensión «tiempo» de los seres 2D, dimensión que ellos podrían considerar también como una tercera dimensión. Al pensar sobre el hiperespacio, los seres tendrían en realidad que pensar en términos de cuatro dimensiones: dos para el espacio de su universo, una para su tiempo y una para la tercera dimensión del hiperespacio.

Nosotros somos seres tridimensionales y vivimos en un espacio tridimensional curvado. Si tuviéramos que hacer medidas de la geometría de nuestro espacio en el interior o en las proximidades de una estrella —la geometría de Schwarzschild— descubriríamos que está curvado de una manera estrechamente análoga a la del universo de los seres 2D.

Podemos especular sobre un hiperespacio plano de mayores dimensiones en el que está insertado nuestro espacio tridimensional curvado. Resulta que tal hiperespacio debe tener seis dimensiones para poder acomodar espacios tridimensionales como el nuestro en su interior. (Y cuando recordamos que nuestro Universo también tiene una dimensión temporal, debemos pensar en términos de siete dimensiones en total.)

Ahora bien, es incluso más difícil para mí visualizar nuestro espacio tridimensional insertado en un hiperespacio de seis dimensiones de lo que sería para los seres 2D visualizar su espacio bidimensional incluido en un hiperespacio tridimensional. Sin embargo, hay un truco que ayuda enormemente, un truco que se muestra en la figura 3.3.

La figura 3.3 muestra un experimento mental: una delgada hoja de material se inserta a través del plano ecuatorial de una estrella (arriba a la izquierda), de modo que la lámina bisecciona la estrella dejando mitades exactamente idénticas por encima y por debajo. Aunque esta hoja ecuatorial parece plana en el dibujo, no es realmente plana. La masa de la estrella distorsiona el espacio tridimensional dentro y en la proximidad de la estrella de una forma que la imagen superior izquierda no puede representar, y dicha distorsión curva la hoja ecuatorial de una forma que la imagen no puede mostrar. Podemos descubrir la curvatura de la hoja haciendo medidas geométricas sobre ella en nuestro espacio físico real, exactamente de la misma forma que los seres 2D hacen medidas en el espacio bidimensional de su universo. Tales medidas revelarán que líneas rectas que son inicialmente paralelas se cortan cerca del centro de la estrella, que la circunferencia de cualquier círculo en el interior o cerca de la estrella es menor que p veces su diámetro, y que las sumas de los ángulos internos de los triángulos son mayores que 180 grados. Los detalles de estas distorsiones del espacio curvo están predichos por la solución de Schwarzschild a la ecuación de Einstein.

Para ayudar a visualizar esta curvatura de Schwarzschild, nosotros, como los seres 2D, podemos imaginar que extraemos la hoja ecuatorial del espacio curvado tridimensional de nuestro Universo real y la insertamos en un hiperespacio tridimensional plano ficticio (parte derecha inferior en la figura 3.3). En el hiperespacio no curvado, la hoja sólo puede mantener su geometría curva si se pandea hacia abajo como un cuenco. Tales diagramas de hojas bidimensionales de nuestro Universo curvado, insertados en un hipotético hiperespacio tridimensional plano, se denominan diagramas de inserción.

Es tentador considerar que la tercera dimensión del hiperespacio es la misma que la tercera dimensión espacial de nuestro propio Universo. Debemos evitar esta tentación. La tercera dimensión del hiperespacio no tiene nada que ver con ninguna de las dimensiones de nuestro propio Universo. Es una dimensión en la que nunca podemos entrar y nunca podemos ver, y de la que nunca podemos tener ninguna información; es puramente hipotética. De todas formas, es útil. Nos ayuda a visualizar la geometría de Schwarzschild, y nos ayudará en este libro más adelante a visualizar otras geometrías del espacio curvo: las de los agujeros negros, ondas gravitatorias, singularidades y agujeros de gusano (capítulos 6, 7, 10, 13 y 14).

Como muestra el diagrama de inserción de la figura 3.3, la geometría de Schwarzschild de la hoja ecuatorial de la estrella es cualitativamente la misma que la geometría del universo de los seres 2D: en el interior de la estrella la geometría es cóncava y curvada; lejos de la estrella se hace plana. Como sucedía con el gran círculo en la zona cóncava de los seres 2D (figura 3.2), también aquí (figura 3.3) la circunferencia de la estrella dividida por su diámetro es menor que π. En el caso de nuestro Sol, la razón predicha entre la circunferencia y el diámetro es menor que π en algunas partes por millón; en otras palabras, en el interior del Sol el espacio es plano dentro de un margen de algunas partes por millón. Sin embargo, si el Sol mantuviera su misma masa y su circunferencia se hiciera cada vez más pequeña, entonces la curvatura en su interior se haría cada vez más fuerte, el vértice inferior de la zona cóncava en el diagrama de inserción de la figura 3.3 se haría cada vez más pronunciado, y la razón entre la circunferencia y el diámetro sería sustancialmente menor que π.

Puesto que el espacio es diferente en diferentes sistemas de referencia («su espacio es una mezcla de mi espacio y mi tiempo, si nos movemos uno con respecto al otro»), los detalles de la curvatura espacial de la estrella serán diferentes según se midan en un sistema de referencia que se mueva a gran velocidad con respecto a la estrella o se midan en un sistema en el que la estrella está en reposo. En el espacio del sistema de referencia a gran velocidad, la estrella está algo achatada en la dirección perpendicular a su movimiento, de modo que los diagramas de inserción tienen un aspecto muy parecido al de la figura 3.3, pero con la zona cóncava comprimida transversalmente en una forma oblonga. Este achatamiento es la variante en el espacio curvo de la contracción del espacio que Fitzgerald descubrió en un universo sin gravedad (capítulo 1).

La solución de Schwarzschild a la ecuación de campo de Einstein no sólo describe esta curvatura (o distorsión) del espacio, sino también una distorsión del tiempo cerca de la estrella, distorsión producida por la intensa gravedad de la estrella. En un sistema de referencia que esté en reposo con respecto a la estrella, y no se mueva respecto a ella a alta velocidad, esta distorsión del tiempo es precisamente la dilatación gravitatoria del tiempo discutida en el capítulo 2 (recuadro 2.4 y discusión asociada): el tiempo fluye más lentamente cerca de la superficie de la estrella que lejos de ella, y fluye aún más lentamente en el centro de la estrella.

En el caso del Sol; la distorsión del tiempo es pequeña: en la superficie del Sol el flujo del tiempo se haría tan sólo 2 partes por millón (64 segundos en un año) más lento que el flujo lejos del Sol, y en su centro se haría alrededor de 1 parte en 100.000 (5 minutos en un año) más lento que lejos de él. Sin embargo, si el Sol mantuviera su misma masa y se hiciera menor en circunferencia de modo que su superficie estuviera más próxima a su centro, entonces su gravedad sería mayor y, consiguientemente, su dilatación gravitatoria de tiempo —su distorsión del tiempo— se haría mayor.

Una consecuencia de esta distorsión del tiempo es el desplazamiento gravitatorio hacia el rojo de la luz emitida desde la superficie de una estrella. Puesto que la frecuencia de oscilación de la luz está gobernada por el flujo del tiempo en el lugar donde se emite la luz, la luz que emerge de átomos en la superficie de la estrella tendrá una frecuencia más baja cuando alcanza la Tierra que la luz emitida por el mismo tipo de átomos en el espacio interestelar. La frecuencia estará disminuida exactamente en la misma cantidad en que está frenado el flujo del tiempo. Una frecuencia más baja significa una longitud de onda mayor, de modo que la luz de la estrella debe estar desplazada hacia el extremo rojo del espectro en la misma cantidad en la que el tiempo está dilatado en la superficie de la estrella.

En la superficie del Sol la dilatación del tiempo es de 2 partes por millón, de modo que el desplazamiento gravitatorio hacia el rojo de la luz que llega a la Tierra procedente del Sol debería ser también de 2 partes por millón. Este era un desplazamiento hacia el rojo demasiado pequeño para poder ser medido con precisión en la época de Einstein, pero a comienzos de los años sesenta la tecnología empezó a abordar las leyes de la gravedad de Einstein: Jim Brault, de la Universidad de Princeton, midió en un experimento muy delicado el desplazamiento hacia el rojo de la luz del Sol, y obtuvo un resultado en buen acuerdo con la predicción de Einstein.5

Sólo unos pocos años después de la prematura muerte de Schwarzschild, su geometría del espacio-tiempo se convirtió en una herramienta de trabajo estándar para físicos y astrónomos. Muchas personas, incluyendo a Einstein, la estudiaron y desarrollaron sus implicaciones. Todos estuvieron de acuerdo y asumieron seriamente la conclusión de que si la estrella tenía una circunferencia bastante grande, como es el caso del Sol, entonces el espacio-tiempo en su interior y cerca de ella estaría curvado muy ligeramente, y la luz emitida desde su superficie y recibida en la Tierra debería tener su color desplazado, aunque sólo fuera muy ligeramente, hacia el rojo. Todos ellos estaban de acuerdo también en que cuanto más compacta fuera la estrella, mayor debía ser la distorsión de su espacio-tiempo y mayor el desplazamiento gravitatorio hacia el rojo de la luz procedente de su superficie. Sin embargo, pocos estaban dispuestos a considerar seriamente las predicciones extremas que hacía la geometría de Schwarzschild para estrellas altamente compactas6(figura 3.4).

La geometría de Schwarzschild predecía que para cada estrella existe una circunferencia crítica que depende de la masa de la estrella —la misma circunferencia crítica que había sido descubierta por John Michell y Pierre Simón Laplace más de cien años antes: 18,5 kilómetros multiplicada por la masa de la estrella expresada en unidades de masa solar. Si la circunferencia real de la estrella es mayor que 4 veces esta circunferencia crítica (parte superior de la figura 3.4), entonces el espacio de la estrella estará moderadamente curvado como se muestra en la figura, el tiempo en su superficie fluirá un 15 por 100 más lentamente que lejos de ella, y la luz emitida desde su superficie estará desplazada en un 15 por 100 hacia el extremo rojo del espectro. Si la circunferencia de la estrella es más pequeña, exactamente dos veces la circunferencia crítica (parte central de la figura 3.4), su espacio estará más fuertemente curvado, el tiempo en su superficie fluirá un 41 por 100 más lentamente que muy lejos de ella, y la luz de su superficie estará desplazada en un 41 por 100 hacia el rojo. Estas predicciones parecían aceptables y razonables. Lo que no parecía en absoluto razonable a los físicos y astrofísicos de los años veinte, o incluso en una época tan reciente como los años sesenta, era la predicción para una estrella cuya circunferencia real fuera la misma que su circunferencia crítica (parte inferior de la figura 3.4). Para una estrella semejante, con su espacio más fuertemente curvado, el flujo del tiempo en su superficie está infinitamente dilatado; el tiempo no fluye en absoluto —está congelado. Y, en consecuencia, cualquiera que pueda ser el color de la luz cuando empieza su viaje hacia arriba desde la superficie de la estrella, será desplazado mucho más allá del rojo, más allá del infrarrojo, más allá de las longitudes de las ondas de radio, hasta las regiones de longitud de onda infinita; es decir, la luz deja de existir. En lenguaje moderno, la superficie de la estrella, con su circunferencia crítica, es exactamente el horizonte de un agujero negro; debido a su fuerte gravedad, la estrella está creando un horizonte de agujero negro en torno a sí misma.

El resultado final de esta discusión de la geometría de Schwarzschild es el mismo que encontraron Michell y Laplace: una estrella con el tamaño de la circunferencia crítica debe aparecer completamente oscura cuando se la mira desde muy lejos; debe ser lo que ahora llamamos un agujero negro. El resultado final es el mismo, pero el mecanismo es completamente diferente.

Michell y Laplace, con su idea newtoniana del espacio y el tiempo absolutos y de la velocidad de la luz relativa, creían que para una estrella sólo un poco más pequeña que la circunferencia crítica, los corpúsculos de luz no escaparían por muy poco. Subirían hasta grandes alturas por encima de la superficie de la estrella, alturas mucho mayores que la de cualquier planeta en órbita; pero a medida que subieran serían frenados por la gravedad de la estrella, luego se detendrían en algún lugar del espacio intergaláctico, y más adelante darían la vuelta y serían llevados hacia abajo por la atracción de la estrella. Aunque las criaturas en un planeta en órbita podrían ver la estrella, pues todavía les llegaría su luz moviéndose lentamente (para ellos no sería oscura), nosotros, viviendo en la muy lejana Tierra, no podríamos verla en absoluto. La luz de la estrella no podría alcanzarnos. Para nosotros la estrella sería completamente negra.

Por el contrario, la curvatura del espacio-tiempo de Schwarzschild exigía que la luz siempre se propague con la misma velocidad universal; nunca puede ser frenada. (La velocidad de la luz es absoluta, pero el espacio y el tiempo son relativos.) Sin embargo, si se emitía desde la circunferencia crítica, la longitud de onda de la luz debía quedar desplazada una cantidad infinita al viajar hacia arriba una distancia infinitesimal. (El desplazamiento en la longitud de onda de la luz debe ser infinito puesto que el flujo del tiempo está infinitamente dilatado en el horizonte, y la longitud de onda siempre se desplaza en la misma cantidad en que se dilata el tiempo.) Este desplazamiento infinito de la longitud de onda anula, en efecto, toda la energía de la luz; y, de este modo, la luz ¡deja de existir! Así, por muy próximo a la circunferencia crítica que estuviera situado un planeta, las criaturas que vivieran en él no podrían ver en absoluto ninguna luz que emergiera de la estrella.

En el capítulo 7 estudiaremos cómo se comporta la luz vista desde el interior de la circunferencia crítica de un agujero negro, y descubriremos que, después de todo, no deja de existir. Lo que sucede, más bien, es que es sencillamente incapaz de escapar de la circunferencia crítica (el horizonte del agujero) incluso aunque se esté moviendo hacia afuera a la velocidad universal estándar de 299.792 kilómetros por segundo. Pero todavía es pronto, no estamos aún listos para comprender un comportamiento tan aparentemente contradictorio. Antes debemos aumentar nuestro conocimiento sobre otras cosas, como hicieron los físicos en las décadas comprendidas entre 1916 y 1960.

Durante los años veinte y entrados los treinta, los más reconocidos expertos mundiales en relatividad general eran Albert Einstein y el astrofísico británico Arthur Eddington. Había otros que entendían la relatividad, pero Einstein y Eddington marcaban el tono intelectual en la materia. Y, aunque algunos otros estaban dispuestos a considerar seriamente los agujeros negros, Einstein y Eddington no lo estaban. Los agujeros negros sencillamente no «olían bien»; eran escandalosamente extraños; violaban las intuiciones de Einstein y Eddington acerca de cómo debería comportarse el Universo.

Durante los años veinte Einstein parece haberse limitado a ignorar la cuestión. Nadie insistía en los agujeros negros como una predicción seria, de modo que no había mucha necesidad de aclarar las cosas a este respecto. Y puesto que otros misterios de la naturaleza resultaban más interesantes y enigmáticos para Einstein, éste dedicó sus energías a otras cuestiones.

En los años veinte Eddington adoptó un enfoque más caprichoso. Él era un poco histrión, disfrutaba popularizando la ciencia y, mientras nadie se tomara los agujeros negros muy seriamente, resultaba divertido jugar con ellos. De este modo, le encontramos escribiendo en su libro de 1926 The Internal Constitution of the Stars que posiblemente ninguna estrella observable puede ser más compacta que la circunferencia crítica:

En primer lugar, la fuerza de la gravedad sería tan grande que la luz sería incapaz de escapar de ella, los rayos caerían a la estrella como una piedra cae a la Tierra. En segundo lugar, el desplazamiento hacia el rojo de las líneas espectrales sería tan grande que el espectro dejaría de existir. En tercer lugar, la masa produciría tanta curvatura en la métrica del espacio-tiempo que el espacio se cerraría en torno a la estrella, dejándonos fuera (es decir, en ninguna parte).

La primera conclusión era la versión newtoniana de la luz que no escapa; la segunda era una descripción relativista semiaproximada; y la tercera era la típica hipérbole eddingtoniana. Como se ve claramente en los diagramas de inserción de la figura 3.4, cuando una estrella es tan pequeña como la circunferencia crítica, la curvatura del espacio es fuerte pero no infinita, y el espacio no está definitivamente enrollado alrededor de la estrella. Quizá Eddington sabía esto, pero su descripción constituía una bonita historia, y captaba de una forma caprichosa el espíritu de la curvatura del espacio-tiempo de Schwarzschild. En los años treinta, como veremos en el capítulo 4, empezó a aumentar la presión para reconsiderar seriamente los agujeros negros. A medida que la presión aumentaba, Eddington, Einstein y otros entre los «creadores de opinión» empezaron a manifestar una oposición inequívoca a estos escandalosos objetos.

En 1939, Einstein publicó un cálculo basado en la relatividad general que interpretó como un ejemplo de por qué los agujeros negros no pueden existir.7Su cálculo analizaba el comportamiento de un tipo idealizado de objeto que podría considerarse apropiado para formar un agujero negro. El objeto era un cúmulo de partículas que se atraían mutuamente mediante fuerzas gravitatorias que mantenían el cúmulo unido, de la misma forma que el Sol mantiene unido al Sistema Solar atrayendo gravitatoriamente a sus planetas. Todas las partículas en el cúmulo de Einstein se movían en órbitas circulares en torno a un centro común; sus órbitas formaban una esfera con las partículas de un lado de la esfera atrayendo gravitatoriamente a las del otro lado (mitad izquierda de la figura 3.5).

Einstein suponía que este cúmulo se iba haciendo cada vez más pequeño, tratando de llevar su circunferencia real por debajo de la circunferencia crítica. Como cabría esperar, su cálculo demostraba que cuanto más compacto es el cúmulo, más fuerte es la gravedad en su superficie esférica y más rápidamente deben moverse las partículas en su superficie para impedir que sean llevadas hacia adentro. Si el cúmulo fuese más pequeño que 1,5 veces la circunferencia crítica, los cálculos de Einstein mostraban que su gravedad sería entonces tan fuerte que las partículas tendrían que moverse a una velocidad mayor que la de la luz para evitar ser atraídas hacia adentro. Puesto que nada puede moverse a más velocidad que la luz, no había manera de que el conjunto pudiera ser nunca más pequeño que 1,5 veces el tamaño crítico. «El resultado esencial de esta investigación —escribió Einstein— es una comprensión clara de por qué las "singularidades de Schwarzschild" no existen en la realidad física.»

En apoyo de su opinión, Einstein podría apelar también a la estructura interna de una estrella idealizada constituida por materia cuya densidad es constante en todo su interior (mitad derecha de la figura 3.5). Semejante estrella no podía implosionar debido a la presión del gas en su interior. Karl Schwarzschild había utilizado la relatividad general para derivar una descripción matemática completa de tal estrella, y sus fórmulas demostraban que, si la estrella se hace cada vez más compacta, la presión interna de la estrella debe crecer cada vez más para poder contrarrestar el incremento de la fuerza de su gravedad interna. A medida que la circunferencia de la estrella en contracción se acerca a 9/8 = 1,125 veces su circunferencia crítica, las fórmulas de Schwarzschild muestran que la presión en el centro se hace infinitamente grande. Puesto que ningún gas real puede ejercer nunca una presión verdaderamente infinita (ni lo puede hacer ningún otro tipo de materia), tal estrella nunca podría hacerse tan pequeña como 1,125 veces el tamaño crítico, creía Einstein.8

Los cálculos de Einstein eran correctos, pero su lectura de su mensaje no lo era. El mensaje que él extrajo, el de que ningún objeto puede hacerse tan pequeño como la circunferencia crítica, estaba determinado más por su oposición intuitiva a las singularidades de Schwarzschild (agujeros negros) que por los propios cálculos. El mensaje correcto, como ahora sabemos en retrospectiva, era éste:

El cúmulo de partículas de Einstein y la estrella de densidad constante nunca podrían ser tan compactos como para formar un agujero negro porque Einstein exigía que algún tipo de fuerza en su interior contrarrestase la compresión de la gravedad: la fuerza de la presión del gas en el caso de la estrella, la fuerza centrífuga debida a los movimientos de las partículas en el caso del cúmulo. De hecho, es cierto que ninguna fuerza puede resistir la compresión de la gravedad cuando un objeto está muy próximo a la circunferencia crítica. Pero esto no significa que el objeto no pueda hacerse nunca tan pequeño. Lo que significa más bien es que, si el objeto se hace tan pequeño, entonces la gravedad necesariamente aplasta a todas las demás fuerzas en el interior del objeto, y comprime el objeto en una catastrófica implosión que da lugar a un agujero negro. Puesto que los cálculos de Einstein no incluían la posibilidad de implosión (la omitió de todas sus ecuaciones), él confundió este mensaje.

Estamos tan acostumbrados hoy día a la idea de los agujeros negros que es difícil no hacerse la pregunta: «¿Cómo pudo Einstein haber sido tan torpe? ¿Cómo pudo omitir la implosión, precisamente lo que da lugar a los agujeros negros?». Semejante reacción manifiesta nuestra ignorancia sobre la estructura mental de casi todo el mundo en los años veinte y treinta.

Las predicciones de la relatividad general eran muy mal comprendidas. Nadie advirtió que un objeto suficientemente compacto debe implosionar, y que la implosión producirá un agujero negro. En lugar de ello, las singularidades de Schwarzschild (agujeros negros) se imaginaban, incorrectamente, como objetos que se mantienen exactamente en o apenas por debajo de su circunferencia crítica, sostenidos frente a la fuerza de la gravedad por algún tipo de fuerza interna; así, Einstein pensó que se había deshecho de los agujeros negros demostrando que nada sostenido por fuerzas internas puede ser tan pequeño como la circunferencia crítica.

Si Einstein hubiera sospechado que las «singularidades de Schwarzschild» podían existir realmente, podría haber advertido perfectamente que la implosión es la clave para formarlas y que las fuerzas internas son irrelevantes. Pero estaba tan firmemente convencido de que no pueden existir («olían mal»; terriblemente mal) que sufrió un bloqueo mental impenetrable frente a la verdad —como lo sufrieron casi todos sus colegas.

En la novela épica de T. H. White, The Once and Future King, existe una sociedad de hormigas que tiene el lema: «Todo lo que no está prohibido es obligatorio». No es así como funcionan las leyes de la física y el Universo real. Muchas de las cosas permitidas por las leyes de la física son tan altamente improbables que en la práctica nunca suceden. Un ejemplo simple y manido es la reconstrucción espontánea de un huevo entero a partir de los fragmentos desperdigados por el suelo: tómese una película de un huevo cuando cae al suelo y se rompe en fragmentos y sustancia pegajosa. A continuación, pásese la película hacia atrás y obsérvese cómo el huevo se regenera espontáneamente y sube por el aire. Las leyes de la física permiten una regeneración semejante aun con el tiempo marchando hacia adelante, pero esto nunca sucede en la práctica porque es altamente improbable.

Los estudios de los físicos sobre los agujeros negros durante los años veinte y treinta, e incluso ya entrados los cuarenta y cincuenta, trataban sólo la cuestión de si las leyes de la física permiten que existan tales objetos. Y la respuesta era equívoca: a primera vista parecía que los agujeros negros están permitidos; más tarde, Einstein, Eddington y otros dieron argumentos (incorrectos) a favor de que no lo están. En los años cincuenta, cuando esos argumentos fueron definitivamente desestimados, muchos físicos volvieron a argumentar que las leyes de la física permitían la existencia de los agujeros negros, pero eran tan altamente improbables que (como la reconstrucción del huevo) nunca existirían en la práctica.

En realidad, los agujeros negros, a diferencia de la reconstrucción del huevo, son obligatorios en ciertas situaciones comunes; pero sólo a finales de los años sesenta, cuando la evidencia de que son obligatorios se hizo aplastante, empezó la mayoría de los físicos a considerar seriamente los agujeros negros. En los próximos tres capítulos describiré cómo aumentó esa evidencia desde los años treinta hasta los sesenta, y la amplia resistencia que encontraron.

Esta amplia y casi universal resistencia del siglo XX hacia los agujeros negros está en notorio contraste con el entusiasmo con que los agujeros negros fueron recibidos en el siglo XVIII, la época de John Michell y Fierre Simón Laplace. Werner Israel, un físico actual en la Universidad de Alberta que ha estudiado esta historia en profundidad, ha especulado sobre las razones para esta diferencia.

Estoy seguro [de que la aceptación de los agujeros negros en el siglo XVIII] no sólo era un síntoma del fervor revolucionario de fin de siglo —escribe Israel—. La explicación debe estar en que las estrellas oscuras laplaceanas [agujeros negros] no suponían ninguna amenaza para nuestra querida fe en la permanencia y estabilidad de la materia. Por el contrario, los agujeros negros del siglo XX suponen una gran amenaza para dicha fe.9

Tanto Michell como Laplace imaginaban sus estrellas oscuras constituidas de materia con la misma densidad aproximada que el agua o la tierra o las piedras o el Sol, alrededor de 1 gramo por centímetro cúbico. Con esta densidad, una estrella debe tener una masa alrededor de 400 millones de veces mayor que la del Sol y una circunferencia alrededor de 3 veces mayor que la órbita de la Tierra para ser oscura (estar contenida dentro de su circunferencia crítica). Tales estrellas, gobernadas por las leyes de la física de Newton, podrían ser exóticas, pero ciertamente no amenazaban ninguna creencia acariciada sobre la naturaleza. Si uno quería ver la estrella, sólo necesitaba situarse en un planeta próximo y mirar los corpúsculos de luz cuando subían hacia su órbita antes de que volvieran de nuevo hacia la superficie de la estrella. Si uno quería una muestra del material del que la estrella estaba hecha, sólo necesitaba descender hasta la superficie de la estrella, recoger algo y volver a la Tierra para estudiarlo en el laboratorio. Yo no sé si Michell, Laplace u otros de su época especularon sobre estas cuestiones, pero es evidente que, si lo hicieron, no existía ninguna razón para preocuparse por las leyes de la naturaleza, por la permanencia y estabilidad de la materia.

La circunferencia crítica (horizonte) de un agujero negro del siglo XX presenta un desafío bastante diferente. Uno no puede ver ninguna luz emergente a ninguna altura por encima del horizonte. Cualquier cosa que cae a través del horizonte nunca podrá escapar; se ha perdido para nuestro Universo, una pérdida que plantea un serio desafío a las ideas de los físicos sobre la conservación de la masa y la energía.

Existe un curioso paralelismo entre la historia de los agujeros negros y la historia de la deriva continental [el movimiento de desplazamiento relativo de los continentes de la Tierra] —escribe Israel—. La evidencia a favor de ambos ya no podía ser ignorada en 1916, pero ambas ideas quedaron frenadas durante medio siglo por una resistencia que bordeaba lo irracional. Creo que la razón psicológica subyacente era la misma en ambos casos. Otra coincidencia: la resistencia a ambos empezó a derrumbarse hacia 1960. Por supuesto, ambos campos [astrofísica y geofísica] se beneficiaron de los desarrollos tecnológicos de la posguerra. Pero, en cualquier caso, resulta interesante que este fuera el momento en que la bomba H y el Sputnik soviéticos acabaron con la idea de la ciencia occidental como algo grabado en piedra e inmune a cualquier desafío y, quizá, despertaron la sospecha de que podría haber más cosas en el cielo y la tierra que las que la ciencia occidental estaba preparada para soñar.10