Capítulo 9

¡Olvídenlo!

El otro día estaba examinando un nuevo texto de biología (Biological science: An Inquirity into Life integrado por las contribuciones de diversos autores y publicado por Harcourt, Brace & World, Inc., 1963). Lo encontré fascinante.

Pero, lamentablemente leí primero el Prólogo (sí, soy uno de los que hacen eso), lo cual me sumió de repente en la más profunda tristeza. Permítanme que transcriba una cita de los dos primeros párrafos:

«Con cada nueva generación, nuestra reserva de conocimientos científicos aumenta cinco veces… Con el ritmo actual de progreso científico hoy tenemos cerca de cuatro veces más conocimientos biológicos significativos que en 1930, y cerca de dieciséis veces más que en 1900. A este ritmo de crecimiento, para el año 2000 un curso de introducción a la biología deberá “cubrir” cien veces más biología que a comienzos de este siglo».

Imagínense cómo me puede haber afectado algo así. Yo soy un profesional en esto de mantenerse al día con las ciencias, y en mis momentos de alegría, excitación y entusiasmo incluso llego a pensar que lo hago bastante bien.

Pero entonces leo algo semejante al pasaje recién citado y el mundo se me viene encima. No estoy al día con la ciencia. Y lo que es peor, no puedo mantenerme al día. Y lo que es todavía mucho peor, cada día me voy quedando más atrás.

Y por fin, cuando ya no doy más de lástima hacia mí mismo, dedico unos breves instantes a preocuparme por el mundo en general. ¿Qué va a ser del Homo sapiens? Vamos a destruirnos a nosotros mismos de tan inteligentes. No va a pasar mucho tiempo antes que esta dañina educación acabe con todos nosotros, con nuestras células cerebrales repletas hasta la indigestión de hechos y de conceptos, y con explosiones de información que nos harán saltar los oídos.

Pero entonces, sin quererlo, al mismo día siguiente de haber leído este Prólogo me encontré con un libro muy, muy viejo titulado Pike’s Arithmetic (Aritmética de Pike). Al menos ése era el título en el lomo. En la carátula se extiende un poquito, porque en aquellos días los títulos eran títulos. Su traducción reza: «Un sistema de Aritmética nuevo y completo compuesto para el uso de los ciudadanos de los Estados Unidos, por Nicolás Pike, Artium Magister». Se publicó por primera vez en 1785, pero el ejemplar que yo tengo no es más que la «Segunda Edición, Aumentada», publicada en 1797.

Es un libro voluminoso de más de 500 páginas, repleto de letra chica y sin ningún entretenimiento de ninguna clase, ya sea en forma de ilustraciones o de diagramas. Es un bloque sólido de aritmética, si exceptuamos las breves secciones que al final introducen el álgebra y la geometría.

Yo estaba asombrado. Tengo dos hijos en la escuela primaria (yo mismo fui a la primaria alguna vez[31]), y sé cómo son los libros de aritmética de nuestros días. No son tan largos, ni remotamente. Ni siquiera pueden llegar a tener la quinta parte de las palabras del Pike.

¿No será que nos estamos olvidando de algo?

Fue así como me puse a examinar el Pike y parece que sí, estamos omitiendo algunas cosas. Y no tiene nada de malo. El problema es que no estamos omitiendo suficientes cosas.

En la página 19, por ejemplo, Pike dedica media página a una lista de números escritos con la numeración romana, lista que se extiende hasta números tan altos como el quinientos mil.

Ahora bien, los números arábigos llegaron a Europa en la alta Edad Media, y una vez que subieron a escena los números romanos pasaron completamente de moda (ver capítulo 1). Perdieron toda posibilidad de uso, tal era la infinita superioridad de la nueva notación arábiga. Hasta entonces quién sabe cuántas resmas de papel hicieron falta para explicar los métodos de cálculo empleando números romanos. Desde ese entonces se pudieron realizar las mismas operaciones con la centésima parte de las explicaciones. No se perdió ningún conocimiento… sino sólo las reglas ineficientes.

Y sin embargo quinientos años después de la bien merecida muerte de los números romanos, Pike todavía los incluía y esperaba que sus lectores fueran capaces de traducirlos a la numeración arábiga y viceversa, aun cuando no daba ninguna instrucción sobre su manejo. En realidad, cerca de doscientos años después de Pike, todavía se siguen enseñando los números romanos. Mi hijita los está aprendiendo ahora.

Pero, ¿por qué? ¿Cuál es la necesidad? Sin duda usted habrá de encontrarse con números romanos en piedras fundamentales y lápidas sepulcrales, en caras de relojes y en algunos documentos y edificios públicos, pero de ninguna manera se los usa por necesidad. Se los emplea por razones de prestigio, por ostentación, para dar un toque de antigüedad, por cierta clase de anhelo de falso clasicismo.

Me atrevo a decir que hay algunas personas sentimentales que creen que el conocimiento de los números romanos es una especie de puerta a la historia y a la cultura; que olvidarlos sería como demoler lo que queda en pie del Partenón, pero esa clase de sentimentalismo empalagoso me fastidia. De esa manera también podríamos proponer que a todo el que aprenda a manejar un automóvil se lo obligue a pasar un rato al volante de un Ford T para que sienta el sabor de los coches antiguos.

¿Números romanos? ¡Olvídelos!… Y haga lugar, en cambio, para temas nuevos y valiosos.

Pero, ¿tendremos el coraje necesario para olvidar? ¿Por qué no? Ya hemos olvidado mucho más de lo que usted se imagina. Nuestros problemas no radican en lo que hemos olvidado, sino en que recordarnos demasiado bien; no nos olvidamos lo suficiente.

Gran parte del libro de Pike consiste en temas que hemos olvidado de una manera imperfecta. Ésa es la razón que los libros modernos de aritmética sean más breves que el Pike. Y si pudiéramos olvidarnos de una manera más perfecta, los libros modernos de aritmética todavía podrían ser más breves.

Por ejemplo, Pike dedica muchas páginas a tablas… tablas presumiblemente importantes con las que él pensaba que el lector tenía que familiarizarse. Su quinta tabla se titula «medidas para géneros».

¿Sabía usted que 2 1/4 pulgadas representan una «uña»? Pues bien, así es. Y 16 uñas forman una yarda; mientras que 12 uñas hacen un ana.

No, espere un momento. Esas 12 uñas (27 pulgadas) forman un ana flamenca. Hacen falta 20 uñas (45 pulgadas) para formar un ana inglesa, y 24 uñas (54 pulgadas) para hacer un ana francesa. Y luego, 16 uñas más 1 1/5 pulgadas (o sea 37 1/5 pulgadas) forman un ana escocesa.

Pues bien, si usted va a ingresar en el mundo de los negocios y ha de importar y exportar telas, va a tener que aprenderse todas esas anas… a menos que se pueda imaginar alguna forma de sacarse las anas de encima.

La vara de medir es uno de esos utensilios que suponemos que siempre han estado a nuestra disposición. Muy poca gente tiene idea de lo difícil que fue construir la primera, y cuántos conceptos sutiles hubo que aceptar antes que la yarda llegara a existir.

La manera natural de medir longitudes en épocas primitivas consistía en usar diversas porciones del cuerpo para ese propósito. Todavía hablarnos de «palmos menores» (4 pulgadas o 10 cm) cuando medimos la altura de un caballo y de un «palmo», que es la distancia máxima entre los extremos de los dedos extendidos de una mano (unos 21 cm). Un «codo» (del latín «cubitus») es la distancia entre la punta de los dedos y el codo, y una «yarda» (que proviene de «girth», faja o cinturón) es la distancia desde la nariz hasta la punta de los dedos, o también la medida de la cintura de un hombre

El problema al emplear partes del cuerpo como instrumentos de medición consiste en que las longitudes y medidas de dichas porciones varían de una persona a otra. La distancia de la punta de mis dedos a mi nariz mide aproximadamente una yarda, pero la medida de mi cintura es visiblemente mayor que una yarda.

Por fin a la gente se le ocurrió implantar una «yarda patrón» y no preocuparse más por las medidas de cada uno. Según la tradición, al principio la yarda patrón se hizo coincidir con la distancia entre las puntas de los dedos del rey Enrique I de Inglaterra y su nariz. (Y el pie patrón se supone que está basado en el pie de Carlomagno).

Naturalmente, el Rey de Inglaterra no puede viajar de pueblo en pueblo midiendo longitudes de tela entre su nariz y la punta de sus dedos. En lugar de ello, se apoya una vara y se hacen marcas que coinciden con dichos puntos. La distancia entre las marcas es una yarda patrón. Empleando este patrón se pueden construir otras varas que se convierten en patrones secundarios y se envían a cada pueblo para controlar las actividades de los comerciantes locales.

Además casi todos los artículos distintos se miden en sus propias unidades. Así, uno habla de un cuñete de manteca, un puñado de ciruelas, un «fother» de plomo, una piedra (14 libras) de carne etc. Cada una de estas cantidades pesa un cierto número de libras (libras avoirdupois, pero también están las libras troy, y las libras de farmacéutico, etc.), y Pike nos da las equivalencias con todo cuidado.

¿Desea usted medir distancias? Bueno, qué le parece esto: 7 92/100 pulgadas hacen 1 eslabón; 25 eslabones forman una pértiga larga; 4 pértigas largas forman 1 cadena; 10 cadenas hacen 1 estadio; y 8 estadios forman 1 milla.

O tal vez prefiera usted medir cervezas… un ramo del comercio muy común en la época colonial. Por supuesto que tiene que conocer el lenguaje. Helo aquí: 2 pintas hacen un cuarto, y 4 cuartos forman un galón. Bueno, de alguna manera todavía sabemos eso.

Pero en la época colonial un simple galón de cerveza blanca o negra no era más que el comienzo. Eso era para criaturas. Uno tenía que saber expresarse empleando medidas adecuadas para hombres. Pues bien, 8 galones forman un firkin… o mejor dicho, representan «un firkin de cerveza inglesa en Londres». Pero hacen falta 9 galones para hacer «un firkin de cerveza común en Londres». La cantidad intermedia, 8 1/2 galones, aparece registrada como «un firkin de cualquier cerveza», supuestamente destinado a los lugares alejados de Londres, pues los ciudadanos de las provincias debían ser menos puntillosos para distinguir las cervezas.

Pero sigamos: 2 firkins (supongo que serán del tipo intermedio, pero no estoy seguro) representan un medio barril y dos medios barriles hacen un barril. Después, 1 1/2 barriles hacen un bocoy; 2 barriles forman una pipa y 3 barriles hacen una bota[32].

Con lo dicho está todo claro, ¿no?

Pero, por si acaso usted apetece algo más sabroso todavía, probemos las medidas para áridos.

Aquí, 2 pintas forman un cuarto y 2 cuartos equivalen a medio celemín. (No, salamín no, celemín. ¡No me diga que jamás oyó hablar del celemín!). Pero sigamos adelante. Luego 1 celemín equivale a 1 galón, 2 galones forman un peck y 4 pecks hacen 1 bushel. (Intervalo para respirar). Después 2 bushels equivalen a 1 rasero, 2 raseros forman 1 combo, 2 combos representan un cuarto grande, 4 cuartos grandes hacen 1 chaldrón (aunque en la exigente ciudad de Londres hacen falta 4 1/2 cuartos grandes para formar 1 chaldrón). Por último, 5 cuartos grandes forman 1 wey y 2 weys hacen 1 horma.

Todo esto no lo estoy inventando. Lo estoy copiando directamente de la página 48 del Pike.

¿Se suponía que la gente que estudiaba aritmética en 1797 habría de memorizar todo esto? Aparentemente sí, porque Pike dedica largo tiempo a la explicación de la suma de cantidades complejas. Así es: suma de cantidades complejas.

Usted verá, la suma que usted llama suma no es más que la «suma de cantidades simples». La suma de complejos es algo mucho más poderosa, y ahora mismo se lo voy a explicar.

Supongamos que usted tiene 15 manzanas, su amigo tiene 17 manzanas y un extraño que pasa tiene 19 manzanas; y que usted decide reunirlas en un montón. Después de hacerlo se pregunta cuántas tiene en total. Como prefiere no contarlas, aprovechando la educación que recibió en la escuela, se prepara para sumar 15 + 17 + 19. Empieza por la columna de las unidades y encuentra que 5 + 7 + 9 = 21. Entonces divide 21 por 10 y encuentra que el cociente es 2 y el resto vale 1, de modo que escribe el resto 1, y se lleva el cociente 2 a la columna de las decenas…

Me parece escuchar los gritos estentóreos del público. «¿Qué es todo esto?» reclaman con urgencia. «¿De dónde salió esa historia de “dividir por 10”?».

Ah, mis amables lectores, pero si esto es exactamente lo que ustedes hacen cuando suman. Lo único que sucede es que los santos varones que inventaron nuestro sistema arábigo de numeración lo basaron en el número 10 y de tal manera, cuando se divide cualquier número de dos cifras por 10, la primera cifra del número representa el cociente y la segunda, el resto.

Por esa razón, al tener en nuestras manos el cociente y el resto sin necesidad de dividir, podemos sumar en forma automática. Si la columna de las unidades da 21, ponemos el 1 y nos llevamos 2; si hubiera dado 57, habríamos puesto el 7 y llevado el 5, etcétera.

Debemos recordar que la única razón por la cual esto funciona radica en que al sumar un conjunto de números, cada columna de cifras (comenzando por la de la derecha y continuando hacia la izquierda) representa un valor diez veces mayor que el de la columna precedente. La columna que está en el extremo derecho es la de las unidades, la que le sigue a la izquierda es la de las decenas, la que sigue es la de las centenas, etcétera.

Es justamente esta combinación de un sistema de numeración basado en el diez y un cociente entre los valores relativos de las columnas que también vale diez, lo que hace que la suma sea muy simple. Y por esta razón Pike la denomina «adición simple».

Ahora supongamos que usted tiene 1 docena y 8 manzanas, su amigo tiene 1 docena y 10 manzanas, y el extraño que pasa tiene 1 docena y 9 manzanas. Vuelva a amontonarlas y súmelas como sigue:

1 docena

y 8 unidades

1 docena

y 10 unidades

1 docena

y 9 unidades

Puesto que 8 + 10 + 9 = 27, ¿ponemos un 7 y nos llevamos 2? ¿O no? La relación entre la columna de las docenas y la columna de las unidades ya no es 10 sino 12, puesto que hay 12 unidades en una docena. Y como el sistema de numeración que estamos empleando se basa en el 10 y no en el 12, ya no podemos permitir que las mismas cifras hagan el cálculo por nosotros. Tenemos que hacer todo el proceso.

Si 8 + 10 + 9 = 27, debemos dividir esa suma por el cociente entre los valores de las columnas, en este caso 12. Vemos que 27 dividido por 12 da un cociente de 2 y un resto de 3, así que escribimos el 3 y nos llevamos 2. Entonces, en la columna de las docenas obtenemos 1 + 1 + 1 + 2 = 5. Por lo tanto, nuestro total es 5 docenas y 3 manzanas.

Siempre que tengamos una relación entre columnas que sea distinta de 10 deberemos efectuar todas las divisiones al sumar, y esto constituye la «suma de complejos». Uno no tiene más remedio que caer en la suma de complejos si tiene que sumar 5 libras 12 onzas más 6 libras 8 onzas, pues una libra tiene 16 onzas. Tampoco le queda otro remedio si debe sumar 3 yardas 2 pies 6 pulgadas más 1 yarda 2 pies 8 pulgadas, puesto que un pie tiene 12 pulgadas, y 3 pies forman una yarda.

Si tienen ganas, hagan la primera operación; yo haré la segunda. Primero, 6 pulgadas y 8 pulgadas son 14 pulgadas. Al dividir 14 por 12 nos da 1 y el resto vale 2, así que escribimos 2 y nos llevamos 1. Entonces, en la columna de los pies tenemos 2 + 2 + 1 = 5. Dividimos 5 por 3 y nos da 1 con un resto igual a 2, de modo que escribimos el 2 y nos llevamos 1. En la columna de las yardas tenemos 3 + 1 + 1 = 5. En consecuencia la respuesta es 5 yardas 2 pies y 2 pulgadas.

Pero, ¿por qué diablos tienen que variar tanto las relaciones entre las distintas unidades, cuando nuestro sistema de numeración se basa tan firmemente en el número 10? Hay muchas razones (que fueron válidas en otros tiempos) para emplear relaciones tan raras como 2, 3,4, 8, 12,16 y 20, pero no cabe duda que el progreso que ya hemos alcanzado nos permite utilizar la relación 10 de manera exclusiva (o casi exclusiva). De hacerlo nos podríamos olvidar con gran placer de la suma de complejos… y también de la resta, la multiplicación y la división de complejos. (Por supuesto que también existen).

Por cierto que a veces la naturaleza hace imposible esta generalización del 10. Al medir el tiempo, el día y el año tienen duraciones prefijadas por las condiciones astronómicas y no podemos renunciar a ninguna de las dos unidades de tiempo. Caramba, todavía tendremos que conservar la suma y las otras operaciones con complejos para esos casos especiales.

Pero, ¿quién demonios dice que tenemos que medir las cosas en firkins y celemines y anas flamencas? Éstos no son más que medidas hechas por el hombre, y debemos recordar que las medidas fueron hechas para el hombre, y no el hombre para las medidas.

Pero sucede que en el mundo ya existe un sistema de medidas que se basa exclusivamente en el número 10. Se denomina sistema métrico decimal y se lo emplea en todo el mundo civilizado, con excepción de ciertas naciones de habla inglesa tales como los Estados Unidos y la Gran Bretaña.

Por no adoptar el sistema métrico perdemos lamentablemente el tiempo sin ganar nada, absolutamente nada, al aprender nuestro propio sistema de medidas. La pérdida de tiempo (que es verdaderamente costosa) no se ve compensada por nada que yo me pueda imaginar. (Sin duda sería costoso convertir todos los instrumentos y herramientas existentes, pero si lo hubiéramos hecho hace un siglo, el costo no se habría aproximado ni remotamente al actual).

Por supuesto que están aquellos que se oponen a profanar nuestras queridas y gastadas medidas. Han renunciado a combos y chaldrones, pero imaginan que las pulgadas, los pies, las pintas, los cuartos, los pecks y los bushels tienen algo que los hace más «simples» o «naturales» que los metros y los litros.

Incluso puede haber gente que descubra en el sistema métrico algo peligrosamente extranjero y radical (o «jacobino», para emplear esa arcaica calificación del oprobio)… y sin embargo fueron los Estados Unidos los que llevaron la delantera.

En 1786, trece años antes de la creación del sistema métrico por los perversos revolucionarios franceses, Thomas Jefferson (un conocido jacobino, al menos en la opinión de los federalistas) logró que los nacientes Estados Unidos aprobasen un proyecto suyo. Así fue como la nación estableció un sistema decimal para la moneda.

Lo que habíamos estado usando hasta entonces era el sistema británico, que era algo temible y asombroso a la vez. Tan sólo para señalar lo ridículo que es, permítanme decirles que los británicos, que a través de los siglos, con una paciencia monumental, habían aprendido a soportar absolutamente cualquier cosa, siempre que fuera «tradicional», están completamente hartos de su sistema monetario y consideran la conversión al sistema decimal. (No se ponen de acuerdo sobre los detalles exactos del cambio[33]).

Pero veamos cómo era la moneda inglesa. Para empezar, 4 cuartos forman 1 penique; 12 peniques hacen 1 chelín y 20 chelines equivalen a 1 libra. Además hay una verdadera ensalada de términos, que no siempre describen las monedas en circulación, tales como medios peniques, medios chelines, coronas, medias coronas, florines, guineas y Dios sabe cuántos otros inventos destinados a arruinar el desarrollo mental de los escolares británicos y a forrar los bolsillos de los comerciantes británicos cada vez que los turistas que se presentan tienen que vérselas con la moneda.

Aunque no hace falta que lo diga, Pike da cuidadosas instrucciones sobre cómo manejar libras, chelines y peniques… y por cierto que son instrucciones muy especiales. Intente dividir 5 libras, 13 chelines y 7 peniques por 3. ¡Vamos, rápido!

En los Estados Unidos el sistema monetario, tal como fue establecido originalmente, es el siguiente: 10 milésimos forman 1 centavo; 10 centavos hacen 1 décimo; 10 décimos equivalen a 1 dólar; 10 dólares hacen 1 águila. Pero en realidad los norteamericanos de nuestros días hacen sus cálculos con dólares y centavos solamente.

¿Cuál es el resultado? La moneda estadounidense se puede expresar en forma decimal y se puede operar con ella como con cualquier otro número decimal. A un niño americano que haya aprendido los decimales sólo se le debe enseñar a reconocer el símbolo del dólar y con ello es suficiente. En este mismo tiempo, un niño británico apenas ha logrado entender que una guinea equivale a 21 chelines.

Es casi doloroso que los Estados Unidos, que iniciaron resueltamente su marcha en la dirección adecuada, no hayan seguido adelante.

Inmediatamente después de la Guerra de la Independencia, los sentimientos antibritánicos fueron tan intensos que muchos norteamericanos quisieron abolir toda cosa trivial que pudiera recordarles al odiado enemigo. Los «derechos de los ingleses» no eran cosa trivial, y por lo mismo fueron incorporados a la Carta de Derechos («Bill of Rights»). Pero el sistema monetario, a pesar de ser tan familiar, sí era trivial.

La persona clave en esta cuestión fue un ciudadano de Pennsylvania, el gobernador Morris. Éste era un federalista, partidario de un gobierno central fuerte que pudiera imponerse a los estados desunidos y enemistados que formaban lo que inmediatamente después de la Revolución recibió el nombre incorrecto de Estados «Unidos». Morris formaba parte del Congreso Constituyente y fue responsable, más que ningún otro, del texto final de la Constitución y de la redacción de ésta en un estilo claro y sencillo, desprovisto de altisonancias y falsos sentimentalismos.

También fue él quien sugirió que los Estados Unidos adoptaran una nueva moneda basada en un sistema decimal. La unidad básica, el «dólar», recibió un nombre que había recorrido un largo camino. Allá por el año 1500 se acuñaban monedas de una onza utilizando plata proveniente de las minas del valle de Joaquín (que se encuentra en lo que hoy es el noroeste de Checoslovaquia). El nombre de dicho valle en alemán es Joachimsthal, y las monedas se llamaban «Joachimsthalers» o para abreviar «thalers» o sea, en inglés, «dollars».

En tiempos de la colonia existieron monedas españolas que tenían casi el mismo valor de los bien conocidos dólares. Los españoles las llamaban «pesos», los ingleses «dólares» y los norteamericanos adoptaron este nombre y comenzaron a acuñarlas en 1794.

Es una verdadera lástima que cuando treinta años después, en 1799, se creó el sistema métrico, nuestros sentimientos originalmente antibritánicos y pro franceses no hubieran subsistido lo suficiente para permitirnos adoptarlo. Si lo hubiéramos hecho estaríamos muy contentos de haber olvidado nuestros disparatados pecks y onzas, tan contentos como lo estamos al habernos olvidado de los peniques y chelines. (Después de todo, ¿le gustaría regresar al sistema monetario británico con preferencia al nuestro?).

A mí me gustaría que una sola forma de moneda sirviera para todo el mundo. En todas partes. ¿Por qué no?

No dejo de darme cuenta que por esta razón me puedan acusar de querer meter en un molde a toda la humanidad, o de ser un conformista. Por supuesto que no soy un conformista (¡cielos!). No tengo ninguna objeción en contra de las costumbres, de los dialectos ni de los hábitos culinarios locales. Por el contrario, estoy a favor de ellos pues yo mismo constituyo un fenómeno local. Lo que no deseo conservar son los provincialismos que tuvieron sentido en su época, pero que interfieren con el bienestar del hombre en un mundo que sólo tardamos noventa minutos en circundar.

Si usted piensa que el provincialismo es lindo y le da color y encanto a la humanidad, permítame que vuelva a extraer pasajes del Pike.

El «Sistema federal de moneda» (dólares y centavos) había sido implantado once años antes de la segunda edición del Pike, y él nos da el contenido literal de la ley que lo estableció y lo discute en detalle… empleando el sistema decimal y no la suma de complejos. Naturalmente como todavía se empleaban otros sistemas aparte del federal, se hacía necesario formular y explicar las reglas de conversión (o «reducción») de un sistema al otro. He aquí la lista. No los voy a cansar con el texto de las reglas, sino que simplemente les daré la lista de las reducciones que eran necesarias, exactamente como él las enumera:

I. Para reducir la moneda de New Hampshire, Massachussets, Rhode Island, Connecticut y Virginia:

1. A moneda federal.

2. A moneda de New York y North Carolina.

3. A moneda de Pennsylvania, New Jersey, Delaware y Maryland.

4. A moneda de South Carolina y Georgia.

5. A moneda inglesa.

6. A moneda irlandesa.

7. A moneda de Canadá y Nova Scotia.

8. A libras francesas (livres tournois).

9. A piezas metálicas de ocho (pesos españoles).

II. Para reducir la moneda federal a la de Nueva Inglaterra y Virginia.

III. Para reducir la moneda de New Jersey, Pennsylvania, Delaware y Maryland:

1. A moneda de New Hampshire, Massachussets, Rhode Island, Connecticut y Virginia.

2. A moneda de New York y…

Bueno, basta de todo esto. Usted ya se va dando cuenta.

¿Es posible que exista alguien que pueda sentirse apenado porque haya desaparecido este precioso sabor local? ¿Se siente usted triste cada vez que viaja de un estado a otro al no tener que ponerse a resolver incómodos problemas matemáticos cada vez que quiere hacer una compra? ¿O cada vez que alguien de otro estado invade el suyo e intenta regatear con usted? ¡Qué verdadero placer el haber olvidado todo eso!

Entonces, dígame: ¿qué tiene de maravilloso poseer cincuenta juegos de leyes sobre el matrimonio y el divorcio?

En 1752 Gran Bretaña y sus colonias (unos dos siglos después que la Europa católica) abandonaron el calendario juliano y adoptaron el calendario gregoriano, que es más correcto desde el punto de vista astronómico (ver capítulo 11). Cerca de medio siglo después Pike todavía seguía dando reglas para resolver complejos problemas relacionados con el calendario, tanto para el juliano como para el gregoriano. ¿No es lindo haber olvidado el calendario juliano?

¿No sería lindo si pudiéramos olvidarnos de la mayoría de las complicaciones del almanaque adoptando un calendario racional que vincule estrechamente al día del mes con el día de la semana? De esa manera tendríamos un solo calendario trimestral que se repetiría una y otra vez cada tres meses, funcionando como calendario perpetuo. Se ha propuesto un calendario universal que reúne todas esas condiciones.

Si se lo adoptara nos permitiría olvidar muchas cosas inútiles.

Me gustaría ver que el idioma inglés sea adoptado universalmente. No necesariamente como idioma único, ni siquiera como idioma principal. Creo que sería muy lindo si todos, sea cual fuera el idioma propio, también supieran hablar inglés de manera fluida. Ello contribuiría a las comunicaciones humanas y tal vez con el tiempo todos se decidirían a hablar inglés.

Con lo cual quedaría mucho espacio disponible para otras cosas.

¿Y por qué el inglés? Bueno, por una parte hay sobre la Tierra más gente que habla inglés, ya sea como primero o segundo idioma, que cualquier otro idioma, de modo que tenemos un buen comienzo. Por otra parte, en inglés se publicaron muchísimos más resultados científicos que los que se publican en cualquier otro idioma, y esta comunicación decisiva en el ámbito de las ciencias se va a ir haciendo cada vez más importante en el futuro.

Es indudable que deberíamos hacer todo lo posible para que la gente hable inglés con facilidad, lo que significa que deberíamos racionalizar su pronunciación y su gramática.

Tal como se lo habla hoy el inglés es casi lo mismo que un conjunto de ideogramas chinos. Nadie puede estar seguro de como se pronuncia una palabra si sólo mira las letras que la forman. ¿Cómo se pronuncian: rough, through, though, cough, hiccough y lough[34]? ¿Y por qué es tan terriblemente necesario escribir todos estos sonidos empleando una combinación de letras tan delirante como «ough»?

Tal vez resulte gracioso escribir estas mismas palabras así: ruff, throo, thoh, cawf, hiccup y lokh; pero esta última forma de hiccup («hipo») ya la venimos usando y no nos parece graciosa. También escribimos indistintamente colour o color, centre o center, shew y show, y grey o gray. A los británicos les parece divertido, pero nosotros los americanos estamos acostumbrados a esto. También podemos acostumbrarnos a todo lo demás y ahorrarnos mucho tiempo y desgaste cerebral. Todos seríamos más inteligentes, si la inteligencia se mide por las aptitudes ortográficas, y no habremos perdido absolutamente nada.

¿Y la gramática? ¿A quién le hacen falta esas discusiones eternas e inútiles acerca de minucias como «shall» y «will», o «which» y «that»?

La inutilidad de todo eso queda demostrada porque, de todos modos, prácticamente nadie emplea estas palabras correctamente. Además de perder tiempo valioso entorpeciendo el raciocinio de los niños e inculcándoles una violenta aversión contra el idioma inglés, ¿qué ganamos con ello?

Si hay alguien que piensa que semejante eliminación de sutiles diferencias va a arruinar el idioma, me gustaría señalar que el inglés antes que los gramáticos se apoderasen de él, se las había arreglado para perder sus géneros y declinaciones en casi todos los casos, con excepción de los pronombres. El hecho que solamente tengamos un artículo determinante (the) para todos los géneros y números y casos en lugar de tres, como el francés (le, la, les) o seis, como el alemán (der, die, das, dem, den, des) de ninguna manera desdibuja al idioma inglés, que sigue siendo un instrumento admirablemente flexible. Nos aferramos a nuestras tonterías solamente porque nos hemos acostumbrado a ellas y no porque, en realidad, dejen de ser tonterías.

Debemos hacer lugar para el verdadero conocimiento siempre en desarrollo, o al menos tenemos que prepararle todo el espacio que podamos. No puede caber duda que tan importante es olvidar lo viejo y lo inútil como aprender lo nuevo y lo importante.

Olvídenlo, digo, olviden siempre cada vez más. ¡Olvídenlo!

Pero ¿para qué excitarme tanto? Al fin y al cabo nadie escucha ni una sola palabra de lo que digo.