9. “Un prodigio que no lo es”

La inútil persecución del “movimiento continuo” ha hecho que muchas personas sean muy desgraciadas. Antes de la revolución, conocí a un obrero que se gastaba todo su jornal en hacer modelos de motores de “movimiento continuo”, y llegó por fin a la mayor indigencia. El pobre era víctima de su absurda idea. Mal vestido y hambriento, iba pidiendo a todo el mundo medios para construir su “modelo definitivo”, que “andaría sin falta”. Daba pena pensar, que este hombre sufría necesidad a causa de sus escasos conocimientos de los principios elementales de la Física.

Sin embargo, es interesante, que mientras las búsquedas del “movimiento continuo” resultaron siempre infructuosas, el profundo convencimiento de la imposibilidad de su consecución condujo en muchos casos a descubrimientos provechosos.

Un magnífico ejemplo de esto lo tenemos en el procedimiento que utilizó el célebre científico holandés de finales del siglo XVI y principios del XVII, Stevin, para descubrir la ley del equilibrio de fuerzas en el plano inclinado. Este matemático merece mucha más celebridad que la que le ha correspondido, ya que muchos de los grandes descubrimientos que él realizó nos sirven constantemente en la actualidad. Inventó las fracciones decimales, introdujo en el álgebra el empleo de los exponentes y descubrió la ley hidrostática que más tarde redescubrió Pascal.

Figura 47. “Un prodigio que no lo es”.

La ley del equilibrio de las fuerzas en el plano inclinado fue descubierta por él, sin apoyarse en la regla del paralelogramo de fuerzas, utilizando únicamente el dibujo que reproducimos en la fig. 47. En él se representa una cadena compuesta por 14 bolas iguales, colgada de un prisma triangular. ¿Qué ocurrirá con esta cadena? La parte inferior de la misma cuelga como una guirnalda y se equilibra a sí misma.

Pero, ¿y las dos partes restantes de la cadena, se equilibran también mutuamente? O en otras palabras, ¿equilibran las dos bolas de la derecha a las cuatro de la izquierda? Naturalmente que sí, de lo contrario, la cadena se movería constantemente a sí misma, de derecha a izquierda. Porque las bolas que se deslizasen del plano serían inmediatamente sustituidas por otras y el equilibrio no se restablecería nunca. Pero como sabemos que cualquier cadena colgada como hemos dicho no puede moverse a sí misma, es evidente, que las dos bolas de la derecha equilibran a las cuatro de la izquierda. Tenemos, pues, algo que parece un prodigio: dos bolas tiran con la misma fuerza que cuatro.

De este seudoprodigio dedujo Stevin una de las principales leyes de la mecánica. El se hizo la siguiente reflexión: estas dos cadenas, la larga y la corta, no pesan lo mismo, una de ellas es más pesada que la otra, tantas veces como la cara del prisma de sección más larga es mayor que la cara de sección más corta. De aquí se deduce, que dos pesos cualesquiera, unidos entre sí por un cordón, se equilibran entre sí en los planos inclinados siempre que sus respectivos pesos sean proporcionales a las longitudes de dichos planos.

En el caso particular de que el plano más corto está más pendiente, obtenemos la conocida ley de la mecánica, que dice: para sostener un cuerpo en un plano inclinado hay que aplicarle, en la dirección ascendente del plano, una fuerza cuya magnitud sea tantas veces menor que el peso del cuerpo, como la longitud del plano es mayor que su elevación.

De esta forma, partiendo de la idea de la imposibilidad del movimiento continuo, se hizo un importante descubrimiento mecánico.

Física recrativa
titlepage.xhtml
sec_0001.xhtml
sec_0002.xhtml
sec_0003.xhtml
sec_0004.xhtml
sec_0005.xhtml
sec_0006.xhtml
sec_0007.xhtml
sec_0008.xhtml
sec_0009.xhtml
sec_0010.xhtml
sec_0011.xhtml
sec_0012.xhtml
sec_0013.xhtml
sec_0014.xhtml
sec_0015.xhtml
sec_0016.xhtml
sec_0017.xhtml
sec_0018.xhtml
sec_0019.xhtml
sec_0020.xhtml
sec_0021.xhtml
sec_0022.xhtml
sec_0023.xhtml
sec_0024.xhtml
sec_0025.xhtml
sec_0026.xhtml
sec_0027.xhtml
sec_0028.xhtml
sec_0029.xhtml
sec_0030.xhtml
sec_0031.xhtml
sec_0032.xhtml
sec_0033.xhtml
sec_0034.xhtml
sec_0035.xhtml
sec_0036.xhtml
sec_0037.xhtml
sec_0038.xhtml
sec_0039.xhtml
sec_0040.xhtml
sec_0041.xhtml
sec_0042.xhtml
sec_0043.xhtml
sec_0044.xhtml
sec_0045.xhtml
sec_0046.xhtml
sec_0047.xhtml
sec_0048.xhtml
sec_0049.xhtml
sec_0050.xhtml
sec_0051.xhtml
sec_0052.xhtml
sec_0053.xhtml
sec_0054.xhtml
sec_0055.xhtml
sec_0056.xhtml
sec_0057.xhtml
sec_0058.xhtml
sec_0059.xhtml
sec_0060.xhtml
sec_0061.xhtml
sec_0062.xhtml
sec_0063.xhtml
sec_0064.xhtml
sec_0065.xhtml
sec_0066.xhtml
sec_0067.xhtml
sec_0068.xhtml
sec_0069.xhtml
sec_0070.xhtml
sec_0071.xhtml
sec_0072.xhtml
sec_0073.xhtml
sec_0074.xhtml
sec_0075.xhtml
sec_0076.xhtml
sec_0077.xhtml
sec_0078.xhtml
sec_0079.xhtml
sec_0080.xhtml
sec_0081.xhtml
sec_0082.xhtml
sec_0083.xhtml
sec_0084.xhtml
sec_0085.xhtml
sec_0086.xhtml
sec_0087.xhtml
sec_0088.xhtml
sec_0089.xhtml
sec_0090.xhtml
sec_0091.xhtml
sec_0092.xhtml
sec_0093.xhtml
sec_0094.xhtml
sec_0095.xhtml
sec_0096.xhtml
sec_0097.xhtml
sec_0098.xhtml
sec_0099.xhtml
sec_0100.xhtml
sec_0101.xhtml
sec_0102.xhtml
sec_0103.xhtml
sec_0104.xhtml
sec_0105.xhtml
sec_0106.xhtml
sec_0107.xhtml
sec_0108.xhtml
sec_0109.xhtml
sec_0110.xhtml
sec_0111.xhtml
sec_0112.xhtml
sec_0113.xhtml
sec_0114.xhtml
sec_0115.xhtml
sec_0116.xhtml
sec_0117.xhtml
sec_0118.xhtml
sec_0119.xhtml
sec_0120.xhtml
sec_0121.xhtml
sec_0122.xhtml
sec_0123.xhtml
sec_0124.xhtml
sec_0125.xhtml
sec_0126.xhtml
sec_0127.xhtml
sec_0128.xhtml
sec_0129.xhtml
sec_0130.xhtml
sec_0131.xhtml
sec_0132.xhtml
sec_0133.xhtml
sec_0134.xhtml
sec_0135.xhtml
sec_0136.xhtml
sec_0137.xhtml
sec_0138.xhtml
sec_0139.xhtml
sec_0140.xhtml
sec_0141.xhtml
sec_0142.xhtml
sec_0143.xhtml
sec_0144.xhtml
sec_0145.xhtml
sec_0146.xhtml
sec_0147.xhtml
sec_0148.xhtml
sec_0149.xhtml
sec_0150.xhtml