CAPÍTULO 10: MUERTE SÚBITA… Y RENACIMIENTO

Hasta este momento he dado por supuesto que el fin del universo, sea en un pum o en un suspiro (o, con más exactitud, en un crujido o en una ultracongelación), se encuentra situado en un futuro lejanísimo, puede que infinitamente lejano. Si el universo se contrae, nuestros descendientes tendrían muchos miles de millones de años de margen antes del inminente crujido. Pero queda otra posibilidad y todavía más alarmante.

Como ya he explicado, cuando los astrónomos escrutan los cielos no ven el universo en su estado actual exhibido como una foto fija. Debido al tiempo que la luz tarda en llegarnos desde las regiones lejanas, vemos cualquier objeto dado del espacio tal y como era cuando se emitió la luz. El telescopio es a la vez un tiemposcopio. Cuanto más lejos esté situado un objeto, más antigua será la imagen que veamos. En efecto, el universo de astrónomo es como una loncha anterior de espacio y de tiempo, lo que se conoce técnicamente como «cono de luz pasada» y que se representa en la figura 10.1.

Figura 10.1. Desde un punto P concreto del espacio y del tiempo (que podría ser el aquí y el ahora, por ejemplo) un astrónomo que mira el universo ve en realidad el universo tal y como era en el pasado, no como es ahora. La información que llega a P viaja a lo largo del «cono de luz pasada» pasando por P y que viene dibujado con las líneas oblicuas. Ésas son las vías de las señales luminosas que convergen en la Tierra desde regiones lejanas del universo pasado. Como ninguna información ni influencia física puede viajar más rápidamente que la luz, el observador en el momento que recoge la figura sólo puede conocer las influencias o sucesos que ocurren en la zona sombreada. Un suceso apocalíptico exterior al cono de luz pasada podría enviar hacia la Tierra a toda velocidad influencias desastrosas (la flecha ondulada), pero el observador estaría benditamente ajeno a semejante eventualidad hasta que llegaran esas influencias.

Según la teoría de la relatividad, ninguna información ni influencia física puede viajar a mayor velocidad que la de la luz. Por lo tanto, el cono de luz pasada marca el límite no sólo de todo conocimiento sobre el universo, sino de todos los sucesos que puedan afectarnos en este momento. Se deduce que cualquier influencia física que nos llegue a la velocidad de la luz nos llega absolutamente sin previo aviso. Si la catástrofe se dirige hacia nosotros por encima del cono de luz pasada, no habrá precursores del apocalipsis. Lo sabremos cuando lo tengamos encima.

Por poner un ejemplo absolutamente hipotético, si el Sol estallara ahora mismo, nosotros no lo sabríamos hasta dentro de ocho minutos y medio, ya que éste es el tiempo que tarda en llegarnos la luz del Sol. De forma similar, es completamente posible que una estrella cercana haya estallado como una supernova (suceso que habría dado a la Tierra un baño de radiación letal) pero que nosotros sigamos en nuestra bendita ignorancia del hecho hasta que dentro de unos pocos años nos llegue la mala noticia atravesando la galaxia a la velocidad de la luz. De modo que aunque el universo pueda parecer tranquilo en este momento, no podemos estar seguros de que no haya ocurrido ya algo realmente terrible.

La mayor parte de la violencia súbita del universo supone daños que se limitan a su inmediata vecindad cósmica. La muerte de las estrellas o la zambullida de materia en el interior de un agujero negro perturbará a los planetas y a las estrellas cercanas, es posible que hasta una distancia de unos pocos años luz. Los estallidos más espectaculares parecen ser sucesos que acontecen en los núcleos de algunas galaxias. Como ya he descrito, a veces se expulsan inmensos surtidores de materia a una fracción considerable de la velocidad de la luz, emitiéndose asimismo prodigiosas cantidades de radiación. Es violencia a escala galáctica.

Pero ¿qué ocurre con los sucesos de proporciones universales? ¿Es posible que pueda darse una convulsión que destruya el cosmos de un solo golpe, en lo mejor de su vida, por así decirlo? ¿Podría haberse disparado ya una auténtica catástrofe cósmica y estar sus desagradables efectos llegándonos a toda velocidad incluso ahora por detrás de nuestro cono de luz pasada a nuestro frágil nicho en el espacio y el tiempo?

En 1980, los físicos Sydney Coleman y Frank de Luccia publicaron un artículo portentoso bajo el inocuo título de «Efectos gravitatorios sobre la degeneración del vacío y a partir de éste» en la revista Physical Review D. El vacío al que se refieren no es meramente el espacio vacío, sino el estado vacío de la física cuántica. En el capítulo 3, expliqué que lo que nos parece un vacío en realidad hormiguea con una efímera actividad cuántica, conforme aparecen y desaparecen fantasmales partículas virtuales en animado azar. Recuérdese que este vacío puede no ser único; podría haber diversos estados cuánticos, todos ellos aparentemente vacíos pero que disfruten de diferentes grados de actividad cuántica y de diferentes energías asociadas.

Es un principio bien establecido de la física cuántica que los estados de alta energía tienden a degenerar a estado de energía inferior. Un átomo, por ejemplo, puede existir en una diversidad de estados excitados, todos ellos inestables, y que intentará degenerar hasta el estado de energía más baja, o estado «base», que es el estable. De modo parecido, un vacío excitado intentará degenerar a la energía más baja o vacío «auténtico». El panorama del universo inflacionario se basa en la teoría de que el universo muy primitivo tuvo un estado de vacío excitado o «falso» durante el cual se infló frenéticamente, pero que tal estado degeneró rapidísimamente hasta el vacío auténtico, cesando la inflación.

Lo que suele suponerse habitualmente es que el estado actual del universo se corresponde con el vacío auténtico; es decir, que el espacio vacío de nuestra época es el vacío de mínima energía posible. Pero ¿podemos estar seguros de esto? Coleman y De Luccia consideran la espeluznante posibilidad de que el vacío actual no sea el auténtico vacío, sino un falso vacío, metaestable, de vida larga, que nos haya inducido un falso sentido de seguridad debido a que ha durado unos pocos miles de millones que tienen vidas medias de muchos sistemas cuánticos, como el de los núcleos de uranio, que tienen vidas medias de miles de millones de años. ¿Y qué pasa si suponemos que el vacío presente cae dentro de esta categoría? La «degeneración» del mencionado vacío en el título del artículo de Coleman y De Luccia se refiere a la catastrófica posibilidad de que el vacío actual pueda degenerar súbitamente sumergiendo al cosmos en un estado de energía aún más baja, de espantosas consecuencias para nosotros (y para todo).

La clave de la hipótesis de Coleman y De Luccia es el fenómeno de túnel cuántico. La mejor manera de ilustrarlo es hacerlo con el caso sencillo de una partícula cuántica atrapada en una barrera de fuerza. Supongamos que la partícula se encuentra en una pequeña hondonada rodeada de colinas por todas partes, como se indica en la figura 10.2. Por supuesto que no tienen por qué ser colinas reales; podrían ser, por ejemplo, campos de fuerzas nucleares o eléctricas. En ausencia de la energía necesaria para remontar las colinas (o superar la barrera de fuerzas) la partícula parece atrapada para siempre. Pero recuérdese que todas las partículas cuánticas están sujetas al principio de incertidumbre de Heisenberg, que permite tomar energía prestada durante pequeños periodos de tiempo. Y ello abre una posibilidad intrigante. Si la partícula puede tomar prestada suficiente energía como para llegar a lo alto de la colina y cruzar al otro lado antes de tener que devolver el préstamo energético, podrá salir del pozo. Efectivamente, habrá practicado un «túnel» en la barrera.

Figura 10.2. Efecto túnel. Si una partícula cuántica está atrapada en un valle entre dos colinas, existe una pequeña posibilidad de que pueda escapar tomando energía prestada y saltando por encima de la colina. Efectivamente, se observa que tuneliza la barrera. Un caso familiar es el que se da cuando las partículas alfa del núcleo de determinados elementos tunelizan la barrera que es la fuerza nuclear y escapan, fenómeno conocido como radiactividad alfa. En este ejemplo, la «colina» se debe a fuerzas eléctricas y nucleares y el dibujo no es más que esquema.

La probabilidad de que una partícula cuántica salga de la hondonada practicando un túnel depende muchísimo tanto de la altura como de la anchura de la barrera. Cuanto más alta sea la barrera, más energía debe tomar prestada la partícula para llegar a lo alto y por ello, según el principio de incertidumbre, más breve será la duración del préstamo. De ahí que las barreras altas puedan superarse mediante un túnel sólo en el caso de que sean finas, permitiendo así que la partícula las atraviese con la suficiente rapidez como para devolver a tiempo el préstamo. Razón por la cual el efecto túnel no se percibe en la vida diaria: las barreras macroscópicas son excesivamente altas y anchas como para que se den túneles significativos. En principio, un ser humano podría atravesar una pared, pero la probabilidad de que se produzca un túnel cuántico para este milagro es extremadamente pequeña. Sin embargo, a escala atómica el túnel es muy común: es, por ejemplo, el mecanismo por el cual ocurre la radiación alfa. El efecto túnel lo explotan también los semiconductores y otros dispositivos electrónicos como por ejemplo el microscopio de barrido electrónico mediante efecto túnel. En relación con el problema de la posible degeneración del vacío actual, Coleman y De Luccia conjeturan que los campos cuánticos que fabrican el vacío deben estar sometidos a un paisaje (metafórico) de fuerzas como las que se muestran en la figura 10.3.

Figura 10.3. Estados de vacío falso y auténtico. Puede darse el caso de que el actual estado cuántico de espacio vacío A no sea el estado de menor energía sino que, sin embargo, esté casi estabilizado al corresponderse con una especie de valle de alta montaña. Habría entonces una pequeña probabilidad de que ese estado degenerara por el efecto túnel a un auténtico estado estable de base B. La transición entre estos estados, que se daría mediante la formación de una burbuja, liberaría una inmensa cantidad de energía.

El estado vacío actual se corresponde al fondo de valle A. Sin embargo, el auténtico vacío se corresponde al fondo del valle B, inferior a A. El vacío querría degenerar del estado de energía más alta A al estado de energía más baja B, pero se lo impide la «colina» o campo de fuerza que los separa. Aunque la colina estorba la degeneración, no la impide por completo habida cuenta del efecto túnel: el sistema puede tunelizar del valle A al valle B. Si esta teoría es correcta, entonces el universo está viviendo de tiempo prestado en el valle A pero con la siempre presente posibilidad de que tunelice el valle B en un momento aleatoria cualquiera.

Coleman y De Luccia fueron capaces de modelizar matemáticamente la degeneración del vacío… de esquematizar cómo ocurre el fenómeno. Descubrieron que la degeneración comenzaría en una localización espacial aleatoria, en forma de una burbujita de auténtico vacío rodeada de un falso vacío inestable. En cuanto se ha formado la burbuja de auténtico vacío, se expande a una velocidad que se va acercando a la de la luz, engullendo una región cada vez mayor del falso vacío y convirtiéndolo instantáneamente en auténtico vacío. La diferencia de energía entre los dos estados (que podría tener un valor enorme parecido al examinado en el capítulo 3) se concentra en la pared de la burbuja que barre el universo destruyéndolo todo a su paso.

Lo primero que sabríamos sobre la existencia de una burbuja de vacío auténtico sería la llegada de la pared y el cambio súbito de la estructura cuántica de nuestro mundo. Ni siquiera tendríamos un preaviso de tres minutos. Se alteraría drástica e instantáneamente la naturaleza de todas las partículas subatómicas y sus interacciones; por ejemplo, podrían degenerar de inmediato los protones en cuyo caso se evaporaría bruscamente toda la materia. Lo que quedara se encontraría en el interior de la burbuja de auténtico vacío… un estado de cosas muy diferente al que observamos en este momento. La diferencia más significativa se refiere a la gravitación. Coleman y De Luccia descubrieron que la energía y la presión del auténtico vacío crearían un campo gravitatorio tan intenso que la región abarcada por la burbuja se contraería, incluso conforme se expandiera la burbuja, en un tiempo menor al microsegundo. En esta ocasión nada de una suave caída hacia un gran crujido: en su lugar, una brusca aniquilación de todo según implota la burbuja interior en su singularidad espaciotemporal. En resumen: aplastamiento instantáneo. «Descorazonador», señalan los autores en un eufemismo magistral, y prosiguen:

La posibilidad de que vivamos en un falso vacío nunca ha sido alentadora como tal posibilidad. La degeneración del vacío es la catástrofe ecológica definitiva; […] tras la degeneración del vacío no sólo es imposible la vida tal y como la conocemos, sino también la química tal y como la conocemos. Sin embargo, siempre podíamos reconfortarnos estoicamente con la posibilidad de que quizá en el transcurso del tiempo el nuevo vacío sustentara, si no la vida tal y como la conocemos, sí por lo menos ciertas estructuras que fueran capaces de conocer la alegría. Esta posibilidad queda ahora eliminada.

Las horrorosas consecuencias de la degeneración del vacío fueron objeto de numerosas discusiones entre los físicos y los astrónomos después de publicarse el artículo de Coleman y De Luccia. En un estudio detallado publicado en la revista Nature, el cosmólogo Michael Turner y el físico Frank Wilczek llegaron a una conclusión apocalíptica: «Desde el punto de vista de la microfísica, por lo tanto, es bastante concebible que nuestro vacío sea metaestable… podría cuajarse una burbuja de auténtico vacío sin previo aviso en cualquier lugar del universo y expandirse a la velocidad de la luz».

Al poco de aparecer el artículo de Turner y Wilczek, Piet Hurt y Martin Rees, también en Nature, lanzaron el espectro alarmante de que la formación de una burbuja de vacío que destruyera el universo ¡podrían dispararla los propios físicos de partículas! La preocupación consiste en que la altísima energía de la colisión de las partículas subatómicas pudiera crear las condiciones (sólo por un instante, en una región pequeñísima del espacio) que estimularan la degeneración del vacío. Una vez ocurrida la transacción, incluso a escala microscópica, no habría manera de impedir que la recién formada burbuja se hinchara alcanzando proporciones astronómicas. ¿Habría que prohibir la próxima generación de aceleradores de partículas? Hut y Rees nos tranquilizaron, afortunadamente, señalando que los rayos cósmicos consiguen energías más elevadas de las que podemos alcanzar en nuestros aceleradores de partículas y que esos rayos cósmicos llevan golpeando núcleos en la atmósfera de la Tierra desde hace miles de millones de años sin disparar una degeneración del vacío. Por otra parte, con una mejora en un factor de cien, poco más o menos, en las energías de los aceleradores podríamos ser capaces de crear colisiones más energéticas que las que se han dado en la Tierra por causa de los rayos cósmicos. La cuestión, sin embargo, no es si la formación de burbuja pueda darse en la Tierra, sino si ya ha ocurrido en algún sitio del universo observable en algún momento posterior al gran pum. Hut y Rees señalaban que dos rayos cósmicos pueden chocar de frente en alguna rara ocasión con energías que superan mil millones de veces las posibles de los aceleradores existentes. De manera que tampoco hace falta una autoridad que controle los aceleradores de momento.

Paradójicamente, la formación de burbujas de vacío (el mismo fenómeno que amenaza la existencia misma del cosmos) podría, en un contexto ligeramente distinto, resulta ser la única salvación factible para sus habitantes. El único modo seguro de escapar a la muerte del universo es crear uno nuevo y huir a él. Puede sonar como lo último que podría escucharse en cuanto a especulaciones fantasiosas, pero se ha hablado mucho de los «universitos» o «crías de universo» y los argumentos que avalan su existencia tienen su lado serio.

El asunto lo planteó por vez primera en 1981 un grupo de físicos japoneses que estudiaba un modelo matemático simple del comportamiento de una burbujita de falso vacío rodeada de auténtico vacío, situación inversa a la que acabamos de ver. Lo que se predecía era que el falso vacío se inflaría tal y como se describe en el capítulo 3, expandiéndose rápidamente en un gran pum hasta un gran universo. Parece que al principio la inflación de la burbuja de falso vacío originaría que la pared de la burbuja se expandiera de tal modo que la región de falso vacío crecería a expensas de la región de vacío auténtico. Pero esto contradice la expectativa de que sea el auténtico vacío de menor energía el que desplace al falso vacío de alta energía, y no al revés.

Cosa rara, si se mira desde el vacío auténtico la región del espacio ocupada por la burbuja de falso vacío no parece hincharse. De hecho, aparenta más bien ser como un agujero negro. (En esto se parece a «Tardis», la máquina del tiempo del Dr. Who, que parece mayor por dentro que por fuera[4].) Un hipotético observador situado dentro de la burbuja de falso vacío vería hincharse el universo hasta proporciones enormes aunque, vista desde el exterior, la burbuja seguiría siendo compacta.

Una manera de concebir este peculiar estado de cosas es por analogía con una plancha de goma que se ampolla en un punto produciendo un globo (véase la figura 10.4). El globo forma una especie de universo cría conectado con el universo madre por un cordón umbilical o «agujero de gusano». El cuello del agujero de gusano aparece desde el universo madre como un agujero negro. Esta configuración es inestable; el agujero negro se evapora enseguida por el efecto Hawking y desaparece por completo del universo madre. Como resultado, el agujero de gusano se elimina y el universo cría, desconectado así del universo madre, se convierte en universo nuevo e independiente por derecho propio. El desarrollo del universo cría después de este desyemado del universo madre es el mismo que se supone para nuestro universo, un breve periodo de inflación seguido de la deceleración habitual. El modelo supone la evidente idea de que nuestro propio universo pueda haberse originado de este modo, como progenie de otro universo.

Figura 10.4. Una burbuja de espacio se hincha como un globo a partir del universo madre para formar un universo cría, conectado al universo madre mediante un agujero de gusano umbilical. Desde el punto de vista del universo madre, la boca del agujero de gusano parecería un agujero negro. Según se va evaporando el agujero negro, el cuello del agujero de gusano se va estrechando, desconectando el universo cría que luego lleva una vida independiente como universo de pleno derecho.

Alan Guth, primer promotor de la teoría inflacionaria, y sus colaboradores, han investigado si el panorama expuesto permite la extravagante posibilidad de crear un nuevo universo en el laboratorio. A diferencia del pavoroso caso de la degeneración del falso vacío en una burbuja de vacío auténtico, la creación de una burbuja de falso vacío rodeado por un auténtico vacío no amenaza la existencia del universo. Desde luego, aun cuando el experimento pueda desencadenar un gran pum, la explosión estaría absolutamente confinada en el interior de un diminuto agujero negro que se evapora enseguida. El nuevo universo crearía su propio espacio sin comerse nada del nuestro.

Aunque la idea sigue siendo muy especulativa y está basada por entero en teorizaciones matemáticas, algunos estudios parecen indicar que puede ser posible la creación de nuevos universos de esta manera, concentrando grandes cantidades de energía de modo cuidadosamente programado. En un futuro lejanísimo, cuando nuestro universo se vaya haciendo inhabitable o acercándose al gran crujido, nuestros descendientes podrían tomar la decisión de escapar para siempre iniciando el proceso de gemación, atravesando luego el agujero de gusano umbilical hasta el universo vecino antes de que se cierre… el último grito en emigración. Por supuesto que nadie tiene ni remota idea de cómo podrían esos seres intrépidos conseguir tal proeza ni si podrían hacerla. Como mínimo, el viaje a través del agujero de gusano debería ser bastante incómodo a no ser que el agujero negro en el que tuvieran que zambullirse fuera muy grande.

Dejando a un lado tales cuestiones prácticas, la posibilidad misma de los universos cría abre la perspectiva de la inmortalidad genuina, no sólo para nuestros descendiente sino también para los universos. En lugar de pensar en la vida y la muerte del universo deberíamos pensar en una familia de universos que se multiplicaran ad infinitum, cada uno de ellos dando origen a nuevas generaciones de universos, puede que por legiones. Con semejante fecundidad cósmica, el montaje de universos (o de metaversos, como en realidad deberían llamarse) podría no tener ni principio ni fin. Cada universo individual tendría un nacimiento, una evolución y una muerte como se ha descrito en los primeros capítulos de este libro, pero la colección existiría eternamente como conjunto.

Este panorama plantea la cuestión de si la creación de nuestro propio universo fue un asunto natural (análogo al nacimiento de un bebé) o el resultado de una manipulación deliberada (un «bebé probeta»). Podemos imaginar que una sociedad suficientemente avanzada y altruista de seres de un universo madre podría haber decidido crear universos cría no sólo para disponer de una vía de escape para su propia supervivencia, sino meramente para perpetuar la posibilidad de existencia de la vida en cualquier parte, habida cuenta que su propio universo estaba condenado. Este enfoque elimina la necesidad de abordar los formidables obstáculos que afrontaría cualquier intento de construir un agujero de gusano practicable para entrar en un universo cría.

No está claro hasta qué punto el universo cría llevaría la huella genética de su madre. Los físicos no tienen todavía idea de por qué las diversas fuerzas de la naturaleza y las partículas de materia tienen las propiedades que tienen. Por una parte, estas propiedades podrían ser parte de las leyes de la naturaleza, fijadas de una vez por todas para cualquier universo. Por otra, algunas de las propiedades podrían ser el resultado de accidentes evolutivos. Por ejemplo, bien podría haber varios estados de auténtico vacío, todos con idéntica, o casi idéntica, energía. Podría ser que cuando el falso vacío degenera al final de la era inflacionaria se limita a elegir al azar uno de estos muchos posibles estados de vacío. Por lo que respecta a la física del universo, la elección del estado de vacío dictará muchas de las propiedades de las partículas y de las fuerzas que actúen entre ellas e incluso podría dictar el número de dimensiones espaciales. De manera que un universo cría podría tener propiedades completamente distintas a las de su madre. Puede que la vida sólo sea posible en un número muy escaso de las progenies, en aquellas en las que la física se parezca bastante a la de nuestro universo. O puede que haya una especie de principio hereditario que asegure que los universos cría hereden muy aproximadamente las propiedades de sus universos madre, salvo alguna mutación aquí o allá. El físico Lee Smolin ha sugerido la idea de que haya incluso una especie de evolución darwinista que funcione entre los universos y que indirectamente estimule la emergencia de la vida y la conciencia. Más interesante aún es la posibilidad de que los universos se creen mediante manipulación inteligente en un universo madre, dotándolos con las necesarias propiedades que den origen a la vida y la conciencia.

Ninguna de estas ideas supone mucho más que una loca especulación, pero el sujeto de la cosmología todavía es una ciencia joven. Las conjeturas fantasiosas que he hecho más arriba por lo menos sirven como antídotos a los deprimentes pronósticos desarrollados en capítulos anteriores. Apuntan a la posibilidad de que incluso si nuestros descendientes deben afrontar algún día los últimos tres minutos, puedan existir siempre en algún sitio seres conscientes de uno u otro tipo.