CAPÍTULO 5: ANOCHECER

La Vía Láctea resplandece con la luz de cien mil millones de estrellas y todas ellas están condenadas. Dentro de diez mil millones de años, la mayor parte de las estrellas que ahora vemos habrán desaparecido, apagándose por falta de combustible, víctimas de la segunda ley de la termodinámica.

Pero la Vía Láctea seguirá luciendo con la luz de sus estrellas porque incluso cuando las estrellas mueren nacen otras nuevas que ocupan su lugar. En los brazos espirales de la galaxia, como aquel en el que está situado nuestro Sol, se comprimen las nubes de gas, se contraen por la gravedad, se fragmentan y producen una cascada de nacimientos estelares. Un vistazo a la constelación de Orion revela la actividad de este tipo de vivero nuclear. El borroso punto de luz del centro de la espada de Orion no es una estrella, sino una nebulosa: una inmensa nube de gas tachonada de jóvenes y brillantes estrellas. Observando la radiación infrarroja en lugar de observar la luz visible, los astrónomos que han estudiado la nebulosa han atisbado recientemente estrellas en sus primerísimos estadios de formación, todavía rodeadas del gas y el polvo que las oscurecen.

La formación de estrellas seguirá en los brazos espirales de nuestra galaxia siempre que haya suficiente gas. El contenido del gas en la galaxia es en parte primordial (materia que todavía no se ha agregado en estrellas) y en parte gas expulsado de estrellas en forma de supernovas, vientos estelares, pequeños estallidos explosivos y otros procesos. Evidentemente, el reciclado de la materia no puede continuar de modo indefinido. Conforme mueran y se contraigan las estrellas viejas para convertirse en enanas blancas, estrellas de neutrones o agujeros negros, dejarán de ser capaces de proporcionar más gases interestelares. La materia primordial irá poco a poco incorporándose a las estrellas hasta que también se agote por completo. Cuando estas estrellas tardías vayan cumpliendo sus ciclos vitales y vayan muriendo, la galaxia se irá apagando inexorablemente. Este apagón será muy lento. Pasarán muchos miles de millones de años hasta que las estrellas más jóvenes y de menor tamaño terminen su combustión nuclear y se encojan formando enanas blancas. Pero la noche perpetua terminará por caer con lenta y esforzada determinación.

Un destino similar aguarda a las demás galaxias esparcidas por los abismos espaciales cada vez mayores. El universo que hoy reluce con la prolífica energía nuclear terminará por quedarse sin tan valioso recurso. Se habrá acabado para siempre la era de la luz.

Sin embargo, el final del universo no llegará cuando se apaguen las luces cósmicas, porque todavía hay otra fuente de energía incluso más potente que las reacciones nucleares. La gravedad, la fuerza más débil de la naturaleza a escala atómica, es la dominante a escala astronómica. Puede que sea relativamente suave en sus efectos, pero es absolutamente persistente. Durante miles de millones de años las estrellas se han apuntalado contra su propio peso por medio de la combustión nuclear. Pero la gravedad no ha dejado de solicitarlas en ningún momento.

La fuerza gravitatoria entre dos protones de un núcleo atómico no es más que de una diez billonésima de billonésima de billonésima (10–37) de la fuerza nuclear fuerte. Pero la gravedad es acumulativa. Cada protón que tiene una estrella contribuye al peso total. La fuerza gravitatoria termina por ser avasalladora. Y esta fuerza avasalladora es la clave que proporciona un poder inmenso.

No hay objeto que ilustre más gráficamente el poder de la gravitación que un agujero negro. En él la gravedad ha triunfado por completo, reduciendo la estrella a la nada y dejando una huella en el espacio-tiempo circundante en forma de un alabeado infinito del tiempo. Con los agujeros negros puede hacerse un experimento mental fascinante. Imaginemos que dejamos caer un pequeño objeto, por ejemplo un peso de 100 gramos, dentro de un agujero negro desde una gran distancia. El peso se zambullirá en el agujero desapareciendo de nuestra vista y perdiéndose irremisiblemente. Sin embargo, deja un vestigio de su existencia anterior en la estructura del agujero que se hace ligeramente mayor como resultado de haberse tragado el peso. Un cálculo muestra que si se deja caer una pelota en el agujero desde una gran distancia, el agujero ganará una cantidad de masa igual a la masa original del peso. No se escapa ni masa ni energía.

Consideremos ahora un experimento diferente, en el que el peso se baja poco a poco hacia el agujero. Tal cosa podría conseguirse atándole una cuerda, pasando la cuerda por una polea, fijándola a un tambor y dejando que la cuerda se desenrollara lentamente. (Véase la figura 5.1. Doy por supuesto que la cuerda no se estira ni tiene peso, lo cual es irreal, pero se trata de evitar complicar la idea). Conforme se va bajando el peso, puede transmitir energía, por ejemplo, haciendo girar un generador eléctrico unido al tambor. Cuanto más se acerque el peso a la superficie del agujero negro, mayor será el tirón gravitatorio del agujero sobre el peso. Conforme aumente la fuerza hacia abajo, el peso cede cada vez más trabajo en el generador. Un simple cálculo revela la cantidad de energía que el peso habrá transmitido al generador cuando llegue a la superficie del agujero negro. En un caso ideal, resulta ser toda la masa en reposo del peso.

Recuérdese la famosa fórmula de Einstein E = mc2 que nos dice que la masa m posee una cantidad de energía mc2. Utilizando un agujero negro podría en principio recuperarse esa cantidad completa. En el caso de un peso de 100 gramos, la cantidad significa unos tres mil millones de kilovatios por hora de electricidad. Comparativamente, cuando el Sol quema 100 gramos de combustible en la fusión nuclear, proporciona menos de un 1% de esa cantidad. De manera que, en principio, la liberación de energía gravitatoria podría ser bastante más de cien veces que la fusión termonuclear que alimenta a las estrellas.

Figura 5.1. En este experimento mental idealizado, se deja caer lentamente un peso sujeto a una cuerda hacia la superficie de un agujero negro, utilizando un sistema de polea fija (la fijación no se muestra aquí). Como resultado, el peso que desciende realiza un trabajo y transmite energía a la caja. La energía total transmitida se aproxima a la energía del total de la masa en reposo del peso, conforme el peso se va acercando a la superficie del agujero negro.

Por supuesto que las dos situaciones aquí inventadas son absolutamente ficticias. No hay duda de que en los agujeros negros caen objetos continuamente pero nunca sujetos a poleas de lo más eficiente para extraer su energía. En la práctica, se emite un cierto valor entre el 0% y el 100% de la energía de la masa en reposo. La fracción que se emita depende de las circunstancias físicas. En los últimos veinte años, los astrofísicos han estudiado un amplio espectro de simulaciones por ordenador y de modelos matemáticos en su intento por comprender el comportamiento del gas al entrar en torbellino en el agujero negro y de calcular la cantidad y el tipo de energía liberada. Los procesos físicos que se dan son muy complejos; sin embargo, está clara la enorme cantidad de energía gravitatoria que puede salir de estos sistemas.

Una simple observación vale más que mil cálculos y los astrónomos han realizado enormes rastreos de objetos que podrían ser agujeros negros en pleno proceso de engullir materia. Aunque no se ha encontrado todavía un candidato a agujero negro completamente convincente, un sistema muy prometedor está localizado en la constelación del Cisne y se conoce como Cygnus X-1. El telescopio óptico revela una estrella grande y caliente del tipo llamado gigante azul, debido a su color. Los estudios espectroscópicos indican que la estrella azul no está sola: ejecuta un contoneo rítmico, señal de que se ve atraída periódicamente por la gravedad de otro objeto cercano. Evidentemente la estrella y el otro cuerpo están en órbitas próximas uno en relación con otro. Sin embargo, los telescopios ópticos no revelan señal alguna de su compañera: o es un agujero negro o es una estrella compacta muy tenue. La cosa parece sugerir un agujero negro pero no es, ni mucho menos, una prueba.

Una pista más procede de la estimación de la masa del cuerpo oscuro. Puede deducirse de las leyes de Newton que una vez conocida la masa de la estrella gigante azul, y que podemos estimar debido a la estrecha correspondencia entre masa de una estrella y color: las estrellas azules están calientes y por lo tanto tienen una gran masa. Los cálculos indican que la compañera no vista tiene la masa de varios soles. No se trata evidentemente de una estrella normal, pequeña y apagada, de modo que tiene que tratarse de una estrella masiva contraída: bien una enana blanca, bien una estrella de neutrones, bien un agujero negro. Pero hay razones físicas elementales por las cuales este objeto compacto no puede ser una enana blanca o una estrella de neutrones. El problema tiene relación con el intenso campo gravitatorio que intenta aplastar al objeto. La contracción total hasta ser un agujero negro sólo puede evitarse si existe alguna presión interna, lo suficientemente fuerte como para contrarrestar la aplastante fuerza de la gravedad. Pero si el objeto contraído tiene varias masas solares no hay fuerza conocida que pueda resistir el peso aplastante de su materia. Porque si el núcleo de la estrella fuera lo suficientemente rápido como para eludir el aplastamiento, entonces la velocidad del sonido en esa materia sería mayor que la velocidad de la luz. Como eso se opone a la teoría de la relatividad especial, la mayoría de los astrónomos y de los físicos cree que en esas circunstancias es inevitable la formación de un agujero negro.

La prueba de un agujero negro en Cygnus X-1 descansa por lo tanto en una cadena de razonamientos bastante larga que abarca tanto detalles de observación como modelos teóricos. Lo cual es típico de la naturaleza de una amplísima parte de la investigación astronómica de nuestros días; no hay prueba irresistible en sí, pero los diversos estudios de Cygnus X-1 y de otros sistemas similares, tomados en su conjunto, parecen indicar con fuerza la presencia de un agujero negro. Desde luego, el agujero negro es la explicación más limpia y la menos forzada.

De la actividad de agujeros negros más grandes pueden esperarse acontecimientos todavía más espectaculares. Hoy parece probable que muchas galaxias contengan agujeros negros supermasivos en su centro. La prueba de ello es el rápido movimiento que muestran las estrellas en esos núcleos galácticos; aparentemente las estrellas se ven atraídas hacia un objeto atractor enormemente compacto. Las estimaciones de la masa de esos posibles objetos varían desde los diez millones de masas solares a los mil millones de masas solares, lo cual les dará un apetito voraz ante cualquier masa aislada que se encuentre en sus proximidades. Estrellas, planetas, gas y polvo seguramente son presa de tales monstruos. La violencia del proceso de caída sería en algunos casos de tal magnitud que perturbaría la estructura entera de la galaxia. Los astrónomos están familiarizados con las muchas variedades de los núcleos galácticos activos. Algunas galaxias tienen el aspecto literal de estar explotando; muchas otras son fuentes potentísimas de ondas de radio, de rayos X y de otras formas de energía. Las más características son del tipo de las galaxias activas que expulsan enormes chorros de gas: chorros de miles e incluso de millones de años luz de longitud. La emisión de energía de alguno de estos objetos es absolutamente asombrosa. Por ejemplo, los cuásares muy distantes (el nombre es una abreviatura de «objetos cuasiestelares») pueden emitir la misma energía que millares de galaxias pero desde una región que no pasa de un año luz de diámetro, lo cual les otorga el aspecto superficial de una estrella.

Muchos astrónomos creen que la maquinaria central de esos objetos francamente perturbados son inmensos agujeros negros en rotación que se encuentran en pleno proceso de ingerir materia de sus proximidades. Cualquier estrella que se acerque a un agujero negro probablemente se partirá bajo la gravedad del agujero o chocará con otras estrellas y se romperá. Como en el caso de Cygnus X-1, pero a una escala mucho mayor, la materia dispersada seguramente formará un disco de gas caliente que orbite en torno al agujero y que lentamente vaya desapareciendo por él. En mayo de 1994 se informó que el telescopio espacial Hubble había descubierto un disco de gas de rápida rotación en el centro de la galaxia M87. Las observaciones parecen indicar con fuerza la presencia de un agujero negro supermasivo.

Puede ocurrir que la copiosa energía liberada por un disco de gas que fluye hacia un agujero negro se canalice a lo largo del eje de giro del agujero, produciendo un par de chorros opuestos, tal y como se observa a menudo. El mecanismo de esta liberación de energía, y la formación de chorros debe de ser muy complicado, poniendo en juego fuerzas electromagnéticas, de viscosidad y otras, además de la propia gravedad. Este tema sigue siendo objeto de un intenso trabajo teórico y de observación.

¿Y qué pasa con la Vía Láctea? ¿Es posible que nuestra propia galaxia se vea perturbada de este modo? El centro de la Vía Láctea queda a treinta mil años luz de nosotros, en la constelación de Sagitario. Las regiones interiores están oscurecidas por grandes nubes de gas y polvo, pero los instrumentos de radio, de rayos X, de rayos gamma y de infrarrojos han permitido discernir a los astrónomos la existencia de un objeto extremadamente compacto, muy energético, llamado Sagitario A*. Aun no teniendo más que unos pocos miles de millones de kilómetros de diámetro (un tamaño pequeño para los estándares astronómicos), Sagitario A* es sin embargo la fuente de radio más potente de la galaxia. Su posición coincide con la de una fuente muy intensa de infrarrojos y también está próxima a un objeto infrecuente emisor de rayos X. Aunque la situación es complicada, cada vez parece más probable que por allí habite por lo menos un agujero negro masivo y que sea el responsable de algunos de los fenómenos observados. Sin embargo, la masa del agujero es, seguramente, como mucho de diez millones de masas solares, lo cual lo sitúa en la parte inferior de la escala de supermasas. No hay pruebas del tipo de emisiones violentas de energía y materia que se dan en otros núcleos galácticos, pero esto puede deberse a que el agujero negro esté pasando por una fase de tranquilidad. Podría flamear en un futuro (por ejemplo, si recibiera un suministro mayor de gas), aunque probablemente no sería tan perturbador como muchos de los demás conocidos. No está claro qué efecto tendría esa deflagración sobre las estrellas y los planetas de los brazos espirales de la galaxia.

Un agujero negro seguirá liberando la energía de la masa en reposo de la materia sacrificada siempre que haya materia en sus proximidades para alimentarlo. Con el tiempo, los agujeros negros irán tragando cada vez más materia y como resultado irán aumentando de tamaño y cada vez estarán más hambrientos. Hasta las estrellas en órbitas muy lejanas en torno a un agujero negro masivo terminarán por sucumbir. El motivo es un fenómeno extremadamente débil pero decisivo en último extremo conocido como radiación gravitatoria.

Poco después de haber formulado su teoría general de la relatividad en 1915, Einstein descubrió una notable propiedad del campo gravitatorio. A partir de un estudio de las ecuaciones de campo de su teoría, descubrió que predecían la existencia de oscilaciones gravitatorias parecidas a ondas que se propagan a la velocidad de la luz por el espacio vacío. Esta radiación gravitatoria recuerda a las radiaciones electromagnéticas, tales como la luz o las ondas de radio. Sin embargo, aunque pueda transportar mucha energía, la radiación gravitatoria difiere de la radiación electromagnética en la fuerza con la cual perturba a la materia. Mientras que la onda de radio la absorbe enseguida una estructura tan delicada como puede ser una tela metálica, la onda gravitatoria actúa tan débilmente que puede pasar atravesando la Tierra sin apenas resentirse. Si pudiéramos fabricar un láser gravitatorio necesitaríamos un rayo de un billón de kilovatios para hervir un cazo con agua con la misma eficiencia que si utilizáramos una resistencia eléctrica de un kilovatio. La debilidad relativa de la radiación gravitatoria puede deberse al hecho de que la gravitación es, con mucho, la más débil de las fuerzas conocidas de la naturaleza. La proporción de la fuerza gravitatoria y de las fuerzas eléctricas en un átomo, por ejemplo, es aproximadamente de 10–40. La única razón por la cual notamos la gravedad es que, como sus efectos son acumulativos, es la que predomina en objetos grandes como los planetas.

No sólo son extremadamente débiles las ondas gravitatorias en cuanto a sus efectos, sino que también su producción es un asunto silencioso. En principio, se produce radiación gravitatoria siempre que se perturba alguna masa. Por ejemplo, el movimiento de la Tierra en torno al Sol emite un tren de ondas gravitatorias continuo, pero la potencia total emitida ¡no es más que un milivatio! Esta pérdida de energía hace que la órbita de la Tierra vaya a menos, aunque a una tasa ridículamente lenta: más o menos a un mil billonésima de centímetro por década.

Con todo, la situación es drásticamente distinta para los masivos cuerpos astronómicos que se mueven a una velocidad cercana a la de la luz. Hay dos tipos de fenómeno que seguramente producen efectos importantes de radiación gravitatoria. Uno es el acontecimiento súbito y violento, por ejemplo una supernova o la contracción de una estrella para formar un agujero negro. Este tipo de suceso determina la emisión de un pulso breve de radiación gravitatoria, que apenas dura unos pocos microsegundos y que dispersa por término medio unos 1044 julios de energía. (Compárese esta cantidad con la emisión de calor por parte del Sol, que viene a ser de unos 3 × 1026 julios por segundo). El otro fenómeno es el movimiento rapidísimo de objetos masivos en órbita unos de otros. Por ejemplo, un sistema estelar binario de poca separación originará un gran flujo continuo de radiación gravitatoria. Este proceso es especialmente eficiente si las estrellas que orbitan son objetos contraídos, como estrellas de neutrones o agujeros negros. En la constelación del Águila hay dos estrellas de neutrones que orbitan una en torno a la otra a unos pocos millones de kilómetros. Sus campos gravitatorios son tan fuertes que completan una órbita en menos de ocho horas, de tal modo que las estrellas han de moverse a una fracción apreciable de la velocidad de la luz. Este movimiento inusualmente rápido amplifica muchísimo la tasa de la emisión de ondas gravitatorias y hace que la órbita vaya decayendo de año en año una cantidad que puede medirse (unos 75 microsegundos de alteración del periodo). La tasa de emisión seguirá en ascenso conforme las estrellas vayan acercándose en su giro. Están destinadas a encastrarse la una en la otra dentro de unos trescientos millones de años.

Los astrónomos calculan que aproximadamente cada cien mil años, y en cada galaxia, se funde un sistema binario de este tipo. Los objetos son tan compactos, y son tan intensos sus campos gravitatorios, que durante los últimos instantes antes del impacto de las estrellas éstas orbitarán la una en torno a la otra miles de veces por segundo y que la frecuencia de la onda gravitatoria se mostrará como un chirrido característico. Las fórmulas de Einstein predicen que la emisión de potencia gravitatoria será prodigiosa en esa fase final y que la órbita se cerrará rapidísimamente. La forma de las estrellas se verá muy distorsionada por su tirón gravitatorio mutuo, de modo que cuando se toquen parecerán puros gigantes girando sobre sus ejes. La fusión subsiguiente será una situación confusa, fundiéndose las dos estrellas para formar una masa compleja que bullirá enloquecida y emitirá asimismo abundante radiación gravitatoria hasta que se organice en forma más o menos esférica bamboleándose y anillándose como una campana monstruosa que repicará visiblemente. Estas oscilaciones también producirán cierta cantidad de radiación gravitatoria, quitándole aún más energía a tal objeto, hasta que se tranquilice y termine por quedar inerte.

Aunque la tasa de pérdida de energía sea relativamente baja, la emisión de radiación gravitatoria habrá de tener efectos profundos a largo plazo en la estructura del universo. Por lo mismo, es importante que los científicos intenten confirmar mediante las observaciones sus ideas sobre la radiación gravitatoria. Los estudios del sistema binario de estrellas de neutrones en el Águila muestran que la órbita va decayendo precisamente a la tasa predicha por la teoría de Einstein. Por lo tanto, este sistema proporciona una prueba directa de la emisión de radiación gravitatoria. Sin embargo, la prueba definitiva exige detectar esa radiación en un laboratorio de la Tierra. Hay muchos equipos de investigación que han montado equipos para registrar el paso fugaz de cualquier estallido de ondas gravitatorias, pero hasta el día de hoy ninguno de esos dispositivos ha sido lo suficientemente sensible para detectarlo y es probable que debamos esperar a una nueva generación de detectores antes de que pueda confirmarse por completo la existencia de la radiación gravitatoria.

La fusión de las dos estrellas de neutrones puede producir o una estrella de neutrones aún mayor o un agujero negro. La fusión de una estrella de neutrones y de un agujero negro, o de dos agujeros negros, debe producir un único agujero negro. Este proceso se vería acompañado por la pérdida de una energía de onda gravitatoria parecida a la del caso de las estrellas de neutrones binarias, seguido de complejos movimientos de anillado y bamboleo que lentamente irán amortiguándose debido a la pérdida de potencia por ondas gravitatorias.

Es interesante explorar los límites teóricos de la energía gravitatoria que podría extraerse de la fusión de dos agujeros negros. La teoría de estos procesos la obtuvieron Roger Penrose, Stephen Hawking, Brandon Carter, Remo Ruffini, Larry Smarr y otros a principios de los años 70. Si los agujeros no rotan y son de masa idéntica, puede liberarse aproximadamente el 29% de su masa total en reposo. No hace falta que esta liberación sea en forma de radiación gravitatoria si los agujeros negros se pudieran manipular no se sabe cómo (por ejemplo, mediante una tecnología avanzada), pero en una fusión natural la mayor parte de la energía desprendida lo sería de esta forma inconspicua. Si los agujeros rotaran a la máxima tasa permitida por las leyes de la física (aproximadamente a la velocidad de la luz) y se fundieran a contrarrotación y a lo largo de sus ejes de giro, entonces podría emitirse el 50% de la energía de la masa.

Ni siquiera esta fracción considerable es el máximo teórico. Un agujero negro puede llevar carga eléctrica. Un agujero negro cargado eléctricamente tiene un campo eléctrico además de campo gravitatorio y ambos pueden almacenar energía. Si un agujero negro con carga positiva se topa con otro con carga negativa, se produce una «descarga» liberándose en el proceso energía electromagnética además de gravitatoria.

Esa descarga tiene un límite, ya que un agujero negro de masa dada puede llevar carga eléctrica sólo hasta un determinado máximo. Para un agujero que no rotara, ese valor viene dado por la siguiente consideración. Imaginemos dos agujeros idénticos que tuvieran la misma carga. Los campos gravitatorios de los agujeros crearían una fuerza de atracción entre ellos mientras que las cargas eléctricas originarían una fuerza de repulsión (cargas del mismo signo se repelen). Cuando la proporción carga-masa llegue a un valor crítico, estas dos fuerzas opuestas estarán exactamente en equilibrio y no habrá fuerza neta entre ambos agujeros. Ésta es la situación que marca el límite de cantidad de carga eléctrica que puede contener un agujero negro. Podríamos preguntarnos qué pasaría si intentáramos aumentar la carga de un agujero negro por encima de su valor máximo. Un modo de intentarlo sería meter más carga en el agujero negro. Este procedimiento serviría para incrementar la carga eléctrica pero el trabajo realizado para vencer la repulsión eléctrica consume energía, energía que pasa al agujero. Como la energía tiene masa (recuérdese que E = mc2) el agujero se hace más masivo y, por ende, mayor. Un sencillo cálculo muestra que la masa aumenta a una tasa mayor que la carga en este proceso, de modo que la proporción carga-masa en realidad disminuye, con lo cual se va al traste el intento de sobrepasar ese límite.

El campo eléctrico de un agujero negro cargado contribuye a la masa total del agujero. En el caso de un agujero que tuviera la máxima carga permitida, el campo eléctrico representa la mitad de la masa. Si dos agujeros que no rotaran llevasen la máxima carga pero de signo opuesto se atraerían gravitatoria y electromagnéticamente. Al fundirse, las dos cargas se neutralizarán y podrá extraerse la energía eléctrica. En teoría, puede llegar hasta el 50% de la energía de la masa total del sistema.

El límite superior absoluto de la extracción de energía se obtendrá cuando ambos agujeros roten y lleven cargas eléctricas opuestas, cada una del máximo valor. Entonces podrá liberarse hasta dos tercios de la energía de la masa total. Por supuesto, estos valores tienen sólo un interés teórico, porque en la práctica un agujero negro seguramente no lleva una gran carga eléctrica, como tampoco es probable que dos agujeros negros se fundan de manera óptima, a menos que les obligue a ello una sociedad tecnológicamente avanzada. Sin embargo, incluso la fusión ineficiente de dos agujeros negros casi con seguridad producirá una liberación instantánea de energía que suponga una fracción significativa de la energía de la masa total de los objetos en cuestión. Cosa que puede compararse con el escuálido 1% de la energía de masa que las estrellas emiten por fusión nuclear a lo largo de sus vidas de miles de millones de años.

La importancia de estos procesos gravitatorios es que, lejos de morir, una estrella exhausta tiene la capacidad de liberar mucha más energía como escoria contraída que con los procesos termonucleares como bola incandescente de gas. Cuando se aceptó este hecho hace unos veinte años, el físico John Wheeler, el hombre que acuñó inicialmente el término «agujero negro», concibió una hipotética civilización cuyas siempre crecientes necesidades de energía la llevaran a abandonar su estrella y a residir en torno a un agujero negro. Todos los días se cargan los productos de desecho de esa sociedad en contenedores que se disparan hacia el agujero a lo largo de una trayectoria cuidadosamente calculada. Cerca del agujero se suelta el contenido de los contenedores, arrojando la basura al agujero, con lo cual se deshace de ella para siempre. La materia que cae, al viajar a lo largo de un camino de rotación a contragiro del agujero, tiene el efecto de frenar levemente el giro de éste. Por ello mismo se libera la energía rotativa del agujero que esa civilización aprovecha para sus industrias. Por lo tanto el proceso presenta la doble virtud de ¡eliminar por completo todos los productos residuales convirtiéndolos en puara energía! De este modo, esa civilización puede liberar de la estrella muerta, según sus necesidades, una cantidad de energía mucho mayor que la energía que emitió esa misma estrella durante su fase luminosa.

Aunque el aprovechamiento de la potencia de un agujero negro es una escena de ciencia ficción, de forma natural habrá montones de materia que acaben en los agujeros negros, bien como parte de la estrella que se contrae para formar el agujero, bien como residuos engullidos durante un encuentro casual. Siempre que doy conferencias sobre agujeros negros, mis oyentes quieren saber lo que pasa cuando se entra en uno de ellos. La respuesta más concisa es «No lo sabemos». Nuestro conocimiento de los agujeros negros se basa casi por completo en consideraciones teóricas y en modelos matemáticos. Lo cierto es que por definición no podemos observar el interior de un agujero negro desde el exterior, de modo que incluso si tuviéramos acceso directo a la observación de un agujero negro (cosa que no puede ser) nunca sabríamos qué pasa en su interior. Sin embargo, la teoría de la relatividad, que en primer lugar predice la existencia de agujeros negros, puede usarse también para predecir qué le ocurriría a un astronauta que cayera en uno de ellos. Lo que sigue es un resumen de tales deducciones teóricas.

La superficie del agujero no pasa de ser un constructo matemático: no es que exista una membrana, sólo espacio vacío. El astronauta que cayera no notaría nada especialmente diferente al entrar en el agujero. Sin embargo, la superficie sí que tiene un significado físico seguro, y en cierto modo dramático. Dentro del agujero la gravedad es tan fuerte que atrapa la luz, reabsorbiendo los fotones que salen. Eso significa que la luz no puede escapar del agujero negro una vez que ha atravesado su frontera. Los sucesos que se dan dentro del agujero quedan ocultos para siempre a los observadores externos. Por este motivo, la superficie del agujero se denomina «horizonte de sucesos», ya que separa los sucesos del exterior, que pueden verse desde lejos, de los sucesos del interior, que no se pueden ver. Sin embargo, el efecto es unilateral. El astronauta que esté dentro del horizonte de sucesos puede seguir viendo el universo exterior, incluso aunque nadie pueda ver al astronauta.

Conforme el astronauta se adentre en el agujero, aumentará el campo gravitatorio. Uno de sus efectos será la distorsión del cuerpo. Si el astronauta cae de pie, tendrá los pies más próximos al centro del agujero, donde la gravedad es más fuerte, que la cabeza. Como resultado, el agujero tirará de los pies del astronauta con mayor fuerza, estirando el cuerpo en sentido longitudinal. Al mismo tiempo, los hombros se verán arrastrados hacia el centro del agujero en trayectorias convergentes, con lo que el astronauta se verá aplastado literalmente. A este proceso de estiramiento y de aplastamiento conjunto se le suele llamar a veces «espaguetificación».

La teoría parece indicar que en el centro del agujero negro la gravedad crece ilimitadamente. Como el campo gravitatorio se manifiesta como curvatura o alabeado del espacio-tiempo, la creciente gravedad va acompañada de un alabeado del espacio-tiempo que también sigue creciendo sin límites. Los matemáticos denominan a este rasgo singularidad espacio-temporal. Representa una frontera, un borde del espacio y del tiempo a través del cual no se puede prolongar el concepto normal de espacio-tiempo. Muchos físicos creen que la singularidad dentro de un agujero negro representa genuinamente el fin del espacio y del tiempo y que cualquier materia que llegue hasta él quedará completamente destruida. Si es así, entonces incluso los átomos del cuerpo del astronauta se desvanecerán en esa singularidad en un nanosegundo de espaguetificación.

Si el agujero negro tiene la masa de diez millones de soles (parecida a la del agujero que puede hallarse en el centro de la Vía Láctea) y no rota, entonces el paso del tiempo experimentado por el astronauta desde caer por el horizonte de sucesos hasta la singularidad aniquiladora será de unos tres minutos. Esos últimos tres minutos serán extremadamente incómodos; en la práctica, la espaguetificación matará al desventurado individuo mucho antes de llegar a la singularidad. En todo caso, durante esta fase final el astronauta será incapaz de ver esa singularidad fatal porque la luz no puede escapar de ella. Si el agujero en cuestión tiene una masa solar, su radio será de unos 3 kilómetros y el viaje desde el horizonte de sucesos hasta la singularidad tardará unos pocos microsegundos.

Aunque el tiempo transcurrido hasta la destrucción es muy rápido tal y como lo experimentaría el astronauta en su marco de referencia, el alabeado del tiempo producido por el agujero es de tal envergadura que, visto desde lejos, el último viaje del astronauta parecería desarrollarse a cámara lenta. Conforme se acercara el astronauta al horizonte de sucesos, el ritmo de los acontecimientos para el observador lejano parecería ir cada vez más despacio. De hecho, parece que debería llevar un tiempo infinito hasta que el astronauta llegara al horizonte. De manera que lo que lo que en las regiones lejanas del universo se experimenta como eternidad, para el astronauta sería visto y no visto. En este sentido, un agujero negro es una especie de puerta que da al final del universo, una especie de callejón sin salida cósmico que representa una salida a ninguna parte. Un agujero negro es una región del espacio que alberga el fin del tiempo. Los que tengan curiosidad sobre el final del universo pueden experimentarlo por sí mismos saltando a uno de ellos.

Aunque la gravedad es, con mucho, la fuerza más débil de la naturaleza, su acción insidiosa y acumulativa sirve para determinar el destino definitivo no sólo de los objetos astronómicos individuales, sino del cosmos al completo. Esa misma atracción irresistible que aplasta una estrella funciona a escala muchísimo mayor sobre el universo en su conjunto. El resultado de esta atracción universal depende sutilmente de la cantidad total de materia que existe para ejercer el tirón gravitatorio. Y para descubrirlo, tenemos que pesar el universo.