3. Arquímedes y la matemática aplicada

Cualquiera diría que un aristócrata de una de las ciudades más grandes y opulentas de la Grecia antigua tenía cosas mejores que hacer que estudiar el funcionamiento de las palancas. Nuestro aristócrata, a lo que se ve, pensaba lo mismo, porque se avergonzaba de cultivar aficiones tan «plebeyas». Nos referimos a Arquímedes, natural de Siracusa, ciudad situada en la costa oriental de Sicilia. Arquímedes nació hacia el año 287 a. C., era hijo de un distinguido astrónomo y probablemente pariente de Herón II, rey de Siracusa.

Un inventor de artilugios

El sentir general en los tiempos de Arquímedes era que las personas de bien no debían ocuparse de artilugios mecánicos, que asuntos como esos sólo convenían a esclavos y trabajadores manuales. Pero Arquímedes no lo podía remediar. La maquinaria le interesaba, y a lo largo de su vida inventó multitud de artilugios de uso bélico y pacífico.

Tampoco es cierto que cediera del todo a intereses tan «bajos», porque nunca se atrevió a dejar testimonio escrito de sus artilugios mecánicos; le daba vergüenza. Sólo tenemos noticia de ellos a través del relato inexacto y quizá exagerado, de terceros. La única salvedad es la descripción que hizo el propio Arquímedes de un dispositivo que imitaba los movimientos celestes del Sol, la Luna y los planetas; pero no es menos cierto que era un instrumento destinado a la ciencia de la astronomía y no a burdas faenas mecánicas.

¿Ingeniería o matemáticas?

Las máquinas no eran la única afición de Arquímedes. En sus años jóvenes había estado en Alejandría (Egipto), la sede del gran Museo. El Museo era algo así como una gran universidad adonde acudían todos los eruditos griegos para estudiar y enseñar. Arquímedes había sido allí discípulo del gran matemático Conón de Samos, a quien superó luego en este campo, pues inventó una forma de cálculo dos mil años antes de que los matemáticos modernos elaboraran luego los detalles.

A Arquímedes, como decimos, le interesaban las matemáticas y también la ingeniería; y en aquel tiempo tenían muy poco en común estos dos campos.

Es muy cierto que los ingenieros griegos y los de épocas anteriores, como los babilonios y egipcios, tuvieron por fuerza que utilizar las matemáticas para realizar sus proyectos. Los egipcios habían construido grandes pirámides que ya eran históricas en tiempos de Arquímedes; con instrumentos tosquísimos arrastraban bloques inmensos de granito a kilómetros y kilómetros de distancia, para luego izarlos a alturas nada desdeñables.

También los babilonios habían erigido estructuras imponentes, y los propios griegos no se quedaron atrás. El ingeniero griego Eupalino, por citar un caso, construyó un túnel en la isla de Samos tres siglos antes de Arquímedes. A ambos lados de una montaña puso a trabajar a dos equipos de zapadores, y cuando se reunieron a mitad de camino las paredes del túnel coincidían casi exactamente.

Para realizar estas obras y otras de parecido calibre, los ingenieros de Egipto, Babilonia y Grecia tuvieron que utilizar, repetimos, las matemáticas. Tenían que entender qué relación guardaban las líneas entre sí y cómo el tamaño de una parte de una estructura determinaba el tamaño de otra.

Arquímedes, sin embargo, no estaba familiarizado con estas matemáticas, sino con otra modalidad, abstracta, que los griegos habían comenzado a desarrollar en tiempos de Eupalino.

Pitágoras había divulgado el sistema de deducción matemática (véase el capítulo 2), en el cual se partía de un puñado de nociones elementales, aceptadas por todos, para llegar a conclusiones más complicadas a base de proceder, paso a paso, según los principios deductivos.

Un teorema magnífico

Otros matemáticos griegos siguieron los pasos de Pitágoras y construyeron poco a poco un hermoso sistema de teoremas (de enunciados matemáticos) relativos a ángulos, líneas paralelas, triángulos, cuadrados, círculos y otras figuras. Aprendieron a demostrar que dos figuras tenían igual área o ángulos iguales o ambas cosas a la vez, y descubrieron cómo determinar números, tamaños y áreas.

Sin negar que la maravillosa estructura de la matemática griega sobrepasaba con mucho el sistema matemático de anteriores civilizaciones, hay que decir también que era completamente teórico. Los círculos y triángulos eran imaginarios, construidos con líneas infinitamente delgadas y perfectamente rectas o que se curvaban con absoluta suavidad. La matemática no tenía uso práctico.

La siguiente historia lo ilustra muy bien. Un siglo antes de que naciera Arquímedes, el filósofo Platón fundó una academia en Atenas, donde enseñaba matemáticas. Un día, durante una demostración matemática, cierto estudiante le preguntó: «Pero maestro, ¿qué uso práctico tiene esto?». Platón, indignado, ordenó a un esclavo que le diera una moneda pequeña para hacerle así sentir que su estudio tenía uso práctico; y luego lo expulsó de la academia.

Una figura importante en la historia de las matemáticas griegas fue Euclides, y discípulo de él fue Conón de Samos, maestro de Arquímedes. Poco antes de nacer este, Euclides compiló en Alejandría todas las deducciones obtenidas por pensadores anteriores y las organizó en un bello sistema, demostración por demostración, empezando por un puñado de «axiomas» o enunciados aceptados con carácter general. Los axiomas eran tan evidentes, según los griegos, que no requerían demostración. Ejemplos de axiomas son «la línea recta es la distancia más corta entre dos puntos» y «el todo es igual a la suma de sus partes».

Todo teoría, nada de práctica

El libro de Euclides era de factura tan primorosa, que desde entonces ha sido un texto básico. Sin embargo, en toda su magnífica estructura no había indicio de que ninguna de sus conclusiones tuviera que ver con las labores cotidianas de los mortales. La aplicación más intensa que los griegos dieron a las matemáticas fue el cálculo de los movimientos de los planetas y la teoría de la armonía. Al fin y al cabo, la astronomía y la música eran ocupaciones aptas para aristócratas.

Arquímedes sobresalía, pues, en dos mundos: uno práctico, el de la ingeniería, sin las brillantes matemáticas de los griegos, y otro, el de las matemáticas griegas, que carecían de uso práctico. Sus aptitudes ofrecían excelente oportunidad para combinar ambos mundos. Pero ¿cómo hacerlo?

Un dispositivo maravilloso

Existe una herramienta que se llama «pie de cabra», un dispositivo mecánico elemental ¡pero maravilloso! Sin su ayuda hacen falta muchos brazos para levantar un bloque de piedra grande. Pero basta colocar el pie de cabra debajo del bloque y apoyarlo en un saliente (una roca más pequeña, por ejemplo) para que pueda moverlo fácilmente una sola persona.

Los pies de cabra, espeques y dispositivos parecidos son tipos de palancas. Cualquier objeto relativamente largo y rígido, un palo, un listón o una barra, sirve de palanca. Es un dispositivo tan sencillo que lo debió de usar ya el hombre prehistórico. Pero ni él ni los sapientísimos filósofos griegos sabían cómo funcionaba. El gran Aristóteles, que fue discípulo de Platón, observó que los dos extremos de la palanca, al empujar hacia arriba y abajo respectivamente, describían una circunferencia en el aire. Aristóteles concluyó que la palanca poseía propiedades maravillosas, pues la forma del círculo era tenida por perfecta.

Arquímedes había experimentado con palancas y sabía que la explicación de Aristóteles era incorrecta. En uno de los experimentos había equilibrado una larga palanca apoyada sobre un fulcro. Si colocaba peso en un solo brazo de la barra, ese extremo bajaba. Poniendo peso a ambos lados del punto de apoyo se podía volver a equilibrar. Cuando los pesos eran iguales, ocupaban en el equilibrio posiciones distintas de las ocupadas cuando eran desiguales.

El lenguaje de las matemáticas

Arquímedes comprobó que las palancas se comportaban con gran regularidad. ¿Por qué no utilizar las matemáticas para explicar ese comportamiento regular? De acuerdo con los principios de la deducción matemática tendría que empezar por un axioma, es decir, por algún enunciado incuestionable.

El axioma que utilizó descansaba en el principal resultado de sus experimentos con palancas. Decía así: Pesos iguales a distancias iguales del punto de apoyo equilibran la palanca. Pesos iguales a distancias desiguales del punto de apoyo hacen que el lado que soporta el peso más distante descienda.

Arquímedes aplicó luego el método de deducción matemática para obtener conclusiones basadas en este axioma y descubrió que los factores más importantes en el funcionamiento de cualquier palanca son la magnitud de los pesos o fuerzas que actúan sobre ella y sus distancias al punto de apoyo.

Supongamos que una palanca está equilibrada por pesos desiguales a ambos lados del punto de apoyo. Según los hallazgos de Arquímedes, estos pesos desiguales han de hallarse a distancias diferentes del fulcro. La distancia del peso menor ha de ser más grande para compensar su menor fuerza. Así, un peso de diez kilos a veinte centímetros del apoyo equilibra cien kilos colocados a dos centímetros. La pesa de diez kilos es diez veces más ligera, por lo cual su distancia es diez veces mayor.

Eso explica por qué un solo hombre puede levantar un bloque inmenso de piedra con una palanca. Al colocar el punto de apoyo muy cerca de la mole consigue que su exigua fuerza, aplicada lejos de aquel, equilibre el enorme peso del bloque, que actúa muy cerca del fulcro.

Arquímedes se dio cuenta de que aplicando la fuerza de un hombre a gran distancia del punto de apoyo podían levantarse pesos descomunales, y a él se le atribuye la frase: «Dadme un punto de apoyo y moveré el mundo».

Pero no hacía falta que le dieran nada, porque su trabajo sobre la palanca ya había conmovido el mundo. Arquímedes fue el primero en aplicar la matemática griega a la ingeniería. De un solo golpe había inaugurado la matemática aplicada y fundado la ciencia de la mecánica, encendiendo así la mecha de una revolución científica que explotaría dieciocho siglos más tarde.