PROBLEM VI
MANNA
MANNA, according to the etymology in Exodus, derives from the Hebrew words man-hu, which means “What is it?” Indeed, an excellent question! The idea of food falling from comets is not absolutely straightforward. Optical spectroscopy of comet tails, even before Worlds in Collision was published (1950), showed the presence of simple fragments of hydrocarbons, but no aldehydes—the building blocks of carbohydrates—were known then. They may nevertheless be present in comets. However, from the passage of Comet Kohoutek near the Earth, it is now known that comets contain large quantities of simple nitriles—in particular, hydrogen cyanide and methyl cyanide. These are poisons, and it is not immediately obvious that comets are good to eat.
But let us put this objection aside, grant Velikovsky his hypothesis, and calculate the consequences. How much manna is required to feed the hundreds of thousands of Children of Israel for forty years (see Exodus, Chapter 16, Verse 35)?
In Exodus, Chapter 16, Verse 20, we find that the manna left overnight was infested by worms in the morning—an event possible with carbohydrates but extremely unlikely with hydrocarbons. Moses may have been a better chemist than Velikovsky. This event also shows that manna was not storable. It fell every day for forty years according to the Biblical account. We will assume that the quantity that fell every day was just sufficient to feed the Children of Israel, although Velikovsky assures us (page 138) from Midrashic sources that the quantity that fell was adequate for two thousand years rather than a mere forty. Let us assume that each Israelite ate on the order of a third of a kilogram of manna per day, somewhat less than a subsistence diet. Then each will eat 100 kilograms per year and 4,000 kilograms in forty years. Hundreds of thousands of Israelites, the number explicitly mentioned in Exodus, will then consume something over a million kilograms of manna during the forty years’ wandering in the desert. But we cannot imagine the debris from the cometary tail falling each day,* preferentially on the portion of the Wilderness of Sin in which the Israelites happened to have wandered. This would be no less miraculous than the Biblical account taken at face value. The area occupied by a few hundred thousand itinerant tribesmen, wandering under a common leadership, is, very roughly, several times 10−7 the area of the Earth. Therefore, during the forty years of wandering, all of the Earth must have accumulated several times 1018 grams of manna, or enough to cover the entire surface of the planet with manna to a depth of about an inch. If this indeed happened, it would certainly be a memorable event, and may even account for the gingerbread house in “Hansel and Gretel.”
Now, there is no reason for the manna to have fallen only on Earth. In forty years the tail of the comet, if restricted to the inner solar system, would have traversed some 1010 km. Making only a modest allowance for the ratio of the volume of the Earth to the volume of the tail, we find that the mass of manna distributed to the inner solar system by this event is larger than 1028 grams. This is not only more massive by many orders of magnitude than the most massive comet known; it is already more massive than the planet Venus. But comets cannot be composed only of manna. (Indeed, no manna at all has been detected so far in comets.) Comets are known to be composed primarily of ices, and a conservative estimate of the ratio of the mass of the comet to the mass of the manna is much larger than 103. Therefore, the mass of the comet must be much larger than 1031 grams. This is the mass of Jupiter. If we were to accept Velikovsky’s Midrashic source above, we would deduce that the comet had a mass comparable to that of the Sun. Interplanetary space in the inner solar system should even today be filled with manna. I leave it to the reader to make his own judgment on the validity of Velikovsky’s hypothesis in the light of such calculations.