Leyes de Kepler

En primer lugar, Kepler descubrió que cada planeta se mueve alrededor del Sol siguiendo una curva denominada elipse, con el Sol en uno de los focos de dicha elipse. Una elipse no es exactamente un óvalo, sino que es una curva muy concreta y precisa que puede obtenerse utilizando dos tachuelas, una en cada foco, un lazo de cuerda y un lápiz; de forma más matemática, es el lugar geométrico de los puntos tales que la suma de sus distancias a dos puntos fijos (los focos) es constante. O, si ustedes quieren, es un círculo en escorzo (5.2).

Imagen

5.2 Una elipse.

La segunda observación de Kepler era que los planetas no se mueven alrededor del Sol a una velocidad uniforme, sino que se mueven más deprisa cuando están más próximos al Sol y más despacio cuando están más alejados del Sol, precisamente de la forma siguiente: supongamos que se observa un planeta en dos instantes sucesivos, digamos con un intervalo de una semana, y que se traza el radio vector[5] hasta el planeta para cada posición observada. El arco orbital recorrido por el planeta durante la semana y los dos radios vectores limitan una cierta área plana, el área rayada que se muestra en la figura 5.3. Si se hacen otras dos observaciones similares con un intervalo de una semana en una parte de la órbita más alejada del Sol (donde el planeta se mueve más lentamente), el área acotada de este mismo modo tiene exactamente el mismo valor que en el primer caso. Así, de acuerdo con la segunda ley, la velocidad orbital de cada planeta es tal que el radio vector «barre» áreas iguales en tiempos iguales.

Imagen

5.3 Ley de las áreas de Kepler.

Finalmente, una tercera ley fue descubierta por Kepler mucho más tarde; esta ley es de una categoría diferente de las otras dos, porque no trata con un solo planeta sino que relaciona un planeta con otro diferente. Esta ley dice que cuando se comparan los periodos orbitales y los tamaños de las órbitas de dos planetas cualesquiera, los periodos son proporcionales a la potencia 3/2 del tamaño de la órbita. En este enunciado el periodo es el tiempo que necesita un planeta para recorrer completamente su órbita, y el tamaño se mide por la longitud del diámetro mayor de la órbita elíptica, conocido técnicamente como eje mayor. De forma más sencilla, si los planetas siguieran trayectorias circulares, que es lo que hacen aproximadamente, el tiempo requerido para recorrer el círculo sería proporcional a la potencia 3/2 del diámetro (o del radio). Así pues, las tres leyes de Kepler son:

  1. Cada planeta se mueve alrededor del Sol en una elipse, con el Sol en uno de los focos.
  2. El radio vector desde el Sol al planeta barre áreas iguales en intervalos de tiempo iguales.
  3. Los cuadrados de los periodos de dos planetas cualesquiera son proporcionales a los cubos de los semiejes mayores de sus respectivas órbitas: T ≈ a3/2.