Núcleos y partículas
¿De qué están hechos los núcleos y cómo se mantienen unidos? Resulta que los núcleos se mantienen unidos por fuerzas enormes. Cuando los núcleos se liberan, la energía liberada es enorme comparada con la energía química, en la misma proporción que hay entre una explosión de una bomba atómica y una explosión de TNT, porque, por supuesto, la bomba atómica tiene que ver con cambios en el interior del núcleo, mientras que la explosión de TNT tiene que ver con cambios de los electrones en el exterior de los átomos. La cuestión es: ¿cuáles son las fuerzas que mantienen unidos los protones y los neutrones en el núcleo? De la misma forma que la interacción eléctrica puede relacionarse con una partícula, un fotón, Yukawa sugirió que las fuerzas entre neutrones y protones también tienen algún tipo de campo, y que cuando este campo se agita se comporta como una partícula. Así pues, podría haber algunas otras partículas en el mundo además de los protones y los neutrones, y él fue capaz de deducir las propiedades de estas partículas a partir de las características ya conocidas de las fuerzas nucleares. Por ejemplo, predijo que deberían tener una masa de doscientas o trescientas veces la masa de un electrón; ¡y, abracadabra, en los rayos cósmicos se descubrió una partícula con la masa correcta! Pero más tarde se vio que era la partícula equivocada. Se denominó un mesón-µ, o muón.
Sin embargo, un poco después, en 1947 o 1948, se encontró otra partícula, el mesón-π, o pión, que satisfacía el criterio de Yukawa. Además del protón y el neutrón, para tener fuerzas nucleares debemos añadir el pión. Ahora ustedes dirán: «¡Qué grande!, hagamos con esta teoría la nucleodinámica cuántica, utilizando los piones tal como precisamente quería hacerlo Yukawa, y veamos si funciona, y entonces todo quedará explicado». Mala suerte. Resulta que los cálculos implicados en esta teoría son tan difíciles que nadie ha sido nunca capaz de calcular cuáles son las consecuencias de la teoría, o comprobarla experimentalmente, y ¡esto ha estado sucediendo durante casi veinte años!
Así que estamos bloqueados con una teoría, y no sabemos si es correcta o errónea, aunque sabemos que es algo errónea, o al menos incompleta. Mientras nosotros hemos estado divagando teóricamente, tratando de calcular las consecuencias de esta teoría, los físicos experimentales han estado descubriendo algunas cosas. Por ejemplo, ellos ya habían descubierto este mesón-µ o muón, y nosotros no sabemos aún dónde encaja. También en los rayos cósmicos se encontró un gran número de otras partículas «extra». Resulta que hoy tenemos aproximadamente treinta partículas, y es muy difícil comprender las relaciones entre todas estas partículas y para qué las quiere la naturaleza, o cuáles son los vínculos entre unas y otras. Hoy no entendemos estas diversas partículas como aspectos diferentes de la misma cosa, y el hecho de que tengamos tantas partículas inconexas es un reflejo del hecho de que tenemos mucha información inconexa sin una buena teoría. Comparado con los grandes éxitos de la electrodinámica cuántica, el conocimiento que se tiene de la física nuclear es conocimiento aproximado, a mitad de camino entre la experiencia y la teoría: se supone un tipo de fuerza entre protones y neutrones y se trata de ver qué sucederá, pero sin entender realmente de dónde procede la fuerza. Aparte de esto, hemos hecho muy pocos progresos. Hemos coleccionado un número enorme de elementos químicos. En el caso de la química apareció de repente una relación entre dichos elementos que no se esperaba y que está incorporada en la tabla periódica de Mendeleiev. Por ejemplo, el sodio y el potasio tienen casi las mismas propiedades químicas y se encuentran en la misma columna de la tabla de Mendeleiev. Hemos estado buscando una tabla del tipo de la de Mendeleiev para las nuevas partículas. Una de estas tablas de las nuevas partículas fue construida de forma independiente por Gell-Mann en los Estados Unidos y Nishijima en Japón. Su clasificación se basa en un nuevo número, similar a la carga eléctrica, que puede asignarse a cada partícula, y se denomina «extrañeza», S. Este número se conserva, como la carga eléctrica, en las reacciones que tienen lugar mediante fuerzas nucleares.
En el cuadro 2.2 se da la lista de todas las partículas. No podemos discutirlas mucho en esta etapa, pero el cuadro les mostrará al menos cuánto ignoramos. Debajo de cada partícula se da su masa en una unidad determinada, llamada MeV. Un MeV es igual a 1,782 × 10−27 gramos. La razón por la que fue escogida esta unidad es histórica, y no entraremos en ello ahora. Las partículas más masivas se sitúan más arriba en el cuadro; vemos que un neutrón y un protón tienen casi la misma masa. En columnas verticales hemos colocado las partículas con la misma carga eléctrica: todos los objetos neutros en una columna, todos los cargados positivamente a la derecha de ésta, y todos los objetos cargados negativamente a la izquierda.
Las partículas se muestran con una línea continua y las «resonancias» con una línea a trazos. Se han omitido varias partículas del cuadro. Entre las omitidas se incluyen las importantes partículas de masa nula y carga nula, el fotón y el gravitón, que no entran en el esquema clasificatorio barión-mesón-leptón, y también algunas de las resonancias más recientes (k*, φ, η). Las antipartículas de los mesones figuran en el cuadro, pero las antipartículas de los leptones y bariones tendrían que darse en otro cuadro exactamente igual a éste pero reflejadas en la columna de carga cero. Aunque todas las partículas salvo el electrón, el neutrino, el fotón, el gravitón y el protón son inestables, sólo se han mostrado los productos de la desintegración para las resonancias. Las asignaciones de extrañeza no son aplicables a los leptones, puesto que no interaccionan fuertemente con los núcleos.

2.2 Partículas elementales.
Todas las partículas que están junto a los neutrones y los protones se denominan bariones, y existen los siguientes: hay una partícula «lambda», con una masa de 1.154 MeV y otras tres, llamadas sigmas, menos, neutra y más, con masas diferentes pero casi iguales. Hay grupos o multipletes casi de la misma masa, con una diferencia de un 1 o un 2 por 100. Todas las partículas de un multiplete dado tienen la misma extrañeza. El primer multiplete es el doblete protón-neutrón, y luego hay un singlete (el lambda), luego el triplete sigma, y finalmente el doblete xi. Muy recientemente, en 1961, se encontraron algunas partículas más. Pero ¿son partículas? Viven un tiempo tan corto, se desintegran casi instantáneamente en cuanto se han formado, que no sabemos si deberían ser consideradas como nuevas partículas o como algún tipo de interacción de «resonancia» de cierta energía definida entre los productos Λ y π en los que se desintegra.
Además de los bariones, las otras partículas implicadas en la interacción nuclear se denominan mesones. Están en primer lugar los piones, que se dan en tres variedades, positiva, negativa y neutra; forman otro multiplete. También hemos encontrado algunas cosas nuevas denominadas mesones-K, y se dan como un doblete, K+ y K°. Además, cada partícula tiene su antipartícula, a menos que una partícula sea su propia antipartícula. Por ejemplo, el π− y el π+ son antipartículas uno del otro, pero el π° es su propia antipartícula. El K− y el K+ son antipartículas uno del otro, como lo son el K° y el K’°. Además, en 1961 se encontraron también algunos mesones más o quizá mesones que se desintegran casi inmediatamente. Algo llamado ω que se desintegra en tres piones tiene una masa de 780 en esta escala, y con algo menos de seguridad hay un objeto que se desintegra en dos piones. Estas partículas, llamadas mesones y bariones, y las antipartículas de los mesones están en la misma tabla, pero las antipartículas de los bariones deben colocarse en otra tabla, «reflejada» en la columna de carga cero.
De la misma forma que la tabla de Mendeleiev era muy buena, excepto por el hecho de que había un número de elementos de tierras raras que colgaban algo sueltos, también tenemos algunas cosas que cuelgan algo sueltas de esta tabla: partículas que no interaccionan fuertemente en los núcleos, no tienen nada que ver con la interacción nuclear, y no tienen una interacción fuerte (entiendo por esto el poderoso tipo de interacción de la energía nuclear). Éstas se denominan leptones, y son los siguientes: está el electrón, que tiene una masa muy pequeña en esta escala, tan sólo 0,510 MeV. Luego hay otra, el mesón-µ, el muón, que tiene una masa mucho mayor, 206 veces más pesada que un electrón. Hasta donde podemos decir, por todos los experimentos realizados hasta ahora, el electrón y el muón sólo difieren en la masa. Todo funciona exactamente igual para el muón que para el electrón, excepto que uno es más pesado que el otro. ¿Por qué hay uno más pesado que otro; para qué sirve? No lo sabemos. Además, existe un leptón que es neutro, denominado un neutrino, y esta partícula tiene masa nula. De hecho, ahora se sabe que existen dos tipos diferentes de neutrinos, uno relacionado con los electrones y el otro relacionado con los muones.
Finalmente, tenemos otras dos partículas que no interaccionan fuertemente con las nucleares: una es el fotón, y quizá, si el campo gravitatorio tiene también un análogo mecanocuántico (todavía no se ha elaborado una teoría cuántica de la gravitación), entonces habrá una partícula, un gravitón, que tendrá masa nula.
¿Qué es esta «masa nula»? Las masas dadas aquí son las masas de las partículas en reposo. El hecho de que una partícula tenga masa nula significa, en cierto modo, que no puede estar en reposo. Un fotón nunca está en reposo, siempre se está moviendo a 300.000 km por segundo. Entenderemos mejor lo que significa esta masa cuando comprendamos la teoría de la relatividad, lo que llegará a su debido tiempo.
Acoplamiento | Intensidad | Ley |
---|---|---|
Fotón con partículas cargadas | ≈10−2 | Conocida |
Gravedad con cualquier energía | ≈10−40 | Conocida |
Desintegraciones débiles | ≈10−5 | Parcialmente conocida |
Mesones con bariones | ≈1 | Desconocida (alguna regla conocida) |
De este modo nos enfrentamos a un gran número de partículas que, en conjunto, parecen ser los constituyentes fundamentales de la materia. Afortunadamente, estas partículas no son todas diferentes respecto a sus interacciones mutuas. De hecho, parece haber sólo cuatro tipos de interacción entre partículas que, en orden de intensidad decreciente, son la fuerza nuclear, las interacciones eléctricas, la interacción de la desintegración-beta y la gravedad. El fotón se acopla a todas las partículas cargadas y la intensidad de la interacción se mide por cierto número cuyo valor es 1/137. Se conoce la ley detallada de este acoplamiento, que es la electrodinámica cuántica. La gravedad se acopla con cualquier energía, pero su acoplamiento es extraordinariamente débil, mucho más débil que el de la electricidad. Esta ley es también conocida. Luego existen las denominadas desintegraciones débiles: la desintegración-beta, que provoca que el neutrón se desintegre en un protón, un electrón y un neutrino, de forma relativamente lenta. Esta ley sólo se conoce en parte. La denominada interacción fuerte, la interacción mesón-barión, tiene una intensidad de 1 en esta escala, y la ley es completamente desconocida, aunque existe un cierto número de reglas conocidas, tales como que el número total de bariones no cambia en ninguna reacción.
Esta es la horrible situación de nuestra física actual. Para resumirla, yo diría esto: fuera del núcleo, parece que lo conocemos todo; dentro de él, la mecánica cuántica es válida: no se ha encontrado ningún fallo en los principios de la mecánica cuántica. El escenario en el que situamos todo nuestro conocimiento, por así decir, es el espacio-tiempo relativista; quizá la gravedad está implicada en el espacio-tiempo. No sabemos cómo comenzó el universo, y nunca hemos hecho experimentos que pongan a prueba con precisión nuestras ideas de espacio y tiempo por debajo de alguna distancia minúscula, de modo que solamente sabemos que nuestras ideas funcionan por encima de dicha distancia. Deberíamos añadir también que las reglas del juego son los principios mecanocuánticos, y dichos principios se aplican, hasta donde podemos decir, tanto a las nuevas partículas como a las viejas. El origen de las fuerzas en los núcleos nos lleva a nuevas partículas, pero por desgracia éstas aparecen en gran profusión y carecemos de una comprensión completa de su interrelación, aunque ya sabemos que existen algunas relaciones muy sorprendentes entre ellas. Parece que poco a poco vamos a tientas hacia una comprensión del mundo de las partículas subatómicas, pero realmente aún no sabemos hasta dónde tendremos que seguir en esta tarea.