Capítulo 3
El Sistema Solar
Nacimiento del Sistema Solar
Sin embargo, por gloriosas y vastas que sean las profundidades del Universo, no podemos perdernos en estas glorias para siempre. Debemos regresar a los pequeños y familiares mundos en que vivimos. A nuestro Sol —una simple estrella entre los centenares de miles de millones que constituyen nuestra galaxia— y a los mundos que lo rodean, de los cuales la Tierra es uno más.
Desde los tiempos de Newton se ha podido especular acerca de la creación de la Tierra y el Sistema Solar como un problema distinto del de la creación del Universo en conjunto. La idea que se tenía del Sistema Solar era el de una estructura con unas ciertas características unificadas (fig. 3.1):
Fig. 3.1. El Sistema Solar, dibujado de forma esquemática, con indicación sobre la jerarquía de los planetas, según su tamaño relativo.
1. Todos los planetas mayores dan vueltas alrededor del Sol aproximadamente en el plano del ecuador solar. En otras palabras: si preparamos un modelo tridimensional del Sol y sus planetas, comprobaremos que se puede introducir en un cazo poco profundo.
2. Todos los planetas mayores giran en torno al Sol en la misma dirección, en sentido contrario al de las agujas del reloj, si contemplamos el Sistema Solar desde la Estrella Polar.
3. Todos los planetas mayores (excepto Urano y, posiblemente, Venus) efectúan un movimiento de rotación alrededor de su eje en el mismo sentido que su revolución alrededor del Sol, o sea de forma contraria a las agujas del reloj; también el Sol se mueve en tal sentido.
4. Los planetas se hallan espaciados a distancias uniformemente crecientes a partir del Sol y describen órbitas casi circulares.
5. Todos los satélites —con muy pocas excepciones— dan vueltas alrededor de sus respectivos planetas en el plano del ecuador planetario, y siempre en sentido contrario al de las agujas del reloj.
La regularidad de tales movimientos sugirió, de un modo natural, la intervención de algunos procesos singulares en la creación del Sistema en conjunto.
Por tanto, ¿cuál era el proceso que había originado el Sistema Solar? Todas las teorías propuestas hasta entonces podían dividirse en dos clases: catastróficas y evolutivas. Según el punto de vista catastrófico, el Sol había sido creado como singular cuerpo solitario, y empezó a tener una «familia» como resultado de algún fenómeno violento. Por su parte, las ideas evolutivas consideraban que todo el Sistema había llegado de una manera ordenada a su estado actual.
En el siglo XVIII se suponía que aún la historia de la Tierra estaba llena de violentas catástrofes. ¿Por qué, pues, no podía haberse producido una catástrofe de alcances cósmicos, cuyo resultado fuese la aparición de la totalidad del Sistema? Una teoría que gozó del favor popular fue la propuesta por el naturalista francés Georges-Louis Leclerc de Buffon, quien afirmaba, en 1745, que el Sistema Solar había sido creado a partir de los restos de una colisión entre el Sol y un cometa.
Naturalmente, Buffon implicaba la colisión entre el Sol y otro cuerpo de masa comparable. Llamó a ese otro cuerpo cometa, por falta de otro nombre. Sabemos ahora que los cometas son cuerpos diminutos rodeados por insustanciales vestigios de gas y polvo, pero el principio de Buffon continúa, siempre y cuando denominemos al cuerpo en colisión con algún otro nombre y, en los últimos tiempos, los astrónomos han vuelto a esta noción.
Sin embargo, para algunos parece más natural, y menos fortuito, imaginar un proceso más largamente trazado y no catastrófico que diera ocasión al nacimiento del Sistema Solar. Esto encajaría de alguna forma con la majestuosa descripción que Newton había bosquejado de la ley natural que gobierna los movimientos de los mundos del Universo.
El propio Newton había sugerido que el Sistema Solar podía haberse formado a partir de una tenue nube de gas y polvo, que se hubiera condensado lentamente bajo la atracción gravitatoria. A medida que las partículas se aproximaban, el campo gravitatorio se habría hecho más intenso, la condensación se habría acelerado hasta que, al fin, la masa total se habría colapsado, para dar origen a un cuerpo denso (el Sol), incandescente a causa de la energía de la contracción.
En esencia, ésta es la base de las teorías hoy más populares respecto al origen del Sistema Solar. Pero había que resolver buen número de espinosos problemas, para contestar algunas preguntas clave. Por ejemplo: ¿Cómo un gas altamente disperso podía ser forzado a unirse, por una fuerza gravitatoria muy débil?
En años recientes, los astrónomos han propuesto que la fuerza iniciadora debería ser una explosión supernova. Cabe imaginar que una vasta nube de polvo y gas que ya existiría, relativamente incambiada, durante miles de millones de años, habría avanzado hacia las vecindades de una estrella que acababa de explotar como una supernova. La onda de choque de esta explosión, la vasta ráfaga de polvo y gas que se formaría a su paso a través de la nube casi inactiva a la que he mencionado que comprimiría esta nube, intensificando así su campo gravitatorio e iniciando la condensación que conlleva la formación de una estrella. Si ésta era la forma en que se había creado el Sol, ¿qué ocurría con los planetas? ¿De dónde procedían? El primer intento para conseguir una respuesta fue adelantado por Immanuel Kant en 1755 e, independientemente, por el astrónomo francés y matemático Fierre Simón de Laplace, en 1796. La descripción de Laplace era más detallada.
De acuerdo con la descripción de Laplace, la enorme nube de materia en contracción se hallaba en fase rotatoria al empezar el proceso. Al contraerse, se incrementó su velocidad de rotación, de la misma forma que un patinador gira más de prisa cuando recoge sus brazos. (Esto es debido a la «conversión del momento angular». Puesto que dicho momento es igual a la velocidad del movimiento por la distancia desde el centro de rotación, cuando disminuye tal distancia se incrementa, en compensación, la velocidad del movimiento.) Y, según Laplace, al aumentar la velocidad de rotación de la nube, ésta empezó a proyectar un anillo de materia a partir de su ecuador, en rápida rotación. Esto disminuyó en cierto grado el momento angular, de tal modo que se redujo la velocidad de giro de la nube restante; pero al seguir contrayéndose, alcanzó de nuevo una velocidad que le permitía proyectar otro anillo de materia. Así, el coalescente Sol fue dejando tras sí una serie de anillos (nubes de materia, en forma de rosquillas), anillos que —sugirió Laplace— se fueron condensando lentamente, para formar los planetas; con el tiempo, éstos expelieron, a su vez, pequeños anillos, que dieron origen a sus satélites.
A causa de este punto de vista, de que el Sistema Solar comenzó como una nube o nebulosa, y dado que Laplace apuntó a la nebulosa de Andrómeda (que entonces no se sabía que fuese una vasta galaxia de estrellas, sino que se creía que era una nube de polvo y gas en rotación), esta sugerencia ha llegado a conocerse como hipótesis nebular.
La «hipótesis nebular» de Laplace parecía ajustarse muy bien a las características principales del Sistema Solar, e incluso a algunos de sus detalles. Por ejemplo, los anillos de Saturno podían ser los de un satélite que no se hubiera condensado. (Al unirse todos, podría haberse formado un satélite de respetable tamaño.) De manera similar, los asteroides que giraban, en cinturón alrededor del Sol, entre Marte y Júpiter, podrían ser condensaciones de partes de un anillo que no se hubieran unido para formar un planeta. Y cuando Helmholtz y Kelvin elaboraron unas teorías que atribuían la energía del Sol a su lenta contracción, las hipótesis parecieron acomodarse de nuevo perfectamente a la descripción de Laplace.
La hipótesis nebular mantuvo su validez durante la mayor parte del siglo XIX. Pero antes de que éste finalizara empezó a mostrar puntos débiles. En 1859, James Clerk Maxwell, al analizar de forma matemática los anillos de Saturno, llegó a la conclusión de que un anillo de materia gaseosa lanzado por cualquier cuerpo podría condensarse sólo en una acumulación de pequeñas partículas, que formarían tales anillos, pero que nunca podría formar un cuerpo sólido, porque las fuerzas gravitatorias fragmentarían el anillo antes de que se materializara su condensación.
También surgió el problema del momento angular. Se trataba de que los planetas, que constituían sólo algo más del 0,1% de la masa del Sistema Solar, ¡contenían, sin embargo, el 98% de su momento angular! En otras palabras: el Sol retenía únicamente una pequeña fracción del momento angular de la nube original.
¿Cómo fue transferida la casi totalidad del momento angular a los pequeños anillos formados a partir de la nebulosa? El problema se complica al comprobar que, en el caso de Júpiter y Saturno, cuyos sistemas de satélites les dan el aspecto de sistemas solares en miniatura y que han sido, presumiblemente, formados de la misma manera, el cuerpo planetario central retiene la mayor parte del momento angular.
A partir de 1900 perdió tanta fuerza la hipótesis nebular, que la idea de cualquier proceso evolutivo pareció desacreditada para siempre. El escenario estaba listo para la resurrección de una teoría catastrófica. En 1905, dos sabios americanos, Thomas Chrowder Chamberlin y Forest Ray Moulton, propusieron una nueva, que explicaba el origen de los planetas como el resultado de una cuasicolisión entre nuestro Sol y otra estrella. Este encuentro habría arrancado materia gaseosa de ambos soles, y las nubes de material abandonadas en la vecindad de nuestro Sol se habrían condensado luego en pequeños «planetesimales», y éstos, a su vez, en planetas. Ésta es la «hipótesis planetesimal». Respecto al problema del momento angular, los científicos británicos James Hopwood Jeans y Harold Jeffreys propusieron, en 1918, una «hipótesis de manera», sugiriendo que la atracción gravitatoria del Sol que pasó junto al nuestro habría comunicado a las masas de gas una especie de impulso lateral (dándoles «efecto», por así decirlo), motivo por el cual les habría impartido un momento angular. Si tal teoría catastrófica era cierta, podía suponerse que los sistemas planetarios tenían que ser muy escasos. Las estrellas se hallan tan ampliamente espaciadas en el Universo, que las colisiones estelares son 10.000 veces menos comunes que las de las supernovas, las cuales, por otra parte, no son, en realidad, muy frecuentes. Según se calcula, en la vida de la Galaxia sólo ha habido tiempo para diez encuentros del tipo que podría generar sistemas solares con arreglo a dicha teoría.
Sin embargo, fracasaron estos intentos iniciales para asignar un papel a las catástrofes, al ser sometidos a la comprobación de los análisis matemáticos. Russell demostró que en cualquiera de estas cuasicolisiones, los planetas deberían de haber quedado situados miles de veces más lejos del Sol de lo que están en realidad. Por otra parte, tuvieron poco éxito los intentos de salvar la teoría imaginando una serie de colisiones reales, más que de cuasicolisiones. Durante la década iniciada en 1930, Lyttleton especuló acerca de la posibilidad de una colisión entre tres estrellas, y, posteriormente, Hoyle sugirió que el Sol había tenido un compañero, que se transformó en supernova y dejó a los planetas como último legado. Sin embargo, en 1939, el astrónomo americano Lyman Spitzer demostró que un material proyectado a partir del Sol, en cualquier circunstancia, tendría una temperatura tan elevada que no se condensaría en planetesimales, sino que se expandiría en forma de un gas tenue. Aquello pareció acabar con toda la idea de catástrofe. (A pesar de ello, en 1965, un astrónomo británico, M. M. Woolfson, volvió a insistir en el tema, sugiriendo que el Sol podría haber arrojado su material planetario a partir de una estrella fría, muy difusa, de forma que no tendrían que haber intervenido necesariamente temperaturas extremas.)
Y, así, una vez se hubo acabado con la teoría planetesimal, los astrónomos volvieron a las ideas evolutivas y reconsideraron la hipótesis nebular de Laplace.
Por entonces se había ampliado enormemente su visión del Universo. La nueva cuestión que se les planteaba era la de la formación de las galaxias, las cuales necesitaban, naturalmente, mayores nubes de gas y polvo que las supuestas por Laplace como origen del Sistema Solar. Y resultaba claro que tan enormes conjuntos de materia experimentarían turbulencias y se dividirían en remolinos, cada uno de los cuales podría condensarse en un sistema distinto.
En 1944, el astrónomo alemán Cari F. von Weizsácker llevó a cabo un detenido análisis de esta idea. Calculó que en los remolinos mayores habría la materia suficiente como para formar galaxias. Durante la turbulenta contracción de cada remolino se generarían remolinos menores, cada uno de ellos lo bastante grande como para originar un sistema solar (con uno o más soles). En los límites de nuestro remolino solar, esos remolinos menores podrían generar los planetas. Así, en las uniones en las que se encontraban estos remolinos, moviéndose unos contra otros como engranajes de un cambio de marchas, se formarían partículas de polvo que colisionarían y se fundirían, primero los planetesimales y luego los planetas (fig. 3.2).
Fig. 3.2. Modelo del origen del Sistema Solar, de Carl F. von Weizsäcker. Su teoría afirma que la gran nube a partir de la que se formó este sistema se fragmentó en remolinos y subremolinos, que luego, por un proceso de coalescencia, originaron el Sol, los planetas y sus satélites.
La teoría de Weizsácker no resolvió por sí sola los interrogantes sobre el momento angular de los planetas, ni aportó más aclaraciones que la versión, mucho más simple, de Laplace. El astrofísico sueco Hannes Alfven incluyó en sus cálculos el campo magnético del Sol. Cuando el joven Sol giraba rápidamente, su campo magnético actuaba como un freno moderador de ese movimiento, y entonces se transmitiría a los planetas el momento angular. Tomando como base dicho concepto, Hoyle elaboró la teoría de Weizsácker de tal forma, que ésta —una vez modificada para incluir las fuerzas magnéticas y gravitatorias— sigue siendo, al parecer, la que mejor explica el origen del Sistema Solar.
El Sol
El Sol es claramente la fuente de luz, de calor y de la vida misma de la Tierra, y desde la Humanidad prehistórica se le ha deificado. El faraón Ijnatón, que ascendió al trono egipcio en el año 1379 a. de J. C., y que fue el primer monoteísta que conocemos, consideraba al Sol como un dios. En los tiempos medievales, el Sol era el símbolo de la perfección y, aunque no considerado en sí mismo como un dios, ciertamente se le tomaba como la representación de la perfección del Todopoderoso.
Los antiguos griegos fueron los primeros en conseguir una noción de su distancia y las observaciones de Aristarco mostraron que debía de encontrarse a varios millones de kilómetros de distancia, por lo menos y, además, a juzgar por su tamaño aparente, debía de ser mucho mayor que la Tierra. Sin embargo, su solo tamaño no era impresionante por sí mismo, dado que resultaba difícil suponer que el Sol era meramente una enorme esfera de luz insustancial.
No fue hasta la época de Newton cuando se hizo obvio que el Sol no sólo tenía que ser más grande, sino también mucho más masivo que la Tierra, y que la Tierra orbita alrededor del Sol precisamente a causa de que la primera se ve atrapada en el intenso campo gravitatorio de este último. Sabemos ahora que el Sol se encuentra a unos 150.000.000 de kilómetros de distancia de la Tierra y que su diámetro es de 1.500.000 kilómetros, o 110 veces el diámetro de la Tierra. Su masa es 330.000 veces mayor que la de la Tierra y asimismo equivale a 745 veces el material de todos los planetas unidos. En otras palabras, el Sol contiene más o menos el 99,56% de toda la materia del Sistema Solar y es abrumadoramente su miembro número uno.
Sin embargo, no debemos permitirnos que este enorme tamaño nos impresione en demasía. Ciertamente, no es un cuerpo perfecto, si por perfección queremos decir (como los intelectuales medievales hicieron) que es uniformemente brillante e inmaculado.
Hacia finales de 1610, Galileo empleó su telescopio para observar el Sol durante la neblina de su ocaso y vio unas manchas oscuras en el disco del Sol de cada día. Al observar la firme progresión de las manchas a través de la superficie del Sol y su escoramiento cuando se aproximan a los bordes, decidió que formaban parte de la superficie solar, y que el Sol giraba sobre su eje en un poco más de veinticinco días terrestres.
Naturalmente, los descubrimientos de Galileo encontraron considerable oposición, puesto que, según el punto de vista antiguo, parecían blasfemos. Un astrónomo alemán, Cristoph Scheiner, que también había observado las manchas, sugirió que no constituían parte del Sol, sino que se trataba de pequeños cuerpos que orbitaban en torno del astro y que formaban sombras contra su brillante disco. Sin embargo, Galileo ganó en este debate.
En 1774, un astrónomo escocés, Alexander Wilson, notó una mancha solar más grande cerca del borde del Sol, cuando se le miraba de lado, con un aspecto cóncavo, como si se tratase de un cráter situado en el Sol. Este punto fue seguido en 1795 por Herschel, que sugirió que el astro era un cuerpo oscuro y frío, con una flameante capa de gases a todo su alrededor. Según este punto de vista, las manchas eran agujeros a través de los cuales podía verse el cuerpo frío que se encontraba debajo. Herschel especuló respecto de que el cuerpo frío podía incluso estar habitado por seres vivos. (Nótese cómo hasta los científicos más brillantes pueden llegar a atrevidas sugerencias que parecen razonables a la luz de los conocimientos de la época, pero que llegan a convertirse en equivocaciones del todo ridículas cuando se acumulan posteriores evidencias acerca del mismo tema.)
En realidad, las manchas solares no son negras. Se trata de zonas de la superficie solar que están más frías que el resto, y que parecen oscuras en comparación. No obstante, cuando Mercurio o Venus se mueven entre nosotros y el Sol, cada uno de ellos se proyecta sobre el disco solar como un pequeño y auténtico círculo negro, y si ese círculo se mueve cerca de una mancha solar, se puede ver que la mancha no es verdaderamente negra.
Sin embargo, incluso las nociones totalmente equivocadas pueden llegar a ser útiles, puesto que la idea de Herschel ha servido para aumentar el interés acerca de las manchas solares.
No obstante, el auténtico descubrimiento llegó con un farmacéutico alemán, Heinrich Samuel Schwabe, cuya afición la constituía la astronomía. Dado que trabajaba durante todo el día, no podía pasarse toda la noche sentado contemplando las estrellas. Se decidió más bien por una tarea que pudiese hacer durante el día y decidió observar el disco solar y mirar los planetas cercanos al Sol que pudiesen demostrar su existencia al cruzar por delante del astro.
En 1825, empezó a observar el Sol, y no pudo dejar de notar las manchas solares. Al cabo de algún tiempo, se olvidó de los planetas y comenzó a bosquejar las manchas solares, que cambiaban de posición y de forma de un día al siguiente. Pasó no menos de diecisiete años observando el Sol todos los días que no fuesen por completo nubosos.
En 1843, fue capaz de anunciar que las manchas solares no aparecían por completo al azar, que existía un ciclo. Año tras año, había más y más manchas solares hasta que se alcanzaba un ápice. Luego el número declinaba hasta que casi no había ninguna; a continuación, comenzaba un nuevo ciclo. Sabemos ahora que el ciclo es algo irregular, pero que, de promedio, dura once años. El anuncio de Schwabe fue ignorado (a fin de cuentas se trataba sólo de un farmacéutico), hasta que el famoso científico Alexander von Humboldt mencionó el ciclo en 1851 en su libro Kosmos, una gran revisión acerca de la Ciencia.
En aquel tiempo, el astrónomo germanoescocés, Johann von Lamont, se encontraba midiendo la intensidad del campo magnético de la Tierra, y descubrió que ascendía y descendía de una forma regular. En 1852, un físico británico, Edward Sabine, señaló que este ciclo se acompasaba con el ciclo de las manchas solares.
De esta forma se vio que las manchas solares afectaban a la Tierra, y comenzaron a ser estudiadas con intenso interés. A cada año se le dio un número de manchas solares Zürích, según una fórmula que se elaboró por primera vez en 1849 por un astrónomo suizo, Rudolf Wolf, que trabajaba en Zürich. (Fue el primero en señalar que la incidencia de auroras también aumentaba y disminuía según la época del ciclo de las manchas solares.)
Las manchas solares parecían conectadas con el campo magnético del Sol y aparecían en el punto de emergencia de las líneas de fuerza magnéticas. En 1908, tres siglos después del descubrimiento de las solares, G. E. Hale detectó un fuerte campo magnético asociado con las manchas solares. El porqué el campo magnético del Sol se porta como lo hace, emergiendo de la superficie en raros momentos y lugares, aumentando y disminuyendo la intensidad en unos en cierto modo ciclos irregulares, es algo que aún continúa perteneciendo a los rompecabezas solares que hasta ahora han desafiado encontrar la correspondiente solución.
En 1893, el astrónomo inglés Edward Walter Maunder estaba comprobando unos primeros informes, con objeto de establecer los datos del ciclo de manchas solares en el primer siglo después del descubrimiento de Galileo. Quedó asombrado al descubrir que, virtualmente, no existían informes acerca de las manchas solares entre los años 1643 y 1715. Astrónomos importantes, como Cassini, también los buscaron y comentaron su fracaso para descubrir alguno. Maunder publicó sus hallazgos en 1894, y de nuevo en 1922, pero no se prestó la mayor atención a sus trabajos. El ciclo de manchas solares se encontraba tan bien establecido que parecía increíble que pudiese existir un período de siete décadas en el que difícilmente había aparecido.
En la década de los años 1970, el astrónomo John A. Eddy consiguió dar con este informe, y al verificarlo, descubrió lo que llegaría a llamarse un mínimo de Maunder. No sólo repitió las investigaciones de Maunder, sino que investigó los informes de avistamientos con el ojo desnudo de manchas solares particularmente grandes desde numerosas regiones, incluyendo el Lejano Oriente, datos que no habían estado disponibles para Maunder. Tales registros se retrotraían hasta el siglo V a. de J. C. y, por lo general, incluían de cinco a diez avistamientos por siglo. Existían interrupciones, y una de las mismas atraviesa el mínimo de Maunder.
Eddy comprobó asimismo los informes acerca de auroras. Las mismas aumentaban y disminuían en frecuencia e intensidad con el ciclo de manchas solares. Resultó que había muchos informes a partir de 1715, y unos cuantos antes de 1645, pero ninguno en medio de esas fechas.
Una vez más, cuando el Sol es magnéticamente activo y hay numerosas manchas solares, la corona está llena de corrientes de luz y es muy hermosa. En ausencia de las manchas solares, la corona parece más bien una neblina sin rasgos. La corona puede verse durante los eclipses solares y, aunque pocos astrónomos viajaron en el siglo XVII para ver tales eclipses, los informes existentes durante el mínimo de Maunder, fueron invariablemente de la clase de coronas asociadas con pocas o ninguna manchas solares.
Finalmente, en la época de los máximos de manchas solares, existe una cadena de acontecimientos que consigue producir carbono-14 (una variedad de carbono que mencionaré en el capítulo siguiente) en cantidades más pequeñas que de ordinario. Es posible analizar los anillos de los árboles en busca de contenido de carbono-14, y juzgar la existencia de máximos de manchas solares y mínimos por los aumentos y disminuciones, respectivamente, de carbono-14. Semejantes análisis han llegado a conseguir pruebas de la existencia del mínimo de Maunder y asimismo de numerosos mínimos de Maunder en los siglos anteriores.
Eddy informó que parecían existir unos doce períodos en los últimos cinco mil años en que existían mínimos de Maunder de una duración de cincuenta a doscientos años cada uno. Y que hubo uno, por ejemplo, entre 1400 y 1510.
Dado que el ciclo de manchas solares tienen un efecto sobre la Tierra debemos preguntarnos qué efectos tienen los mínimos de Maunder. Es posible que se hallen asociados con períodos fríos. Los inviernos fueron tan gélidos en Europa en la primera década del siglo XVIII, que se denominó a la misma pequeña edad glacial. También hizo mucho frío durante el mínimo de 1400-1510, cuando la colonia noruega en Groenlandia pereció a causa de que, simplemente, el tiempo fue demasiado malo como para permitir la supervivencia.
La Luna
Cuando, en 1543, Copérnico situó al Sol en el centro del Sistema Solar, sólo la Luna fue dejada como vasalla de la Tierra que, durante un período tan largo previamente, se había dado por sentado que constituía el centro del Sistema Solar.
La Luna gira en torno de la Tierra (en relación a las estrellas) en 27,32 días. Da vueltas sobre su propio eje exactamente en ese mismo período. Esta igualdad entre su período de revolución y el de rotación conlleva el que, perpetuamente, presente la misma cara a la Tierra. Pero esta igualdad entre la revolución y la rotación no es una coincidencia. Es el resultado del efecto de mareas de la Tierra sobre la Luna, como explicaré más adelante.
La revolución de la Luna con respecto de las estrellas constituye el mes sideral. Sin embargo, mientras la Luna gira en torno de la Tierra, ésta lo hace en torno del Sol. Cuando la Luna ha efectuado una revolución alrededor de la Tierra, el Sol ha avanzado algo en el firmamento a causa del movimiento de la Tierra (que ha arrastrado a la Luna con ella). La Luna debe continuar su revolución durante unos 2,5 días antes de que se amolde con el Sol y lo recupere en el mismo lugar del cielo en que se encontraba antes. La revolución de la Luna en torno de la Tierra en relación al Sol constituye el mes sinódico, que tiene una duración de 29,53 días.
El mes sinódico ha sido más importante para la Humanidad que el sidéreo, porque, mientras la Luna gira en torno de la Tierra, la cara que vemos experimenta un firme cambio de ángulo de la luz solar, y ese ángulo depende de su revolución con respecto al Sol. Esto tiene como consecuencia una sucesión de fases. Al principio de un mes, la Luna se halla localizada exactamente al este del Sol y aparece como un creciente muy delgado visible poco después de la puesta del Sol.
De una noche a otra, se mueve más lejos del Sol, y el creciente aumenta. Llegado el momento, la porción iluminada de la Luna es un semicírculo, y luego avanza aún más allá. Cuando la Luna ha avanzado tanto que se encuentra en esa porción de cielo directamente opuesta a la del Sol, la luz solar brilla en la Luna por encima de los hombros de la Tierra (por así decirlo), y toda la cara visible de la Luna se halla iluminada: a ese pleno círculo de luz se le denomina Luna llena.
A continuación la sombra invade el lado de la Luna donde apareció por primera vez el creciente. Noche tras noche, la porción iluminada de la Luna se encoge, hasta que llega a ser de nuevo una media luna, con la luz en el lado opuesto adonde estaba en la anterior media luna. Finalmente, la Luna acaba exactamente al oeste del Sol y aparece en el firmamento poco antes del amanecer como un creciente que se curva en dirección opuesta de la que se había formado al principio. La Luna avanza más allá del Sol y se muestra como un creciente poco después del ocaso, y toda la serie de cambios comienza de nuevo.
Todo el ciclo de cambio de fase dura 29,5 días, la misma extensión del mes sinódico, y constituye la base de los primeros calendarios de la Humanidad.
Los seres humanos dieron al principio por supuesto que la Luna realmente crecía y menguaba, creciendo y apagándose a medida que las fases cambiaban. Se supuso que, cada vez que un creciente aparecía en el cielo occidental después de la puesta del Sol, era literalmente una Luna nueva, y todavía se la llama así.
Los antiguos astrónomos griegos se percataron, no obstante, de que la Luna debía de ser un globo, que los cambios de fase ponían en evidencia el hecho de que brillaba sólo al reflejar la luz solar, y que la posición cambiante de la Luna en el firmamento con respecto al Sol se relacionaba exactamente con las fases. Éste fue un hecho de la mayor importancia. Los filósofos griegos, sobre todo Aristóteles, trataron de diferenciar la Tierra de los cuerpos celestes al demostrar que las propiedades de la Tierra eran del todo diferentes a la de aquellos cuerpos celestes en general. Así, la Tierra era apagada y no emitía luz, mientras que los cuerpos celestes sí emitían luz. Aristóteles creyó que los cuerpos celestes estaban formados por una sustancia a la que denominó éter (de una palabra griega que significa «brillante» o «resplandeciente»), que era fundamentalmente diferente de los materiales que constituían la Tierra. Y, sin embargo, el ciclo de las fases de la Luna mostraba que la Luna, al igual que la Tierra, no emitía luz propia y que brillaba sólo a causa de la luz solar reflejada. Así, la Luna, por lo menos, era semejante a la Tierra a este respecto.
Y lo que es más, ocasionalmente, el Sol y la Luna se hallaban tan exactamente en lugares opuestos de la Tierra, que la luz del Sol quedaba bloqueada por la Tierra y no alcanzaba a la Luna. La Luna (siempre como luna llena) pasaba a la sombra de la Tierra y se eclipsaba.
En los tiempos primitivos, se creía que la Luna estaba siendo tragada por alguna fuerza maligna y que desaparecía por completo y para siempre. Se trataba de un vaporoso fenómeno, y constituyó una temprana victoria de la Ciencia el ser capaz de predecir un eclipse y mostrar que se trataba de un fenómeno natural con una explicación fácilmente comprensible. (Algunos creen que Stonehenge era, entre otras cosas, un primitivo observatorio de la Edad de la Piedra que podía usarse para predecir la llegada de eclipses lunares por los cambios de posición del Sol y de la Luna respecto de las piedras regularmente colocadas de la estructura.)
En realidad, cuando la Luna se encuentra en creciente, es en ocasiones posible ver sus restos delinearse levemente en una luz rojiza. Fue Galileo quien sugirió que la Tierra, al igual que la Luna, debe reflejar luz solar y brillar, y que la porción de la Luna iluminada por el Sol era iluminada también levemente por la luz de la Tierra. Esto sólo sería visible cuando tan pequeña porción iluminada por el Sol fuese visible que su luz no eliminase la mucho más apagada luz de la Tierra. Así, pues, no sólo la Luna era luminosa igual que la Tierra, sino que la Tierra reflejaba la luz del Sol y mostraría fases semejantes a las de la Luna (si se mirase desde la Luna)
Otra supuesta diferencia fundamental entre la Tierra y los cuerpos celestes radicaba en que la Tierra era agrietada, imperfecta, y siempre cambiante mientras que los cuerpos celestes eran perfectos e inmutables.
Sólo el Sol y la Luna aparecían, ante el ojo desnudo, como algo más que puntos de luz. De los dos, el Sol aparece como un círculo perfecto de perfecta luz. Sin embargo, la Luna —incluso descartando las fases— no es perfecta. Cuando brilla la luna llena, y la Luna parece un círculo perfecto de luz, no es ni clara ni perfecta. Existen manchas en su suavemente brillante superficie, que están en contra de la noción de perfección. El hombre primitivo trazó pinturas de las manchas, y cada una de las diferentes culturas presentó una descripción diferente. El egoísmo humano es tan grande que, frecuentemente, la gente ve las manchas como formando parte de la representación del ser humano, y seguimos hablando de un «hombre que está en la luna».
Fue Galileo quien, en 1609, mirando a través de un telescopio enfocado hacia los cielos, volviéndolo luego hacia la Luna, el primero en ver en ésta montañas, cráteres y zonas llanas (que tomó por mares o, en latín maria). Ésta fue la indicación final de que la Luna no era un cuerpo celeste «perfecto» fundamentalmente distinto de la Tierra, aunque fuese un mundo parecido a la Tierra.
No obstante, esta comprobación no demolió por sí misma el antiguo punto de vista. Los griegos habían observado que existían varios objetos en el cielo que cambiaban de forma clara de posición contra las estrellas en general, y que, de todos ellos, la Luna era la que cambiaba de posición con mayor rapidez. Dieron por supuesto que lo efectuaba porque estaba más cerca a la Tierra que cualquier otro cuerpo celeste (y en esto los griegos tenían razón). Podía discutirse que la Luna, a causa de su proximidad a la Tierra, estaba en parte contaminada de las imperfecciones de la Tierra, de que sufría por su proximidad. No fue hasta que Galileo descubrió manchas en el Sol cuando la noción de la perfección de los cielos se hizo de veras añicos.
Medición de la Luna
Pero quedaba el asunto de que, si la Luna era el cuerpo más cercano a la Tierra, cuan cercano estaba. De los antiguos astrónomos griegos que trataron de determinar esa distancia, Hiparco fue el que elaboró, esencialmente, la respuesta correcta. Su distancia promedio de la Tierra se sabe ahora que es de 382.000 kilómetros, o 9,6 veces la circunferencia de la Tierra.
Si la órbita de la Luna fuese circular, ésa sería la distancia en todas las ocasiones. Sin embargo, la órbita de la Luna es algo elíptica, y la Tierra no está en el centro de la elipse, sino en uno de los focos, que se halla descentrado. La Luna se aproxima a la Tierra levemente en una mitad de su órbita y retrocede desde la otra mitad. En su punto más cercano (perigeo), la Luna sólo se halla a 354.000 kilómetros de la Tierra, y en el punto más alejado (apogeo), a 404.000 kilómetros.
La Luna, tal y como los griegos conjeturaron, es con mucho el más cercano a la Tierra de todos los cuerpos celestes. Incluso si nos olvidamos de las estrellas, y consideramos sólo el Sistema Solar, la Luna está, relativamente hablando, en nuestro patio trasero.
El diámetro de la Luna (a juzgar por su distancia y por su tamaño aparente) es de 3.450 kilómetros. La esfera de la Tierra tiene 3,65 veces esa anchura, y el Sol es 412 veces más ancho. Pero, en realidad, la distancia del Sol a la Tierra es 390 veces la de la Luna de promedio, por lo que las diferencias en distancia y diámetro se anulan, y los dos cuerpos, tan diferentes en tamaño real, parecen casi igual de grandes en el firmamento. Por esta razón, cuando la Luna se halla delante del Sol, el cuerpo más pequeño y más cercano encaja casi por completo en el más grande y más alejado, convirtiendo al eclipse total de Sol en el más maravilloso espectáculo. Se trata de una asombrosa coincidencia de la que nos beneficiamos.
Viaje a la Luna
La proximidad comparativa de la Luna y su prominente aspecto en el cielo, han actuado desde siempre de acicate para la imaginación humana. ¿Había alguna posibilidad de alcanzarla? (Uno podría igualmente preguntarse acerca de llegar hasta el Sol, pero el obviamente intenso calor del Sol serviría para enfriar el deseo de hacer una cosa así. La Luna resultaba claramente un objetivo mucho más benigno, así como mucho más cercano.)
En los primeros tiempos, el llegar a la Luna no parecía una tarea insuperable, dado que se daba por supuesto que la atmósfera se extendía hasta los cuerpos celestes, por lo que algo que le alzara a uno en el aire podría muy bien llevarnos hasta la Luna en casos extremos.
Así, en el siglo II d. J. C., el escritor sirio Luciano de Samosata escribió la primera historia de viaje espacial que conocemos. En la misma, un navío es atrapado en una tromba marina que lo alza lo suficiente en el aire, como para llegar a la Luna.
Una vez más, en 1638, apareció El hombre en la Luna, escrito por un sacerdote inglés, Francis Godwin (que murió antes de su publicación). Godwin llevó a su héroe hasta la Luna en un carro empujado por grandes gansos que emigraban anualmente a la Luna.
Sin embargo, en 1643, la naturaleza de la presión del aire llegó a comprenderse, y se vio rápidamente que la atmósfera de la Tierra no podía extenderse más que a unos comparativamente escasos kilómetros por encima de su superficie. La mayor parte del espacio entre la Tierra y la Luna era un vacío en el que las trombas de agua no podían penetrar y a través del cual no volaban los gansos. El problema de llegar a la Luna se hacía de repente mucho más formidable, aunque aún no insuperable.
En 1650, apareció (de nuevo postumamente) Viaje a la Luna, del escritor francés y duelista Cyrano de Bergerac. En su cuento, Cyrano describe siete formas en que sería posible alcanzar la Luna. Seis de ellas resultaban erróneas por una razón u otra, pero el séptimo método era por medio del empleo de cohetes. En efecto, los cohetes eran el único método entonces conocido (o ahora, en realidad) a través del cual se podía cruzar el vacío.
Sin embargo, no fue hasta 1657 cuando se comprendió el principio del cohete. Aquel año, Newton publicó su gran libro Principia Mathematica en el que, entre otras cosas, presentó sus tres leyes del movimiento. La tercera ley es conocida popularmente como la ley de la acción y de la reacción: cuando se aplica una fuerza en una dirección, existe una fuerza igual y opuesta en la otra. Así, si un cohete expulsa una masa de materia en una dirección, el resto del cohete se mueve en la otra, y lo hará en el vacío lo mismo que en el aire. En realidad, lo hará con mayor facilidad en el vacío donde no existe resistencia por parte del aire al movimiento. (La creencia de que un cohete necesita «algo contra lo que empujar» es errónea.)
Cohetes
Pero los cohetes no eran un asunto sólo teórico. Existían ya desde muchos siglos antes de que Cyrano escribiese y Newton teorizase.
Los chinos, en un tiempo tan alejado como el siglo XIII, inventaron y emplearon pequeños cohetes para la guerra psicológica: para asustar al enemigo. La moderna civilización occidental adaptó los cohetes para fines más sangrientos. En 1801, un experto en artillería británico, William Congreve, tras haberse enterado del asunto de los cohetes en Oriente, donde las tropas indias lo usaron contra los británicos en los años 1780, ideó cierto número de mortíferos misiles. Algunos de ellos fueron empleados contra Estados Unidos en la guerra de 1812, sobre todo en el bombardeo de Fuerte McHenry, en 1814, lo que inspiró a Francis Scott Key a escribir la Bandera salpicada de estrellas, cantando lo del «rojo esplendor de los cohetes». Las armas de cohetes se marchitaron ante las mejoras en alcance, precisión y potencia de la artillería convencional. Sin embargo, la Segunda Guerra Mundial vio el desarrollo del bazuca estadounidense y del «Katiusha» soviético, ambos formados esencialmente por paquetes de explosivos con propulsión por cohetes. En mucha mayor escala, los aviones de reacción también hicieron uso del principio de acción y reacción del cohete.
Más o menos a principios del siglo XX, dos hombres, de forma independiente, concibieron un nuevo y más exacto empleo de los cohetes: explorar la atmósfera superior y el espacio. Se trataba de un ruso, Konstantin Eduardovich Tsiolkovski, y un estadounidense, Robert Hutchings Goddard. (Incluso resulta raro, en vista de los desarrollos posteriores, que un ruso y un norteamericano fueran los primeros heraldos de la edad de los cohetes, aunque un imaginativo inventor alemán, Hermann Ganswindt, también avanzara incluso cosas más ambiciosas, aunque menos sistemáticas y científicas especulaciones en este tiempo.)
El ruso fue el primero en imprimir: publicó sus especulaciones y cálculos de 1903 a 1913, mientras Goddard no realizó sus publicaciones hasta 1919. Pero Goddard fue el primero en llevar la especulación a la práctica. El 16 de marzo de 1926, desde una granja cubierta por la nieve, en Auburn, Massachusetts, disparó un cohete que alcanzó una altura de 66 metros. La cosa más notable en el cohete era que iba propulsado por un combustible líquido en vez de por pólvora. Además, mientras que los cohetes ordinarios, bazucas, aviones de reacción, etc., empleaban el oxígeno del aire circundante, el cohete de Goddard, diseñado para funcionar en el espacio exterior, debía llevar su propio oxidante en forma de oxígeno líquido (lox, como ahora se llama en el argot de los hombres de los misiles).
Julio Verne, en su obra de ciencia ficción del siglo XIX, visualizó un cañón como mecanismo de lanzamiento para un viaje a la Luna, pero un cañón consume su fuerza por completo de una sola vez, y al principio, cuando la atmósfera es más recia y ofrece una mayor resistencia. Además, la aceleración total se consigue en el mismo principio y es lo suficientemente grande como para reducir a cualquier ser humano que se encontrase en el navío espacial a un sangriento amasijo de carne y huesos.
Los cohetes de Goddard avanzaban hacia arriba lentamente al principio, ganando velocidad y gastando su impulso final muy arriba, en la atmósfera más fina, donde la resistencia es menor. El alcanzar gradualmente la velocidad significa que la aceleración se conserva en niveles tolerables, algo muy importante para los navíos tripulados.
Desgraciadamente, el logro de Goddard casi no alcanzó reconocimiento, excepto por parte de sus enfadados vecinos, que consiguieron que se le ordenase que siguiese sus experimentos en otra parte. Goddard se fue a disparar sus cohetes en la mayor intimidad y, entre 1930 y 1935, sus vehículos alcanzaron velocidades de más de 900 kilómetros por hora y alturas de más de dos kilómetros y medio. Desarrolló sistemas para estabilizar un cohete en vuelo y giroscopios para mantener a un cohete en la dirección apropiada. Goddard también patentó la idea de los cohetes multietapas. Dado que sus etapas sucesivas constituyen una parte de su peso original y comienza la elevada velocidad facilitada por la etapa anterior, un cohete dividido en una serie de etapas puede conseguir velocidades más elevadas y mayores alturas que un cohete con la misma cantidad de combustible alojado en una sola etapa.
Durante la Segunda Guerra Mundial, la Marina de los Estados Unidos apoyó sin entusiasmo ulteriores experimentos por parte de Goddard. Mientras tanto, el Gobierno alemán dedicó un mayor esfuerzo a la investigación de cohetes, empleando como cuerpo de trabajadores a un grupo de jóvenes que habían sido inspirados primariamente por Hermann Oberth, un matemático rumano que, en 1923, había escrito acerca de cohetes y navíos espaciales con independencia de Tsiolkovski y Goddard. La investigación alemana comenzó en 1935 y culminó con el desarrollo de la V-2. Bajo la guía del experto en cohetes Wernher von Braun (el cual, después de la Segunda Guerra Mundial, colocó su talento a disposición de Estados Unidos), se disparó el primer auténtico cohete en 1942. La V-2 entró en combate en 1944, demasiado tarde para ganar la guerra para los nazis aunque dispararon 4.300 de ellos en total, y 1.230 alcanzaron Londres. Los misiles de Von Braun mataron a 2.511 ingleses e hirieron gravemente a otros 5.869.
El 10 de agosto de 1945, casi el mismo día en que acabó la guerra, murió Goddard, justo a tiempo de ver al fin cómo su chispa se encendía al fin en llamas. Estados Unidos y la Unión Soviética, estimulados por el éxito de las V-2, se zambulleron en la investigación coheteril, cada uno llevándose a su lado a cuantos más expertos alemanes en cohetes pudo.
Al principio, Estados Unidos emplearon V-2 capturadas para explorar la atmósfera superior pero, en 1952, la provisión de esos cohetes se había agotado. Para entonces, ya habían sido construidos cohetes aceleradores mayores y más avanzados, tanto en Estados Unidos como en la Unión Soviética, y el progreso continuó.
Explorando la Luna
Una nueva era comenzó cuando, el 4 de octubre de 1957 (un mes después del centenario del nacimiento de Tsiolkovski), la Unión Soviética colocó el primer satélite artificial (Spútnik I) en órbita. El Spútnik I viajó en torno de la Tierra en una órbita elíptica: a 250 kilómetros por encima de la superficie (o a 6.650 kilómetros desde el centro de la Tierra), en el perigeo y a 900 kilómetros en el apogeo. Una órbita elíptica es algo parecido a una montaña rusa. Al ir del apogeo al perigeo, el satélite se desliza colina abajo, por así decirlo, y pierde potencial gravitacional. Así, la velocidad aumenta, por lo que en el perigeo el satélite empieza de nuevo arriba de la colina a máxima velocidad, como lo hace una montaña rusa. El satélite pierde velocidad mientras sube (como le pasa a la montaña rusa) y se mueve a su menor velocidad en el apogeo, poco antes de que se deslice de nuevo colina abajo.
El Spútnik I pasaba en el perigeo a través de finos fragmentos de la atmósfera superior; y la resistencia del aire, aunque leve, era lo suficiente como para enlentecer al satélite un poco en cada viaje. En cada revolución sucesiva, fracasaba en alcanzar su altura anterior de apogeo. Lentamente, comenzó a hacer espirales hacia dentro. Llegado el momento, pierde tanta energía, que la atracción de la Tierra es suficiente para hundirlo en la atmósfera más densa, donde se quema por fricción con el aire.
El índice en el que decae de esta forma la órbita de un satélite, depende en parte de la masa del satélite y en parte de su forma, y también de la densidad del aire a través del cual pasa. Así, puede calcularse la densidad de la atmósfera a ese nivel. Los satélites nos han facilitado las primeras mediciones directas de la densidad de la atmósfera superior. La densidad demostró ser más elevada de lo que se había pensado; pero a la altura de 240 kilómetros, por ejemplo, es de sólo una diezmillonésima respecto del nivel del mar, y a 360 kilómetros de únicamente una billonésima.
No obstante, esas pequeñas cantidades de aire no deben descartarse con demasiada rapidez. Incluso a una altura de 1.600 kilómetros, donde la densidad atmosférica es de una trillonésima en relación a las cifras a nivel del mar, ese débil aliento de aire es mil millones de veces más denso que el de los gases del espacio exterior en sí. La envoltura de gases de la Tierra se extiende hacia fuera.
La Unión Soviética no quedó sola en este campo sino que, al cabo de cuatro meses, se le unió Estados Unidos que, el 30 de enero de 1958, colocó en órbita su primer satélite, el Explorer I.
Una vez los satélites se colocaron en órbita en torno de la Tierra, los ojos se volvieron cada vez con mayores ansias hacia la Luna. En realidad, la Luna había perdido la mayor parte de su encanto, pues aunque seguía siendo un mundo y no sólo una luz en el cielo, ya no era el mundo que se pensó en tiempos anteriores.
Antes del telescopio de Galileo, se había dado siempre por supuesto que si los cuerpos celestes eran mundos, seguramente estarían llenos de cosas vivientes, incluso cosas vivientes en forma de humanoides inteligentes. Las primeras historias de ciencia ficción acerca de la Luna supusieron esto, lo mismo que otras posteriores, en el mismo siglo XX.
En 1835, un escritor inglés llamado Richard Adams Locke, escribió una serie de artículos para el New York Sun que pretendían pasar por serios estudios científicos de la superficie de la Luna, y que descubrían muchas clases de cosas vivientes. Las descripciones eran muy detalladas y fueron pronto creídas por millones de personas.
Y, sin embargo, no fue mucho después de que Galileo mirase a la Luna a través de su telescopio, cuando comenzó a parecer claro que la vida no podía existir en la Luna. La superficie de la Luna no estaba nunca oscurecida por nubes o niebla. La línea divisoria entre los hemisferios luminoso y apagado era siempre muy fuerte, por lo que existía una destacable zona crepuscular. Los «mares» oscuros que Galileo creyó que serían cuerpos de agua, se descubrió que se hallaban salpicados de pequeños cráteres que, en el mejor de los casos, eran cuerpos relativamente poco consistentes de arena. Quedó pronto claro que la Luna no contenía ni aire y que, por tanto, tampoco había vida.
De todos modos, era tal vez demasiado fácil llegar a esta conclusión. ¿Qué pasaba con el lado oculto de la Luna que los seres humanos nunca veían? ¿No podían existir capas de agua debajo de la superficie que, aunque insuficientes para mantener grandes formas de vida, tal vez pudiesen sostener el equivalente de bacterias? O, si no había vida en absoluto, ¿no podían existir productos químicos en el suelo que representasen una lenta y posiblemente abortada evolución hacia la vida? Y aunque no hubiese nada de todo esto, ¿no quedaban aún preguntas que contestar en lo referente a la Luna que no tenían nada que ver con la vida? ¿Dónde se había formado? ¿Cuál era su estructura mineralógica? ¿Qué antigüedad tenía?
Por lo tanto, poco después del lanzamiento del Spútnik I una serie de nuevas técnicas comenzaron a emplearse para explorar la Luna. La primera sonda lunar con éxito, es decir, el primer satélite que pasó cerca de la Luna, fue enviado por la Unión Soviética el 2 de enero de 1959. Se trató del Lunik I, el primer objeto artificial que tomó una órbita alrededor del Sol. Al cabo de dos meses, Estados Unidos había publicado la proeza.
El 12 de setiembre de 1959, los soviéticos enviaron el Lunik II y lo apuntaron para que alcanzase la Luna. Por primera vez en la Historia, un objeto artificial descansó en la superficie de otro mundo. Luego, un mes después, el satélite soviético Lunik III se deslizó más allá de la Luna y apuntó una cámara de televisión hacia el lado que nunca vemos desde la Tierra. Cuarenta minutos de fotos del otro lado fueron enviadas de regreso desde una distancia de 60.000 kilómetros por encima de la superficie lunar. Eran borrosas y de escasa calidad, pero mostraban algo interesante. Que el otro lado de la Luna presentaba escasamente maria del tipo de los que constituyen un rasgo tan prominente de nuestro lado. No queda completamente claro el porqué de esta asimetría. Presumiblemente, los maria se formaron, comparativamente, tarde en la historia de la Luna, cuando un lado ya presentaba su cara hacia la Tierra para siempre y los grandes meteoros que han formado los mares se deslizaban hacia la cara más cercana de la Luna a causa de la gravedad terrestre.
Pero la exploración lunar estaba sólo comenzando. En 1964, Estados Unidos lanzó una sonda lunar, el Ranger VII, diseñado para estrellarse contra la superficie de la Luna, y tomar fotografías a medida que se aproximase. El 31 de julio de 1964 completó con éxito la misión, tomando 4.316 fotos de un área que ahora se llama Mare Cognitum (Mar Conocido). A principios de 1965, el Ranger VIII y el Ranger IX tuvieron un éxito aún mayor, si es que ello era posible. Esas sondas lunares revelaron que la superficie de la Luna debía de ser dura (o esponjosa en el peor de los casos), y que no estaba cubierta por la gruesa capa de polvo que algunos astrónomos sospechaban que debía existir. Las sondas mostraron incluso que esas zonas, que parecían tan llanas cuando se las miraba a través de un telescopio, estaban cubiertas por cráteres demasiado pequeños para ser vistos desde la Tierra.
La sonda soviética Luna IX tuvo éxito en efectuar un aterrizaje suave (no uno que implicase la destrucción del objeto al efectuar el aterrizaje) en la Luna el 3 de febrero de 1966, y mandó fotografías tomadas al nivel del suelo. El 3 de abril de 1966, los soviéticos situaron al Luna X en una órbita de tres horas en torno de la Luna, midiendo la radiactividad de la superficie lunar, y la pauta indicó que las rocas de la superficie lunar eran similares al basalto que existe en el fondo de los océanos terrestres.
Los hombres de los cohetes norteamericanos siguieron esta pista con una cohetería aún más elaborada. El primer aterrizaje suave norteamericano en la Luna fue el del Surveyor I, el 1 de junio de 1966. En setiembre de 1967, el Surveyor V había conseguido manejar y analizar el suelo lunar bajo control remoto desde la Tierra. También probó que era parecido al basalto y que contenía partículas de hierro, probablemente de origen meteórico.
El 10 de agosto de 1966, la primera de las sondas orbitadoras lunares norteamericanas fue mandada para que girase en torno de la Luna. Esos orbitadores lunares tomaron fotografías detalladas de todas las partes de la Luna, por lo que, en todas partes, sus rasgos (incluyendo la parte que permanece escondida desde la superficie de la Tierra) llegaron a ser conocidas con todo detalle. Además, se tomaron desconcertantes fotografías de la Tierra, tal y como se ve desde las vecindades de la Luna.
Digamos de pasada que los cráteres lunares han recibido el nombre de astrónomos y de otros grandes hombres del pasado. Dado que los nombres fueron dados por el astrónomo italiano Giovanni Battista Riccioli, hacia 1650, se trata más bien de antiguos astrónomos —Copérnico, Tycho y Kepler—, así como de astrónomos griegos como Aristóteles, Arquímedes y Ptolomeo, que han sido honrados con los cráteres mayores.
El otro lado, revelado por primera vez por el Lunik III, ofreció una nueva oportunidad. Los rusos, como estaban en su derecho, dieron nombres a algunos de los rasgos más sobresalientes. Y llamaron a los cráteres no sólo Tsiolkovski, el gran profeta de los viajes espaciales, sino también Lomonosov y Popov, los dos químicos rusos de fines del siglo XVIII. También han recompensado con cráteres a personalidades occidentales, incluyendo a Maxwell, Hertz, Edison, Pasteur, y los Curie, todos los cuales se mencionan en este libro. Un nombre muy adecuado colocado en el otro lado de la Luna es el del escritor francés pionero de la ciencia ficción, Julio Verne.
En 1970, el otro lado de la Luna era suficientemente bien conocido, para hacer posible dar sistemáticamente nombres a sus rasgos. Bajo el liderazgo del astrónomo norteamericano Donald Howard Menzel, un organismo internacional asignó centenares de nombres, honrando a los grandes hombres del pasado que contribuyeron al avance de la Ciencia de una forma u otra. Los cráteres muy prominentes fueron adjudicados a rusos como Mendéleiev (que fue el primero que desarrolló la tabla periódica, de la que hablaré en el capítulo 6), y Gagarin, que fue el primer hombre que fue colocado en órbita alrededor de la Tierra y que, años después, murió en un accidente de aviación. Otros rasgos importantes fueron empleados para recordar al astrónomo holandés Hertzsprung, al matemático francés Galois, al físico italiano Fermi, al matemático estadounidense Wiener y al físico británico Cockcroft. En una zona restringida podemos encontrar a Nernst, Lorentz, Moseley, Einstein, Bohr y Dalton, todos de la mayor importancia para el desarrollo de la teoría atómica y de la estructura subatómica.
Reflejan el interés de Menzel en sus escritos de ciencia y de ficción científica, en su justa decisión de atribuir unos cuantos cráteres a aquellos que ayudaron a suscitar el entusiasmo de toda una generación por los vuelos espaciales, cuando la ciencia ortodoxa los había descartado como una quimera. Por esta razón, hay un cráter que honra a Hugo Gernsback, que publicó la primera revista en Estados Unidos dedicada enteramente a la ciencia ficción, y otro a Willy Ley que, de todos los escritores, fue el que de forma más inteligible y exacta retrató las victorias y potencialidades de los cohetes.
Los astronautas y la Luna
Pero la exploración no tripulada de la Luna, por dramática y exitosa que fuese, no resultaba suficiente. ¿Podrían los seres humanos acompañar a los cohetes? De todos modos, costó sólo tres años y medio, desde el lanzamiento del Spútnik I, el que se diesen los primeros pasos en esta dirección.
El 12 de abril de 1961, el cosmonauta soviético Yuri Alexéievich Gagarin fue lanzado en órbita y regresó sano y salvo. Tres meses después, el 6 de agosto, otro cosmonauta soviético, Guermán Stepánovich Titov, voló diecisiete órbitas antes de aterrizar, pasando 24 horas en vuelo libre. El 20 de febrero de 1962, Estados Unidos puso a su primer hombre en órbita, cuando el astronauta John Herschel Glenn rodeó la Tierra tres veces. Desde entonces docenas de hombres han abandonado la Tierra y, en algunos casos, permanecido en el espacio durante semanas. Una cosmonauta soviética, Valentina V. Tereshkova, fue lanzada el 16 de junio de 1963, y permaneció en vuelo libre durante 71 horas, realizando un total de 17 órbitas. En 1983, la astronauta Sally Ride se convirtió en la primera mujer estadounidense en ser colocada en órbita.
Los cohetes han partido de la Tierra llevando a la vez dos y tres hombres. El primero de tales lanzamientos fue el de los cosmonautas soviéticos Vladímir M. Komarov, Konstantin P. Feoktistov y Boris G. Yegorov, el 12 de octubre de 1964. Los norteamericanos lanzaron a Virgil I. Grissom y John W. Young, en el primer cohete estadounidense multitripulado, el 23 de marzo de 1965.
El primer hombre en abandonar su navio de cohetes en el espacio fue el cosmonauta soviético Alexéi A. Leónov, que lo llevó a cabo el 18 de marzo de 1965. Este paseo espacial fue repetido por el astronauta estadounidense Edward H. White el 3 de junio de 1965.
Aunque la mayoría de los «primeros» vuelos espaciales en 1965 fueron efectuados por los soviéticos, a continuación los norteamericanos se pusieron en cabeza. Los vehículos tripulados maniobraron en el espacio, tuvieron citas unos con otros, se acoplaron y comenzaron a ir más lejos.
Sin embargo, el programa espacial no continuó sin tragedias. En enero de 1967, tres astronautas estadounidenses —Grissom, White y Roger Chaffer— murieron en tierra a causa de un incendio que se produjo en su cápsula espacial durante unas comprobaciones rutinarias. Luego, el 23 de abril de 1967, Komarov murió cuando su paracaídas se atascó durante la reentrada. Fue el primer hombre en morir en el transcurso de un viaje espacial.
Los planes norteamericanos para alcanzar la Luna por medio de navios de tres hombres (el programa Apolo) quedaron retrasados a causa de la tragedia, mientras las cápsulas espaciales eran rediseñadas para conseguir una mayor seguridad; pero los planes no se abandonaron. El primer vehículo Apolo tripulado, el Apolo VII, fue lanzado el 11 de octubre de 1967, con su tripulación de tres hombres al mando de Walter M. Schirra. El Apolo VIII, lanzado el 21 de diciembre de 1966, al mando de Frank Borman, se aproximó a la Luna, girando en torno de ella muy cerca. El Apolo X, lanzado el 18 de mayo de 1968, también se aproximó a la Luna, desprendiendo el módulo lunar, enviándolo a unos quince kilómetros de la superficie lunar.
Finalmente, el 16 de julio de 1969, el Apolo XI fue lanzado al mando de Neil A. Amstrong. El 20 de junio, Amstrong fue el primer ser humano en pisar el suelo de otro mundo.
Desde entonces han sido lanzados otros seis vehículos Apolo. Cinco de ellos —el 12, el 14, el 15, el 16 y el 17— completaron sus misiones sin un éxito digno de relieve. El Apolo XIII tuvo problemas en el espacio y se vio forzado a regresar sin aterrizar en la Luna, pero volvió con seguridad y sin pérdidas de vidas.
El programa espacial soviético no ha incluido vuelos tripulados a la Luna. Sin embargo, el 12 de setiembre de 1970 se disparó a la Luna un navío no tripulado. Aterrizó suave y seguramente, reunió especímenes del suelo y de rocas y luego, también de forma segura, regresó a la Tierra. Más tarde, un vehículo automático soviético aterrizó en la Luna y se desplazó bajo control a distancia durante meses, enviando toda clase de datos.
El resultado más dramático obtenido de los estudios acerca de las rocas lunares traídas tras los aterrizajes en la Luna, tripulados o no, es que la Luna parece hallarse totalmente muerta. Su superficie, al parecer, se ha hallado expuesta a gran calor, puesto que está cubierta de masas vítreas, lo cual parece implicar que la superficie ha permanecido en fusión. No se ha encontrado el menor vestigio de agua, ni siquiera indicación de que el agua pueda existir debajo de la superficie, ni siquiera en el pasado. No hay vida y tampoco la menor señal de productos químicos relacionados con la vida.
No ha vuelto a haber aterrizajes lunares desde diciembre de 1971, y, de momento, tampoco se ha planeado ninguno. Sin embargo, no existe problema respecto de que la tecnología humana sea capaz de colocar seres humanos y a sus máquinas en la superficie lunar cuando parezca deseable, y el programa espacial continúa de otras formas.
Venus y Mercurio
De los planetas que giran en torno del Sol, dos —Venus y Mercurio— están más cerca de lo que se halla la Tierra. Mientras la distancia media de la Tierra respecto del Sol es de 150.000.000 de kilómetros, las cifras de Venus son de 108.000.000 de kilómetros y las de Mercurio de 58.000.000 de kilómetros.
El resultado es que nunca vemos a Venus o Mercurio demasiado lejos del Sol. Venus no puede estar nunca a más de 47 grados, desde el Sol tal y como se ve desde la Tierra, y Mercurio no puede tampoco hallarse a más de 28 grados del Sol. Cuando al este del Sol, Venus y Mercurio se muestran por la noche en el firmamento occidental tras la puesta del Sol, se ocultan poco después, por lo que se convierten en la estrella vespertina.
Cuando Venus o Mercurio se encuentran al otro lado de su órbita y al oeste del Sol, aparecen poco antes del alba, alzándose al Este no mucho antes de la salida del Sol, desapareciendo a continuación entre el resplandor solar cuando el Sol se eleva no mucho después, convirtiéndose en este caso en estrella matutina.
Al principio, pareció natural creer que las dos estrellas vespertinas y las dos estrellas matutinas eran cuatro cuerpos diferentes. Gradualmente, quedó claro para los observadores que, cuando una de las estrellas vespertinas se encontraba en el firmamento, la correspondiente estrella matutina no era nunca vista, y viceversa. Comenzó a parecer que se trataba de dos planetas, cada uno de los cuales se movía de un lado a otro del Sol, haciendo, alternativamente, las veces de estrella vespertina y matutina. El primer griego en expresar esta idea fue Pitágoras en el siglo VI a. de J. C., y es posible que lo hubiese sabido a través de los babilonios.
De los dos planetas, Venus es con mucho el más fácil de observar. En primer lugar, se halla más cercano a la Tierra. Cuando la Tierra y Venus se encuentran en el mismo lado del Sol, los dos pueden estar separados por una distancia de poco más de 40 millones de kilómetros. Venus, pues, se encuentra 100 veces más alejado de nosotros que la Luna. Ningún cuerpo apreciable (exceptuando la Luna) se aproxima a nosotros tanto como lo hace Venus. La distancia promedia de Mercurio de la Tierra, cuando ambos se encuentran en el mismo lado del Sol, es de 92 millones de kilómetros.
No sólo Venus está más cercano a la Tierra (por lo menos, cuando ambos planetas se hallan en el mismo lado del Sol), sino que es el cuerpo mayor y el que recoge más luz. Venus posee un diámetro de 12.100 kilómetros, mientras que el diámetro de Mercurio es de sólo 4.825 kilómetros. Finalmente, Venus tiene nubes y refleja una fracción mucho más grande de la luz solar que recibe respecto de lo que efectúa Mercurio. Este último carece de atmósfera y (al igual que la Luna) sólo tiene rocas desnudas para reflejar la luz.
El resultado es que Venus, en su momento más brillante, tiene una magnitud de –4,22. Así pues, es 12,6 veces más brillante que Sirio, la estrella más luminosa, y es asimismo el objeto más brillante en el espacio si exceptuamos al Sol y a la Luna. Venus es tan brillante que, en la oscuridad, en noches sin Luna, puede lanzar una sombra detectable. En su momento más brillante, Mercurio posee una magnitud de sólo –1,2, lo cual le hace casi tan brillante como Sirio pero, de todos modos, posee sólo un diecisieteavo del brillo de Venus en su momento de mayor luminosidad.
La proximidad de Mercurio al Sol significa que es visible sólo cerca del horizonte, y en los momentos en que el firmamento está aún brillante entre dos luces o al amanecer. Por lo tanto, a pesar de su brillo, el planeta resulta difícil de observar. Se suele decir a menudo que el mismo Copérnico nunca llegó a observar Mercurio.
El hecho de que Venus y Mercurio se encuentren siempre cerca del Sol, y oscilen de un lado a otro de dicho cuerpo, hizo naturalmente que algunas personas supusiesen que los dos planetas rodean al Sol más que a la Tierra. Esta noción fue sugerida por primera vez por el astrónomo griego Heraclides hacia 350 a. de J. C., pero no fue aceptada hasta que Copérnico suscitó de nuevo la idea, no sólo respecto de Mercurio y de Venus, sino de todos los planetas, diecinueve siglos después.
Si Copérnico hubiera estado en lo correcto, y Venus fuese un cuerpo opaco que brillase por la luz reflejada del Sol (como lo hace la Luna), en ese caso, observado desde la Tierra, Venus debería presentar fases igual que la Luna. El 11 de diciembre de 1610, Galileo, que observaba a Venus a través de su telescopio, vio que su esfera se hallaba sólo en parte iluminada. Lo observó de vez en cuando y vio que mostraba fases como la Luna. Esto casi representó el último clavo para la antigua descripción geocéntrica del sistema planetario, dado que no se podían explicar las fases de Venus tal y como se observaban. Asimismo, Mercurio, llegado el momento, también se comprobó que mostraba fases.
Medición de los planetas
Ambos planetas eran difíciles de observar telescópicamente. Mercurio se hallaba demasiado cerca del Sol, y era tan pequeño y distante, que podían saberse muy pocas cosas por las señales de su superficie. No obstante, el astrónomo italiano Giovanni Schiaparelli estudió esas señales con cuidado de vez en cuando, y sobre la base de la forma en que cambiaban con el tiempo, anunció, en 1889, que Mercurio giraba sobre su eje en 88 días.
Esta declaración pareció tener sentido, puesto que Mercurio giraba también en torno del Sol en 88 días. Se encontraba lo suficientemente cerca del Sol para hallarse gravitacionalmente trabado por éste, como le ocurre a la Luna con la Tierra, por lo que el período de rotación de Mercurio y el de revolución serían idénticos.
Venus, aunque mayor y más brillante, también resultaba difícil de observar a causa de que se hallaba perpetuamente oscurecido por una gruesa y sin rupturas capa de nubes, y presentaba una forma blanca sin rasgos a todos los observadores. Nadie sabía nada acerca de su período de rotación, aunque algunos pensaban que también Venus debía de hallarse trabado gravitatoriamente por el Sol, con un período de rotación igual a su período de revolución de 224,7 días.
Lo que cambió la situación fue el desarrollo de técnicas de manejo del radar, de emisión de rayos de microondas, que podían reflejarse en los objetos, y luego detectar esos rayos reflejados. Durante la Segunda Guerra Mundial, el radar comenzó a usarse para detectar aviones, pero los rayos de microondas también podían rebotar desde los cuerpos celestes.
Por ejemplo, en 1946, un científico húngaro, Zoltan Lajos Bay, hizo rebotar un rayo de microondas desde la Luna y recibió los ecos.
No obstante, la Luna era, comparativamente, un blanco más fácil. En 1961, tres grupos norteamericanos diferentes, un grupo británico y otro soviético tuvieron todos éxito al mandar rayos de microondas hacia Venus y regreso. Esos rayos viajaron a la velocidad de la luz, que era entonces exactamente conocida. Por el tiempo empleado por el rayo en alcanzar Venus y regresar, fue posible calcular la distancia de Venus en aquel momento con mayor precisión que la que había sido posible hasta entonces. A partir de esa determinación, pudieron calcularse de nuevo todas las demás distancias del Sistema Solar, puesto que la configuración relativa de los planetas era bien conocida.
Además, todos los objetos que no se hallen en realidad en el cero absoluto (y ningún objeto lo está) emiten continuamente rayos de microondas. Según la longitud de onda del rayo, es posible calcular la temperatura del cuerpo emisor.
En 1962, se detectó que las microondas eran radiadas por el lado oscuro de Mercurio, la porción de la esfera visible que no está expuesta a la luz del Sol. Si el período de rotación de Mercurio era realmente de 88 días, una cara del planeta se hallaría para siempre enfrentada al Sol y estaría muy caliente, mientras que la cara opuesta se encontraría siempre alejada del Sol y se hallaría muy fría. No obstante, según la naturaleza de las microondas radiadas, el lado oscuro tenía una temperatura considerablemente más elevada de lo que cabría esperar, y de este modo, en un momento u otro, se hallaría expuesta a la luz solar.
Cuando un rayo de microondas rebota desde un cuerpo en rotación, el rayo sufre ciertos cambios en la reflexión a causa del movimiento superficial, y la naturaleza de tales cambios permite calcular la velocidad de la superficie en movimiento. En 1965, dos ingenieros electrónicos norteamericanos, Rolf Buchanan Dyce y Cordón H. Pettengill, trabajando con reflejos de rayos de microondas, descubrieron que la superficie de Mercurio giraba más de prisa de lo esperado: Mercurio rotaba sobre su eje en 59 días, por lo que cada porción de su superficie estaba iluminada por la luz del Sol en un momento u otro.
La cifra exacta de la rotación demostró ser la de 58,65 días: exactamente dos tercios del período de revolución de 88 días. Esto indica también una traba gravitatoria, pero menos importante que cuando la rotación y la revolución son iguales.
Las sondas de Venus
Venus ofrece sorpresas aún más desconcertantes. A causa de que su tamaño es casi el mismo que el de la Tierra (con un diámetro de 12.418 kilómetros, en comparación de los 13.080 kilómetros de la Tierra), se le considera a veces la hermana gemela de la Tierra. Venus está más cerca del Sol, pero tenía la protección de una capa de nubes, que debería impedir que se mantuviese demasiado caliente. Se dio por sentado que las nubes estaban compuestas por gotas de agua, y que la misma Venus debía poseer un océano, tal vez incluso uno más extenso que en la Tierra, y que por lo tanto sería más rica en vida marina. Se han escrito muchas historias de ciencia ficción (incluyendo una mía) referentes a semejante planeta tan rico en agua y en vida…
Pero en 1956 se produjo la primera conmoción. Un equipo de astrónomos norteamericanos, encabezados por el coronel H. Mayer, estudiaron las microondas radiadas por el lado oscuro de Venus y llegaron a la conclusión de que dicho lado debía tener una temperatura muy por encima del punto de ebullición del agua. Venus estaría muy caliente y, por lo tanto, poseería una radiación muy alta.
Esta conclusión resultaba casi increíble. Parecía requerirse algo más impresionante que una débil radiación de rayos de microonda. Una vez pudieron enviarse con éxito cohetes a las vecindades de la Luna, pareció lógico mandar unas sondas similares a los diferentes planetas.
El 27 de agosto de 1962, Estados Unidos lanzó la primera sonda con éxito a Venus, el Mariner II. Llevaba instrumentos capaces de detectar y analizar las microondas radiadas por Venus y remitir los resultados a través de decenas de millones de kilómetros de vacío hasta la Tierra.
El 14 de diciembre de 1962, el Mariner II pasó a 36.000 kilómetros de la capa de nubes de Venus, y ya no cupo la menor duda. Venus estaba infernalmente caliente en toda su superficie, tanto cerca de los polos como en el ecuador, en el lado nocturno o en el diurno. La temperatura superficial era de unos 475 °C, más que suficiente para derretir el estaño y el plomo y hacer hervir el mercurio.
Y aquello no fue todo en 1962. Las microondas penetraban en las nubes. Las microondas radiadas hacia Venus penetraron las nubes hasta llegar a la superficie sólida y rebotaron. Esas ondas pudieron «ver» la superficie como los seres humanos, que dependen de las ondas luminosas, no pueden hacer. En 1962, a partir de la distorsión del rayo reflejado, Roland L. Carpenter y Richard M. Goldstein descubrieron que Venus giraba en un período de algo así como 250 días terrestres. Posteriores análisis llevados a cabo por el físico Irwin Ira Shapiro mostraron que se trataba de 243,09 días. Esta lenta rotación no era el resultado de una traba gravitatoria por parte del Sol, puesto que el período de revolución era de 224,7 días. Venus giraba sobre su eje más lentamente que su revolución en torno del Sol.
Y lo que es más: Venus gira sobre su eje en «una dirección equivocada». Mientras que la dirección general del giro, cuando se ve (con la imaginación) desde un punto elevado por encima del Polo Norte de la Tierra, es en sentido opuesto a las agujas del reloj, Venus gira sobre su eje según las agujas del reloj. No existe una buena explicación hasta ahora del porqué de esa rotación retrógrada.
Otro misterio consiste en que cada vez que Venus se halla más cerca de nosotros, gira sobre su eje, de esa manera equivocada, exactamente cinco veces y así presenta la misma cara hacia la Tierra en su aproximación más cercana. Al parecer, Venus se halla trabado gravitatoriamente en relación con la Tierra, pero esta última es demasiado pequeña para influir en Venus a través de la distancia que las separa.
Tras el Mariner II, otras sondas venusinas fueron lanzadas tanto por Estados Unidos como por la Unión Soviética. Las de la Unión Soviética se diseñaron para penetrar en la atmósfera de Venus y caer luego en paracaídas en un aterrizaje suave. Las condiciones fueron tan extremadas que ninguna de las sondas Venera soviéticas duró mucho después de su entrada, pero consiguieron cierta información acerca de la temperatura.
En primer lugar, la atmósfera era sorprendentemente densa, 90 veces más densa que la de la Tierra, y está formada sobre todo por dióxido de carbono (un gas presente en la Tierra sólo en muy pequeñas cantidades). La atmósfera de Venus tiene un 96,6 % de dióxido de carbono (anhídrido carbónico) y un 3,2 % de nitrógeno. (En este aspecto, dado lo densa que es la atmósfera de Venus, la cantidad total de nitrógeno es tres veces la de la Tierra.)
El 20 de mayo de 1978, Estados Unidos lanzó el Pioneer Venus que llegó a Venus el 4 de diciembre de 1978, y se colocó en órbita alrededor del planeta. Pioneer Venus pasaba muy cerca de los polos de Venus. Varias sondas salieron de Pioneer Venus y entraron en la atmósfera venusina, confirmando y ampliando los datos soviéticos.
La capa de nubes principal de Venus tiene un grosor de más de 3 kilómetros y se encuentra a 45 kilómetros por encima de la superficie. La capa de nubes consiste en agua que contiene cierta cantidad de azufre, y por encima de la capa principal de nubes se encuentra una neblina de corrosivo ácido sulfúrico.
Debajo de la capa de nubes se halla una neblina hasta una altura de 30 kilómetros por encima de la superficie y, por debajo de esto, la atmósfera de Venus es completamente clara. La atmósfera inferior parece estable, sin tormentas o cambios de tiempo, y con un calor increíble en todas partes. Sólo existen vientos suaves, pero teniendo en cuenta la densidad del aire, incluso un viento ligero tiene la fuerza de un huracán terrestre. Tomando todo esto en consideración, resulta difícil pensar en un mundo más desapacible que esta «hermana gemela» de la Tierra.
De la luz solar que llega a Venus, casi su mayor parte es o reflejada o absorbida por las nubes, pero, el 3 % penetra hasta las profundidades más desviadas, y tal vez el 2,3 % alcanza el suelo. Teniendo presente el hecho de que Venus está más cerca del Sol y que percibe una luz solar más brillante, la superficie de Venus recibe una sexta parte de la luz de la Tierra, a pesar de las gruesas y permanentes nubes existentes en Venus. Venus debe ser muy poco brillante en comparación con la Tierra, pero si de alguna forma pudiésemos sobrevivir allí veríamos perfectamente en su superficie.
Asimismo, tras aterrizar una de las sondas soviéticas pudo tomar fotografías de la superficie de Venus. Las mismas mostraron un esparcimiento de rocas, con bordes cortantes, algo que indica que no ha existido demasiada erosión.
Las microondas que alcanzan la superficie de Venus y que se reflejan, pueden emplearse para «ver» la superficie, exactamente igual como lo hacen las ondas de luz, si los rayos reflejados se detectan o se analizan por medio de instrumentos que empleen ondas de luz tales como el ojo o la fotografía. Las microondas, que son más largas que las ondas de luz, «ven» más borrosamente pero esto es mejor que nada. Así, a través de las microondas, Pioneer Venus trazó el mapa de la superficie venusina.
La mayor parte de la superficie de Venus parece ser de la clase que asociamos con los continentes, más que con los fondos marinos. Mientras que la Tierra tiene un vasto fondo marino (lleno de agua), que ocupa las siete décimas partes de la superficie del planeta, Venus posee un enorme supercontinente que cubre las cinco sextas partes de la superficie total, con pequeñas regiones de tierras bajas (sin agua), que constituyen la restante sexta parte.
El supercontinente que recubre Venus parece ser llano, con algunos indicios de cráteres, pero no demasiados. La densa atmósfera puede haberlos erosionado y hecho desaparecer. Sin embargo, existen posiciones elevadas en el supercontinente, dos de ellas de gran tamaño.
En lo que en la Tierra sería la región ártica, en Venus es una amplia meseta, a la que se ha denominado Ishtar Terra, se halla la cordillera de los Montes Maxwell, con algunos picos que alcanzan alturas de más de 12.000 metros por encima del nivel general exterior de la meseta. Tales picos son muchísimo más altos que cualquier otra cumbre de las montañas de la Tierra.
En la región ecuatorial de Venus existe otra meseta aún mayor, a la que se ha llamado Aphrodite Terra. Pero sus principales elevaciones no alcanzan la altura de las de Ishtar Terra.
Resulta difícil decirse si alguna de las montañas de Venus son en realidad volcanes. Dos pueden serlo, por lo menos extintos, y uno de ellos, el Rhea Mons, se extiende por un área equivalente a la de Nuevo México.
Las sondas de Mercurio
La superficie de Mercurio no presenta los problemas de la de Venus. En Mercurio no existe atmósfera, ni tampoco capa de nubes. Sólo se necesita mandar una sonda.
El 3 de noviembre de 1973, se lanzó el Mariner X. Pasó muy cerca de Venus el 5 de febrero de 1974, desde cuyas vecindades remitió datos útiles, y luego prosiguió viaje hacia Mercurio.
El 29 de marzo de 1974, el Mariner X pasó a 718 kilómetros de la superficie de Mercurio. Luego avanzó hasta ponerse en órbita alrededor del Sol, de tal forma que realiza la revolución en 176 días, es decir, el doble del año de Mercurio. Esto le hace regresar a Mercurio en el mismo lugar anterior, puesto que, por cada uno de los circuitos del Mariner X alrededor del Sol, Mercurio completa dos. El 21 de setiembre de 1974, el Mariner X pasó por Mercurio por segunda vez, y el 16 de marzo de 1975 una tercera, llegando hasta unos 325 kilómetros de la superficie del planeta. Para entonces, el Mariner X había consumido el combustible que le mantenía en una posición estable, y a partir de ese instante careció ya de utilidad para posteriores estudios planetarios.
En sus tres pasadas, el Mariner X fotografío unas tres octavas partes de la superficie de Mercurio, y mostró un paisaje que se parecía mucho al de la superficie lunar. Había cráteres por todas partes, de hasta más de 200 kilómetros de diámetro. Sin embargo, Mercurio tiene muy pocos «mares». La región más grande y relativamente libre de cráteres tiene una longitud de 1.450 kilómetros. Se le ha llamado Caloris («calor»), porque se encuentra casi directamente debajo del Sol cuando Mercurio se halla en su aproximación más cercana (perihelio) a aquel cuerpo celeste.
Mercurio posee también largos acantilados, de más de 160 kilómetros de extensión y con alturas de hasta 2,5 kilómetros.
Marte
Marte es el cuarto planeta desde el Sol, el que está más allá de la Tierra. Su distancia media al Sol es de 234.000.000 de kilómetros. Cuando la Tierra y Marte se hallan en el mismo lado del Sol, los dos planetas se aproximan, en promedio, hasta los 83.000.000 de kilómetros uno de otro. Dado que la órbita de Marte es más bien elíptica, existen ocasiones en que Marte y la Tierra se hallan separados por sólo unos 48.000.000 de kilómetros. Tales aproximaciones tan cercanas tienen lugar cada treinta y dos años.
Mientras que el Sol y la Luna cambian sus posiciones más o menos firmemente, avanzando de Oeste a Este, contra el fondo estelar, los planetas poseen un movimiento más complicado. La mayor parte del tiempo, se mueven de Oeste a Este, en relación a las estrellas, de una noche a otra. En algunos puntos el movimiento de cada planeta se enlentece, llega a ser por completo la mitad y luego comienza a moverse «hacia atrás», de Este a Oeste. Este movimiento retrógrado nunca es tan grande como el movimiento hacia delante, por lo que, en conjunto, cada planeta de mueve de Oeste a Este y, llegado el momento, realiza un circuito completo en el firmamento. El movimiento retrógrado es mayor y más importante en el caso de Marte.
¿Por qué es esto así? La antigua descripción del sistema planetario con la Tierra como centro, tuvo grandes problemas para explicar el movimiento retrógrado. El sistema copernicano, con el Sol en el centro, lo explicó con facilidad. La Tierra, que se mueve en una órbita más próxima al Sol que la de Marte, tiene una distancia más corta que cubrir al completar su revolución. Cuando la Tierra se encuentra en el mismo lado del Sol, como lo está Marte, adelanta a Marte, por lo que éste parece moverse hacia atrás. La comparación del movimiento orbital de la Tierra con cualquiera de los otros planetas, explica todas las apariencias retrógradas, un factor de gran importancia que forzó la aceptación del sistema planetario con centro en el Sol.
Marte se encuentra más alejado del Sol que la Tierra, y recibe una luz solar de menor intensidad. Es un planeta pequeño, de sólo 6.965 kilómetros de diámetro (un poco más que la mitad del de la Tierra), y posee una atmósfera muy tenue que no refleja mucha de la luz que recibe. Por otra parte, tiene una ventaja en comparación con Venus. Cuando Venus se halla más cerca de nosotros, se encuentra entre nosotros y el Sol, y sólo podemos ver su lado oscuro. Sin embargo, Marte, cuando está más cercano a nosotros, está más allá de nosotros, al encontrarse más alejado del Sol, y vemos su lado iluminado (una especie de «Marte lleno»), lo cual se añade a su brillo. No obstante, ese brillo sólo se consigue cada treinta y dos años, cuando Marte se encuentra desacostumbradamente cerca. Cuando se halla en aquella parte de su órbita que lo coloca en el otro lado del Sol respecto de nosotros, está demasiado alejado y sólo posee el brillo como una estrella razonablemente luminosa.
A partir de 1580, el astrónomo danés Tycho Brahe realizó unas cuidadosas observaciones de Marte (sin telescopio, puesto que aún no se había inventado), a fin de estudiar sus movimientos y realizar unas predicciones más exactas de sus posiciones futuras. Tras morir Tycho, su ayudante, el astrónomo alemán Johannes Kepler, empleó esas observaciones para elaborar la órbita de Marte. Comprobó que debía abandonar la noción de órbitas circulares, que los astrónomos habían patrocinado durante 2.000 años y, en 1609, mostró que los planetas se movían en órbitas elípticas. La versión kepleriana del sistema planetario sigue vigente hoy e, indudablemente, en esencia, seguirá así para siempre.
Otra contribución básica de Marte al plan del Sistema Solar se produjo en 1673 (como ya he contado antes), cuando Cassini determinó el paralaje de Marte y, por primera vez, consiguió tener una idea acerca de las verdaderas distancias de los planetas.
Gracias al telescopio, Marte se convirtió en algo más que un punto de luz. En 1659, Christian Huyghens observó una marca oscura triangular a la que llamó Syrtis Maior (es decir, «gran ciénaga»). Al seguir esta marca, pudo mostrar que Marte giraba sobre su eje en unas 24,5 horas. (La cifra actual es la de 24,623 horas). Al estar más alejado del Sol que la Tierra, Marte posee una órbita más larga y viaja con más lentitud bajo la atracción gravitatoria del Sol. Tarda 687 días terrestres (1,88 años terrestres) en completar una revolución, o 668,61 días marcianos.
Marte es el único planeta que sabemos que tiene un período de rotación muy parecido al de la Tierra. Y no sólo eso sino que, en 1781, William Herschel mostró que el eje marciano estaba inclinado de una forma muy semejante al de la Tierra. El eje terrestre posee una inclinación de 23,45 grados desde la vertical, por lo que el hemisferio Norte está en primavera y verano cuando el Polo Norte se inclina hacia el Sol, y en otoño e invierno cuando el Polo Norte se inclina hacia el otro lado, mientras que el hemisferio austral tiene las estaciones invertidas, a causa de que el Polo Sur se inclina apartado del Sol cuando el Polo Norte se inclina hacia él, y viceversa.
El eje de Marte tiene una inclinación de 25,17 grados en relación a la vertical, como Herschel expresó al observar de cerca la dirección en que las marcas de Marte se movían al girar el planeta. Así, Marte posee estaciones lo mismo que la Tierra, excepto que cada estación dura casi dos veces más que las de la Tierra y, naturalmente, son más frías.
En 1784 se mostró otra semejanza, cuando Herschel observó que Marte tiene casquetes de hielo en sus polos norte y sur. En conjunto, Marte es más parecido a la Tierra que cualquier otro mundo que hayamos observado en el firmamento. A diferencia de la Luna y de Mercurio, Marte tiene una atmósfera (observada por primera vez por Herschel), pero no una atmósfera densa cargada de nubes como le ocurre a Venus.
La similaridad de Marte y la Tierra no se extiende a los satélites. La Tierra tiene un gran satélite, la Luna, pero Mercurio y Venus no poseen satélites en absoluto. También Marte pareció no tener satélites al principio. Por lo menos, más de dos siglos y medio de observación con telescopio no revelaron ninguno.
No obstante, en 1877, cuando Marte estaba realizando una de sus mayores aproximaciones a la Tierra, el astrónomo estadounidense Asaph Hall decidió investigar en las cercanías marcianas en busca de algún indicio de satélites. Dado que hasta entonces no se les había encontrado, creyó que debían de ser muy pequeños y hallarse muy cerca de Marte, con lo que, probablemente, los oscurecía la luz del planeta.
Noche tras noche, prosiguió sus observaciones y el 11 de agosto de 1877, decidió dejarlo. Su mujer, Angelina Stickney Hall, le urgió para que lo intentara una noche más, y en aquella noche en particular descubrió dos diminutos satélites cercanos a Marte. Los llamó Fobos y Deimos por el nombre de los hijos de Marte en la mitología. (Los nombres significan «miedo» y «terror», muy apropiados para los hijos del dios de la guerra.)
Fobos, el más interior de los dos satélites, se encuentra a tan sólo 9.585 kilómetros del centro de Marte y, por lo tanto, a 6.100 kilómetros por encima de la superficie marciana. Completa un giro alrededor de su pequeña órbita en 7,65 horas, o menos de una tercera parte del tiempo que emplea Marte en girar sobre su eje, por lo que mientras Fobos realiza su carrera, continuamente se adelanta respecto de la superficie de Marte. Por tanto, Fobos sale por el Oeste y se pone por el Este cuando se le observa desde Marte. Deimos, el más alejado de los dos satélites, se halla a más de 24.000 kilómetros del centro de Marte y completa una revolución en torno del planeta en 30,3 horas.
Como los satélites eran demasiado pequeños para mostrar algo más que unos puntos de luz con los mejores telescopios, durante un siglo después de su descubrimiento, no se supo nada más acerca de ellos, excepto su distancia desde Marte y sus tiempos de revolución. Dada la distancia y el movimiento de los satélites, resultó fácil calcular la fuerza del campo gravitatorio de Marte y, por ende, su masa. Marte demostró poseer casi exactamente una décima parte de la masa de la Tierra, y la gravedad de su superficie era sólo tres octavas partes de la de la Tierra. Una persona que pese 68 kilos en la Tierra, pesaría sólo 25,5 kilos en Marte.
Sin embargo, Marte es un mundo claramente más grande que la Luna. Posee 8,7 veces la masa de la Luna, y la gravedad en la superficie de Marte es 2,25 veces la de la Luna. Hablando grosso modo, Marte es en este aspecto algo intermedio entre la Luna y la Tierra. (Venus y Mercurio, al carecer de satélites, no puede calcularse su masa con tanta facilidad. Sabemos ahora que la masa de Venus es cuatro quintas partes de la de la Tierra, y la de Mercurio una octava parte. Mercurio, con tan sólo la mitad de la masa de Marte, es el más pequeño de los ocho planetas principales.)
Al conocer el tamaño y la masa de un mundo, podemos calcular con facilidad su densidad. Mercurio, Venus y la Tierra tienen todos densidades cinco veces superiores a la del agua: 5,48, 5,25 y 5,52, respectivamente. Son mucho más de lo esperable si tales mundos estuviesen formados sólo por sólida roca, y cada planeta, por lo tanto, se cree que posee un núcleo metálico. (Este tema será esbozado con mayores detalles en el capítulo siguiente.)
La Luna tiene una densidad de 3,34 veces la del agua y puede estar formada sólo por materiales rocosos. Marte es algo intermedio. Su densidad es de 3,93 veces la del agua, y es posible que posea un pequeño núcleo metálico.
El mapa de Marte
Resultó natural que los astrónomos intentasen trazar el mapa de Marte, bosquejar las pautas oscuras y luminosas y los lugares y rasgos de su superficie. Esto pudo hacerse bien respecto de la Luna, pero Marte, incluso en su momento más cercano, se halla 150 veces más alejado de nosotros que la Luna, y posee una tenue aunque oscurecedora atmósfera, de la que carece la Luna.
Sin embargo, en 1830, un astrónomo alemán, Wilhelm Beer, que había estado haciendo en detalle el mapa de la Luna, volvió su atención a Marte. Realizó el primer mapa de Marte que mostró una pauta de oscuridad y claridad. Dio por supuesto que las áreas oscuras debían de ser agua y las zonas claras tierra. El problema fue que otros astrónomos trataron también de hacer el mapa, y cada astrónomo consiguió uno diferente.
Sin embargo, el que tuvo más éxito de todos los cartógrafos de Marte fue Schiaparelli (que más tarde, y equivocadamente, fijó la rotación de Mercurio en ochenta y ocho días). En 1877, durante la máxima aproximación de Marte, que hizo posible que Hall descubriese sus dos satélites, Schiaparelli trazó un mapa de Marte que parecía muy diferente de cualquier otro que se hubiese realizado hasta entonces. Sin embargo, esta vez los astrónomos se mostraron de acuerdo. Los telescopios habían ido mejorando considerablemente, y ahora todos veían, más o menos, lo mismo que Schiaparelli, y el nuevo mapa de Marte duró cerca de un siglo. Para las diferentes regiones marcianas, Schiaparelli les dio nombres extraídos de la mitología y geografía de la antigua Grecia, Roma y Egipto.
Al observar Marte, Schiaparelli se fijó en que había unas delgadas líneas negras que conectaban las zonas oscuras más grandes de la misma forma que los estrechos o los canales conectan dos mares. Schiaparelli llamó a esas líneas canales, empleando la palabra italiana canali para este propósito, aunque en su vertiente de fenómeno natural, más que como una cosa artificial.
Las observaciones de Schiaparelli crearon al instante un nuevo interés hacia Marte. Durante mucho tiempo, se creyó que el planeta era muy parecido a la Tierra, aunque más pequeño y con un campo gravitatorio más débil. Marte no debía haber sido demasiado capaz de retener una gran atmósfera o gran parte de su agua, por lo que habría estado agonizando durante varios millones de años. Cualquier vida inteligente que hubiera evolucionado en Marte habría estado luchando contra la desecación.
A la gente le resultó fácil pensar que no sólo había vida inteligente en Marte, sino que también desplegaba una tecnología más avanzada que la nuestra. Los marcianos habrían construido canales artificiales para traer el agua desde los casquetes polares hasta sus granjas en las más templadas regiones ecuatoriales.
Otros astrónomos comenzaron a detectar los canales y el más entusiasta de éstos fue el norteamericano Percival Lowell. Hombre rico, abrió en 1894 un observatorio privado en Arizona. Allí, en el despejado y limpio aire del desierto, lejos de las luces de la ciudad, la visibilidad era excelente, y Lowell comenzó a trazar mapas con mucho mayor detalle que los de Schiaparelli. Llegado el momento, localizó más de 500 canales y escribió libros que popularizaron la noción de la vida en Marte.
En 1897, el escritor inglés de ciencia ficción Herbert George Wells, publicó una novela por entregas, La guerra de los mundos, en una popular revista, que acabó de difundir aún más esta noción. Cada vez más personas dieron por supuesto que existía vida en Marte, y el 30 de octubre de 1938, Orson Welles emitió una dramatización radiofónica de La guerra de los mundos, con los marcianos aterrizando en Nueva Jersey, de forma tan realista, que un buen número de personas, imaginándose que dicha emisión era en realidad un noticiario huyeron presas del pánico.
No obstante, muchos astrónomos negaron la realidad de los canales de Lowell. No podían ver dichos canales, y Maunder (que había sido el primero en describir los períodos de ausencia de manchas solares, o mínimos de Maunder), tuvo la idea de que se debía tratar de ilusiones ópticas. En 1913, colocó unos círculos dentro de los cuales situó unos lugares manchados irregularmente y colocó a unos escolares a unas distancias en las que apenas podían ver qué había dentro de los círculos. Les pidió que dibujasen lo que veían y trazaron unas líneas rectas muy parecidas a los canales de Lowell.
Además, las siguientes observaciones parecieron disminuir el parecido de Marte con la Tierra. En 1926, dos astrónomos norteamericanos, William Weber Coblentz y Cari Otto Lampland, consiguieron tomar medidas de la temperatura superficial en Marte. Era mucho más fría de lo que se había creído. Durante el día, existía alguna indicación de que el ecuador marciano debía de ser bastante templado en la época del perihelio, cuando Marte se encontraba lo más cerca posible del Sol, pero las noches marcianas parecían ser en todas partes tan frías como la Antártida en sus lugares gélidos. La diferencia entre las temperaturas diurnas y nocturnas apuntaban a que la atmósfera de Marte era mucho más tenue de lo supuesto.
En 1947, el astrónomo neerlandés-norteamericano Gerard Peter Kuiper, al analizar la porción infrarroja de la luz que llegaba desde Marte, concluyó que la atmósfera marciana estaba formada sobre todo por dióxido de carbono. No encontró indicios de nitrógeno, oxígeno ni vapor de agua. Así parecía muy limitada la posibilidad de formas de vida complejas en cualquier modo semejantes a las de la Tierra. Sin embargo, continuó la persistente creencia en una vegetación marciana e incluso en los canales marcianos.
Las sondas de Marte
Una vez los cohetes comenzaron a alzarse en la atmósfera terrestre y más allá, las esperanzas de solucionar un problema que ya tenía más de un siglo se alzó también con ellos.
La primera sonda con éxito a Marte, el Mariner IV, fue lanzada el 28 de noviembre de 1964. El 14 de julio de 1965, el Mariner IV pasó a 10.000 kilómetros de la superficie marciana. Mientras lo hacía, tomó una serie de 20 fotografías, que fueron convertidas en señales de radio, emitidas hacia la Tierra y convertidas allí de nuevo en fotografías. Y lo que las mismas mostraron fueron cráteres, sin ninguna señal de canales.
Cuando el Mariner IV pasó detrás de Marte, sus señales de radio, antes de desaparecer, atravesaron la atmósfera marciana, indicando que la misma era más tenue de lo que se había sospechado: con una densidad inferior a 1/100 de la terrestre.
El Mariner VI y el Mariner VII, unas sondas marcianas más sofisticadas, fueron lanzadas el 24 de febrero y el 27 de marzo de 1969, respectivamente. Pasaron a 3.500 kilómetros de la superficie marciana y, en total, mandaron a la Tierra 200 fotografías. Se fotografiaron amplias porciones de la superficie marciana, y se demostró que, aunque algunas regiones estaban densamente cubiertas de cráteres como la Luna, otras carecían relativamente de rasgos, e incluso otras eran un revoltijo y un caos. Al parecer, Marte posee un complejo desarrollo geológico.
Sin embargo, no había por ninguna parte indicios de canales, la atmósfera estaba formada por lo menos por un 95 % de dióxido de carbono y la temperatura era más baja de lo indicado por las mediciones de Coblentz y Lampland. Toda esperanza de vida inteligente en Marte —o ni siquiera de cualquier tipo de vida compleja— parecía haber desaparecido.
No obstante, quedaban muchas cosas por hacer. La siguiente sonda con éxito a Marte fue el Mariner IX, lanzado el 30 de mayo de 1971 y que, en lugar de llegar hasta el planeta, se puso en órbita en torno de él. Fue afortunado que lo hiciera así, pues a mitad de su viaje a Marte se alzó una tormenta de polvo en todo el planeta durante muchos meses, y las fotografías no hubieran descubierto más que una neblina. Una vez en órbita, la sonda aguardó a que pasara la tormenta, en diciembre la atmósfera marciana se aclaró y la sonda comenzó a trabajar.
Trazó un mapa de Marte tan diáfano como el de la Luna y, al cabo de un siglo, el misterio de los canales quedó resuelto de una vez para siempre. No había canales. Los que habían sido «vistos», tal y como Maunder había insistido, no eran resultado más que de ilusiones ópticas. Todo se hallaba seco, y las zonas oscuras eran meramente desplazamientos de partículas de polvo, tal y como el astrónomo norteamericano Cari Sagan había sugerido un par de años antes.
La mitad del planeta, sobre todo su hemisferio sur, se hallaba lleno de cráteres al igual que la Luna. La otra mitad parecía tener los cráteres borrados por la acción volcánica, y algunas grandes montañas que eran con claridad volcanes (aunque tal vez llevaban mucho tiempo inactivos) fueron localizadas. La mayor de éstas fue denominada, en 1973, Monte Olimpo. Alcanza una altura de 25 kilómetros por encima del nivel general del suelo, y su cráter central tiene 65 kilómetros de anchura. Es, con mucho, más grande que cualquier otro volcán de la Tierra.
Existe una hendidura en la superficie de Marte, que pudo haber dado la ilusión de tratarse de un canal. Se trata de un amplio cañón, llamado en la actualidad Valles Marineris, y tiene 3.135 kilómetros de longitud, 512 kilómetros de anchura y unos 2 kilómetros de profundidad. Es 9 veces más largo, 14 veces más ancho y dos veces más profundo que el Gran Cañón del Colorado. Puede haber sido el resultado de la acción volcánica hace unos 200 millones de años.
Existían también otras marcas en Marte que discurrían a través de la superficie marciana con tributarios muy parecidos a lechos secos de ríos. Es posible que Marte sufra en la actualidad una era glacial, con toda el agua congelada en los casquetes polares y en el subsuelo. Hubo un tiempo, en un pasado razonablemente reciente, y existirá tal vez una época en un razonablemente cercano futuro, en que las condiciones mejorarán, aparecerá el agua en forma líquida y los ríos volverán a fluir una vez más. En ese caso, ¿existirían formas simples de vida aunque fuese precariamente en el suelo marciano?
Lo que se necesitaba era un aterrizaje suave en Marte. El Viking I y el Viking II fueron lanzados el 20 de agosto y el 9 de setiembre de 1975, respectivamente. El Viking I comenzó a orbitar Marte el 19 de junio de 1976 y mandó un aterrizador, que se posó con éxito en la superficie marciana el 20 de julio. Unas semanas después, el Viking II mandó otro mecanismo hacia una posición más al Norte.
Mientras atravesaban la atmósfera marciana, los mecanismos la analizaron y comprobaron que, además de dióxido de carbono, había un 2,7 % de nitrógeno y un 1,6 % de argón. Respecto del oxígeno, sólo se advirtieron trazas.
En la superficie, los aterrizadores comprobaron que la temperatura diurna máxima era de –29 °C. No parecían existir posibilidades de que la temperatura superficial llegase nunca al punto de fusión del hielo en ninguna parte de Marte, lo que significaba que tampoco habría agua en ningún sitio. Era también demasiado frío para la vida, lo mismo que Venus es demasiado frío para cualquier cosa excepto para las formas más simples de vida. Resultaba tan frío que incluso el dióxido de carbono se helaba en las regiones más gélidas y, al parecer, los casquetes de hielo no eran más que dióxido de carbono parcialmente helado.
Los aterrizadores enviaron fotografías de la superficie marciana, y analizaron el suelo. Se comprobó que el suelo marciano era muy rico en hierro y más pobre en aluminio que el suelo de la Tierra. Un 80 % del suelo marciano está formado por una arcilla rica en hierro, y el hierro presente debe encontrarse en forma de limonita, un compuesto de hierro que es responsable del color de los ladrillos rojos. El color rojizo de Marte, que suscitó el pavor en los seres humanos primitivos por su asociación con la sangre, no tiene nada que ver con ello. Marte es, simplemente, un mundo rojizo.
Lo más importante de todo, los aterrizadores estaban equipados con pequeños laboratorios químicos capaces de comprobar el suelo y ver si reaccionaba de tal forma que evidenciase hallarse presentes células vivas. Se llevaron a cabo tres experimentos diferentes, y en ninguno se consiguieron resultados definidos. Al parecer, la vida podría concebiblemente existir, pero falta una auténtica certeza. Lo que hace que los científicos se muestren inseguros es que el análisis del suelo mostró que no existían cantidades detectables de compuestos orgánicos, es decir, el tipo de compuestos asociados con la vida. Simplemente, los científicos no están dispuestos a creer que la vida no orgánica pudiese estar presente, y la solución del problema tendrá que diferirse hasta que se posen unos mecanismos más elaborados en el suelo del planeta, o mejor aún, cuando los mismos seres humanos lleguen a Marte.
Los satélites marcianos
Originariamente, no se había planeado que las sondas realizasen estudios detallados de los pequeños satélites marcianos, pero cuando el Mariner IX se puso en órbita, no se podían tomar fotografías en Marte a causa de la tormenta de arena, por lo que sus cámaras se dirigieron hacia los dos satélites. Las fotografías de los mismos mostraron que eran irregulares en su contorno. (Los objetos astronómicos, por lo general, se cree que son esferas, pero sólo es así si son lo bastante grandes y sus campos gravitatorios lo suficientemente fuertes para allanar las irregularidades más importantes). En realidad, cada satélite se parecía mucho en su forma a una patata asada e incluso poseían cráteres con un extraño parecido a los «ojos» de las patatas.
El diámetro de Fobos, el mayor de los dos, variaba de 21 a 28 kilómetros, y el de Deimos de 10 a 16,5 kilómetros. Eran simplemente montañas que volaban en torno a Marte. En cada caso, el diámetro mayor señalaba hacia Marte durante todo el tiempo, por lo que cada uno de ellos se halla gravitatoriamente trabado por Marte, lo mismo que la Luna por la Tierra.
Los dos cráteres mayores de Fobos se han llamado Hall y Stickney, en honor de su descubridor y de su mujer, que le urgió a intentarlo una noche más. A los dos cráteres mayores de Deimos se les ha impuesto el nombre de Voltaire y Swift: el primero, por el satírico francés, y al último, por Jonathan Swift, el satírico inglés, dado que ambos en sus obras de ficción habían imaginado que Marte tenía dos satélites.