IV. ¿CUÁN PEQUEÑO?

Mi hija de preciosos ojos azules y cabello rubio, está planeando empezar muy pronto los cursos de licenciatura de trabajos de psiquiatría social, y yo me encontraba al teléfono discutiendo con ella la situación financiera.

Dado que es la niña de mis ojos, y puesto que soy cómodamente solvente, no surgió ningún problema que pudiese implicar economías y recortes y, por lo tanto, ambos nos sentimos a las mil maravillas.

Y luego un pequeño y mal pensamiento nos turbó. Robyn me parecía que estaba tan orgullosa de mí en plan de hija, como yo lo estoy de ella desde el punto de vista paterno, pero nunca he tenido que someter ese orgullo a ningún serio esfuerzo al acortarle sus asignaciones.

No habíamos hablado mucho antes de que empezase a sentirme incómodo y, finalmente, sentí que debía saberlo.

—Robyn —le dije inseguro—, ¿me querrías aunque fuese pobre?

No vaciló un momento:

—Claro, papá —replicó, de una forma realista—. Aunque fueses pobre, seguirías estando chalado, ¿verdad?

Resulta agradable saber que soy amado por una característica que nunca perderé.

Estoy chalado, a fin de cuentas, y siempre lo he estado, no sólo en el sentido de que tengo un sentido del humor impredecible e irreverente, que es a lo que Robyn se refiere (opino). Estoy también chalado por haber tramado un serio, y hasta ahora inútil, intento por mantenerme al paso con el conocimiento humano, y me siento apenado cuando descubro que no lo he conseguido, lo cual me sucede cada día.

Por ejemplo…

Hace años, cuando comencé a leer acerca de la enana blanca compañera de Sirio (que, de forma apropiada, se denomina Sirio B), descubrí que se había determinado que su diámetro era exactamente igual que el del planeta Urano, es decir, 46.500 Km, aunque su masa sea del todo igual a la del Sol. Metí este asunto en el capaz paquete de sorpresas al que llamo memoria, y donde encuentro los datos al instante cuando los necesito.

Durante años, no, durante décadas, me he estado repitiendo que Sirio B tenía el diámetro de Urano. Incluso lo hice así en mi libro sobre agujeros negros, The collapsing Universe «Walker», 1977) y en mi ensayo «La compañera negra», incluido en Quasar, Quasar, burning bright «Doubleday», 1978).

El problema radica en que las cifras que he estado dando para el diámetro de Sirio B están equivocadas, y hace ya bastante tiempo que se sabe que estaban mal. Como me dijo un lector (con un casi audible suspiro alzándose del papel), las cifras que ofrecía constituían un interesante dato histórico, pero nada más.

No había podido seguir al paso el avance de los conocimientos. Ahora tengo los datos de 1979 (que confío que permanecerán estables durante algún tiempo), y las registraré de inmediato. Consideraremos cuán pequeño es realmente Sirio B y cuán poco (por desgracia), sabía, realmente, al respecto.

El diámetro del Sol es de 1,392 x 1011 cm, y el diámetro de Sirio B es igual a 0,008 veces eso, o sea 1,11 x 109 cm. Si lo escribimos en unidades más familiares, en ese caso el diámetro de Sirio B es igual a 11.100 kilómetros.

Comparemos el diámetro de Sirio B con la Tierra y sus planetas vecinos más próximos. Entonces, tendremos:

Si la pregunta que nos hacemos en lo referente a Sirio B es:

¿Cuán pequeño? La respuesta será: Muy pequeño.

Sirio B es más pequeño en tamaño que la Tierra y Venus, aunque es considerablemente mayor que Marte.

El área de la superficie de Sirio B es igual a 387.000.000 de Km2. Esto equivale al 0,76 del área de la superficie de la Tierra. El área de la superficie de Sirio B es, más o menos, igual a la de los océanos de la Tierra. En cuanto al volumen de Sirio B, equivale a 0,66, o sólo 2/3 del de la Tierra.

¿Cuán pequeño? El diámetro de Sirio B es sólo una cuarta parte del que yo he estado alegando durante todos estos años y, lógicamente, su volumen es sólo de un octavo.

A continuación, ¿qué hay que decir respecto de la densidad de Sirio B?

La densidad de cualquier objeto la constituye su masa dividida por su volumen, y la masa de Sirio B, por lo menos, no ha cambiado. Es exactamente lo que siempre he pensado que era: unas 1,05 veces la masa de nuestro Sol. Dado que la masa del Sol es 1,989 x 1033 gramos, que es 332.600 veces la masa de la Tierra de 5,98 x 1027 gramos, de ello se sigue que la masa de Sirio B es igual a 332.600 x 1,05, o exactamente 350.000 veces la masa de la Tierra.

Dado que la masa de Sirio B es 350.000 veces la masa de la Tierra, y puesto que el volumen de Sirio B es 0,66 veces de la Tierra, entonces la densidad de Sirio B es 350.000 x 0,66, ó 530.000 veces la densidad de la Tierra.

La densidad promedio de la Tierra es igual a 5,52 gamos por centímetro cúbico. La densidad promedio de Sirio B es, por lo tanto, igual a 530.000 x 5,52, ó 2.900.000 gramos por centímetro cúbico.

Esto significa que, si imaginamos una moneda de 5 pesetas (que estimo que tiene unos 2/3 de un centímetro cúbico en volumen), y que estuviese hecha con una materia igual a la de Sirio B, pesaría unas 2,1 toneladas.

Sirio B no tiene, naturalmente, la misma densidad en todas sus partes. Es menos denso cerca de su superficie y aumenta en densidad en cuanto nos imaginamos que nos adentramos profundamente en su interior, hasta tener la mayor densidad en el núcleo. Se estima que la densidad de Sirio B en su centro es de 33.000.000 gramos por centímetro cúbico. Si imaginamos una moneda de cinco pesetas confeccionada con material procedente de la parte central de Sirio, pesaría unas 24,3 toneladas.

A continuación, veamos la gravedad de la superficie.

La atracción gravitacional de un cuerpo sobre otro es directamente proporcional al producto de las masas, e inversamente proporcional al cuadrado de la distancia entre los centros de gravedad de ambos cuerpos.

Si consideramos la atracción de la Tierra sobre un objeto en su superficie, entonces g = km'm/r2, donde g es la atracción de la gravedad de la Tierra sobre un objeto, k es la constante gravitacional, m' es la masa del objeto, m es la masa de la Tierra y r es la distancia entre el centro de la Tierra y el centro del objeto sobre su superficie, siendo igual esta distancia al radio de la Tierra.

Si consideramos a continuación la atracción de Sirio B sobre el mismo objeto en su superficie, en ese caso G = km'M/R2, donde G es la atracción de la gravedad de Sirio B sobre el objeto, k es igualmente la constante gravitacional, m' es, del mismo modo, la masa del objeto, M la masa de Sirio B y R el radio de Sirio B.

Para determinar cuánto mayor es la gravedad de la superficie de Sirio B en relación con la de la Tierra, dividimos la ecuación para Sirio B con la de la Tierra, de este modo:

Una vez hecho esto, vemos que la constante gravitacional y la masa del objeto sobre la superficie se anula.

Tenemos:

Supongamos a continuación que tomamos la masa de la Tierra como igual a 1, y su radio también igual a 1. En ese caso, con m = 1 Y r = 1, tenemos:

El paso siguiente radica en obtener los valores para M y R, pero, a fin de mantener la ecuación, les daremos unidades de masa de la Tierra y unidades de radio de la Tierra. Es lo que hemos empleado para m y r. Dado que sabemos que la masa de Sirio B es 350.000 veces la de la Tierra, y su radio es 0,87 veces el de la Tierra, en ese caso tenemos:

En resumen, si imaginamos que existe un objeto en la superficie de Sirio B, pesaría 462.000 veces más sobre Sirio B que sobre la Tierra.

Por ejemplo, yo peso 75,5 Kg, pero si imaginamos que me encuentro sobre Sirio B, pesaría más de 35.000.000 de kilos (es decir, 35.000 toneladas).

La luminosidad de Sirio B, la cantidad total de luz que emite, constituye una observación directa, y no cambia como han mudado nuestros conocimientos acerca de las dimensiones de Sirio B.

La luminosidad de Sirio B es 0,03 veces la del Sol, por lo que si nos imaginamos a Sirio B en el lugar de nuestro Sol, recibiríamos sólo 1/33 de la luz y del calor que recibimos ahora.

Esto parece bastante razonable, si consideramos el hecho de que Sirio B es un objeto mucho más pequeño que el Sol. Pero ya no es tan razonable, no obstante, dado que Sirio B es tan pequeño, que sólo sobre la base del tamaño no daría tanta luz y calor como lo hace.

Si dos objetos se encuentran a la misma distancia de nosotros, y están a igual temperatura, en dicho caso la cantidad de calor que recibiríamos de cada uno sería proporcional al área de la superficie aparente de cada cual.

Por ejemplo, si el Sol tuviese dos veces su diámetro actual y nos encontrásemos a la misma distancia y temperatura, entonces presentaría 2 x 2, o cuatro veces el área de la superficie en el firmamento, y nos proporcionaría cuatro veces el calor y luz que ahora.

Si el Sol tuviera tres veces más diámetro que el que posee en la actualidad, y se hallase a la misma distancia y temperatura, tendríamos 3 x 3, o nueve veces, el área de la superficie aparente y nos entregaría nueve veces más calor y luz.

Esto funciona igual de bien asimismo en la otra dirección. Si el Sol tuviese la mitad de su actual diámetro, en dicho caso, a la misma distancia y temperatura, tendríamos 1/2 x 1/4, o 1/4 del área de la superficie aparente y nos daría la 1/4 parte de la luz y del calor.

Así, pues, si el Sol tuviese un diámetro 0,173 veces del actual, nos presentaría un área superficial y una luminosidad de 0,03 de la que tiene ahora. Un diámetro de 0,173 veces del actual sería, pues, una cantidad de 0,173 x 1.392.000, o 240.800 Km.[6]

Este pequeño sol, con 0,03 veces el área de la superficie del Sol verdadero, sería mucho más grande que Sirio B. Sirio B tiene un diámetro de sólo 0,008 veces el del Sol y un área superficial sólo 0,000064 veces la del Sol. Con esa pequeña área superficial, aún entrega 0,03 veces la luz y el calor del Sol.

A fin de cuantificar esa discrepancia, debemos suponer que, cada centímetro cuadrado de la superficie de Sirio B, irradia 0,03/0,000064, o cerca de 470 veces tanta luz como cada centímetro cuadrado de la superficie del Sol.

La única forma para explicarlo, radicaría en que Sirio B tuviese una mayor temperatura superficial que la del Sol. Esto es posible, a pesar del pequeño tamaño de Sirio B, porque no es una estrella de secuencia principal. Es una estrella enana blanca y las reglas son diferentes para las enanas blancas.

Puesto que la temperatura superficial del Sol es de 5.600°K (3.500ºC), la temperatura de la superficie de Sirio B es de unos 27.000°K (17.500ºC), es decir, cinco veces más.

Si estuviésemos lo suficientemente cerca de Sirio B para que su globo nos pareciese tan grande como el de nuestro Sol ahora, Sirio B sería un objeto de color azul-blanco intenso, que nos asaría hasta matamos con su calor y nos freiría hasta la muerte con su luz ultravioleta.

Sirio B puede ser pequeño, pero no cabe hacer bromas con él…

Naturalmente, para que Sirio B pareciese tan grande como el Sol, deberíamos estar muy cerca. Nos encontraríamos sólo a 1.180.000 Km de distancia del mismo, y esto es únicamente tres veces la distancia de la Tierra a la Luna.

Imaginemos, en vez de ello, que Sirio B existiese en lugar del Sol, y que se encontrase, precisamente, a la actual distancia del Sol.

Sólo recibiríamos 0,03 veces la luz y el calor que recibimos ahora, por lo que la Tierra sería un sólido congelado; pero imaginémonos que, a través de las permutaciones que queda sugerir, representamos a unos observadores en la Tierra, los cuales sean inmunes a ese cambio en su medio ambiente.

Dado que Sirio B tiene una masa 1,05 veces la de nuestro Sol, su atracción gravitacional sobre la Tierra sería mucho más fuerte y la Tierra giraría más rápidamente. El año tendría sólo 365,5 días.

Sirio B, en la posición de nuestro Sol, poseería un diámetro aparente de sólo 15 segundos de arco, es decir, aparecería con el tamaño del planeta Saturno cuando se encuentra más alejado de nosotros. Además, Sirio B sería visible como una estrella en vez de como un globo solar.

Sin embargo, constituiría una estrella enormemente brillante. Tendría una magnitud de -24,8, lo que la haría 14.000 veces más brillante de como vemos ahora la Luna llena.

Mientras que la luz de Sirio B, bajo las condiciones descritas, sería sustancialmente más oscura que la luz de nuestro Sol, la pequeña estrella plantearía un problema, por lo menos si la observáramos con la clase de ojos que tenemos ahora. Sería muy peligroso mirar a Sirio B. A pesar de su total radiación más oscura, Sirio B nos mandaría muchos más rayos ultravioleta que nuestro Sol, y sospecho que unos ojos como los nuestros quedarían cegados si, imprudentemente, le echáramos un buen vistazo.

Pero supongamos que la Tierra no orbitase a Sirio B, sino que diese vueltas en torno del Sol exactamente como ahora. Y supongamos que Sirio B fuese la compañera de nuestro Sol como, en la actualidad, es la compañera de Sirio. y si viésemos a Sirio no en el lugar de nuestro Sol, sino como compañero de nuestro Sol, girando en torno del Sol en el plano de la órbita planetaria, ¿cómo se le vería?

Sirio B y Sirio A giran en torno de un centro común de gravedad, con un período orbital (para cada uno) de 49,94 años. Sin embargo, esto tiene lugar bajo el embate gravitacional de las masas combinadas de las dos estrellas. Sirio A, la estrella de brillo normal que es la joya de nuestros cielos, tiene una masa igual a 2,5 veces la de nuestro Sol, por lo que la masa combinada de Sirio A y Sirio B es 3,55 veces la de nuestro Sol.

Si imaginamos que Sirio B gira en torno de nuestro Sol en vez de lo anterior, precisamente en la misma órbita en la que gira Sirio A, en ese caso el período de su órbita aumentaría al instante. La masa combinada del Sol y de Sirio B es sólo 2,05 veces la de nuestro Sol, por lo que la atracción gravitacional respecto de los cuerpos hacia sus órbitas sería, correspondientemente, menor que la combinación de Sirio A y Sirio B.

Sirio B y el Sol girarían en torno de un centro común de gravedad (localizado a mitad de camino entre ambos), con un período orbital de 65,72 años.

La distancia promedio de Sirio B respecto de Sirio A es de 3.000 millones de Km, y si esto fuese verdad para la de Sirio B y la combinación del Sol, ello significaría que Sirio B se encontraría, en cierto modo, más distante del Sol que lo que lo está el planeta Neptuno.

Sin embargo, Sirio B y el Sol no mantendrían una distancia constante, puesto que Sirio A y Sirio B siguen unas órbitas que, según los datos actuales, son marcadamente elípticas y debemos suponer lo mismo para Sirio B y para el Sol.

La excentricidad orbital de la órbita de Sirio B respecto a Sirio A, y, por lo tanto, respecto del Sol en nuestra imaginación, es de 0,575. Esto quiere decir que la distancia entre sí mismo y el Sol variaría desde 1,28 mil millones de kilómetros, hasta 4,72 mil millones de kilómetros.

Así, pues, en términos de nuestro Sistema solar, Sirio B estaría a veces más cerca al Sol de lo que lo está Saturno, en el extremo opuesto de su órbita, hasta retroceder levemente más lejos que Plutón cuando se halla más distante.

Según estas condiciones, los planetas exteriores del Sol apenas se moverían en unas órbitas estables y podemos dar por supuesto que no existirían. El Sistema solar interior, incluyendo a la Tierra, no quedaría, sin embargo, seriamente afectado por Sirio B y giraríamos en torno del Sol igual que siempre.

En ese caso, ¿qué aspecto tendría Sirio B en el firmamento?

Si posee el aspecto de una estrella, con un disco no visible, incluso cuando se encuentra en el lugar de nuestro Sol, ciertamente tendría una apariencia como la de una simple estrella a la distancia de Saturno. Aunque también, como es natural, sería correspondientemente más apagado.

Cuando Sirio B, como compañera del Sol, estuviese más cerca del Sol, y si se diese el caso de hallamos localizados en esa porción de nuestra órbita que se encuentra entre el Sol y Sirio B, nos hallaríamos a 1,13 mil millones de kilómetros de Sirio B. Entonces, tendría una magnitud de -19,4 y sólo tendría el 1/1.000 del brillo del Sol. De todos modos, 1/1.000 es aún una fracción respetable, puesto que Sirio B sería 465 veces más brillante que ahora la Luna llena.

Incluso en ese caso, Sirio B constituiría algo, en mi opinión, poco confortante de mirar. Con su elevada temperatura, nos llegaría tanta luz ultravioleta desde Sirio B a la distancia de Saturno, como desde el Sol que se encuentra a una distancia mucho más cercana.

Me extraña que nuestra Luna pueda presentar una apariencia tan interesante en un sistema así, posiblemente un aspecto con tres tonalidades. Si la Tierra, la Luna, el Sol y Sirio B se encontrasen apropiadamente orientados, podríamos, por ejemplo, ver un más bien pequeño cuarto creciente hacia el Oeste, otro cuarto creciente mucho más apagado en el Este y la oscuridad en la zona intermedia. Mientras girase en torno de la Tierra, la Luna experimentaría un cambio de doble fase de maravillosa complejidad.

Al dar la vuelta la Tierra alrededor del Sol, Sirio B parecería moverse en el firmamento próximo al Sol, permaneciendo en el cielo nocturno durante diferentes períodos de tiempo, como cualquiera de los planetas lo hace en la actualidad. En ocasiones, Sirio B saldría y se pondría y sería visible en el firmamento durante toda la noche. En ese caso, la noche no sería del todo oscura. Tendría un aspecto de levemente iluminada, entre dos luces.

La pauta del día, noche y «compañera de luz» variaría a través del transcurso del año.

Cuando Sirio B brillase en el cielo durante parte de las horas de luz del día, brillaría como un punto visible de luz, y todo tendría una muy débil sombra, además de su sombra normal, encontrándose los dos en ángulos cambiantes, respectivamente, en el transcurso del año.

Esto ocurriría cuando Sirio B se encontrase más cerca del Sol. No obstante, de un año a otro, se haría más débil cuanto más y más se alejase del Sol. Lo mismo ocurriría con la luz compañera y con la segunda sombra. Finalmente, Sirio B alcanzaría su punto más lejano, casi treinta y tres años después de que se hubiese encontrado en su punto más próximo.

En ese punto más lejano, Sirio B tendría una magnitud de únicamente -16 y sería sólo veintitrés veces más brillante de como lo es ahora la Luna llena. A partir de ese momento, comenzaría a brillar de nuevo.

Cerca del alzamiento y de la puesta del Sol y de las fases de la Luna, este lento iluminarse y apagarse de Sirio B constituiría el ciclo más notable en el cielo, y me parece que el período del mencionado ciclo adquiriría una enorme importancia.

El lento ciclo de Sirio B, a fin de cuentas casi se adaptaría a la existencia normal de un ser humano, y no cabe duda de que la gente primitiva se imaginaría a Sirio B como adecuándose al latido de la vida humana. Es posible pensar lo que los extravagantes astrólogos hubieran hecho con esto, y demos gracias al cielo de habémoslo ahorrado.

Sirio B, naturalmente, no siempre fue una enana blanca. Hubo un tiempo en que era una estrella de secuencia principal, lo mismo que el Sol. Podemos suponer que no era entonces de una masa mucho mayor de la que tiene ahora, y que carecía de la suficiente masa como para llevar a cabo una explosión de supernova, una vez que el combustible de hidrógeno se hubiese consumido. Simplemente se expansionaría como una estrella gigante roja y luego llegaría a su colapso de una forma no catastrófica.

Como estrella ordinaria (siguiendo la misma órbita que imaginamos para Sirio B como compañera de nuestro Sol), Sirio B hubiera sido tal vez treinta y cinco veces más brillante en cada estadio de lo que sucedería como enana blanca. En su máxima aproximación, tendría 1/30 del brillo de nuestro Sol y sería unas 16.000 veces más brillante que la Luna llena. Incluso en su máximo alejamiento, sería 800 veces más brillante que la Luna llena.

Tampoco Sirio B aparecería como un globo solar durante la mayor parte del tiempo, ni siquiera como una estrella normal. No obstante, en su momento más cercano tendría casi 6 minutos de arco de longitud y sería visto como un diminuto círculo de luz.

Y luego llegaría el momento en que se hubiese perdido la suficiente cantidad del combustible de hidrógeno para poder quemar helio en el centro de Sirio B. Esto significaría que empezaría a expansionarse en tamaño, y que su superficie se enfriaría y se enrojecería como resultado de todo el proceso.

Constituiría un cambio fascinante, mientras Sirio B, que sería con mucho el objeto más brillante de nuestro cielo, cerca del Sol, empezaría lentamente a crecer y a volverse rojo.

El proceso ocuparía varios miles de años y el cambio, me atrevo a decir, no sería visible en la existencia vital de una sola persona. No obstante, los registros científicos, en el transcurso de las generaciones, dejarían bien sentado que Sirio B iba aumentando y enrojeciendo. Finalmente, el crecimiento se haría más lento y se detendría, y el globo rojo alcanzaría su máximo de tamaño.

Debemos suponer que su diámetro tendría unos 200 millones de kilómetros.

En ese caso, cuando Sirio B estuviese más alejado del Sol, lo veríamos en el cielo como un círculo de luz roja con un diámetro de cerca de 1,4°. Tendría 2,56 veces la achura que nos muestra en la actualidad el Sol y 6,57 veces su área. Sin embargo, su superficie sería tan fría que liberaría considerablemente menos calor que el Sol.

En su momento más próximo, la gigante roja de Sirio B presentaría un diámetro 4 veces mayor que el que tendría en su lugar más alejado. Poseería entonces un poco más de 25 veces el área de la superficie del Sol.

Según todas estas circunstancias, habría una pauta de luz blanca cuando el Sol estuviese en el firmamento; una luz anaranjada cuando el Sol y Sirio B se hallasen juntos; luz roja cuando sólo Sirio B se encontrase en el cielo; y reinaría la oscuridad cuando ninguno de ellos apareciese en el firmamento. Cuando ambos estuviesen en el firmamento, habría sombras rojas y sombras blancas situadas en ángulos, convirtiéndose en negras cuando se superpusiesen cerca del objeto que se proyectase contra ellas.

La gigante roja continuaría en su ápice durante un largo período de tiempo —tal vez un millón de años—, y luego llegaría el momento en que se colapsaría de repente, tal vez en cosa de horas. Dejaría detrás de sí un anillo de gas, señalando sus límites exteriores (formando así una «nebulosa planetaria») y en el centro aparecería de repente una enana blanca. El anillo de gas se expansionaría y se volvería cada vez más delgado, engullendo a la Tierra y, gradualmente, se desvanecería. Sólo la enana blanca permanecería, y confiamos, quedarían unos registros fotográficos de la gigante roja, pues en caso contrario, las generaciones futuras no llegarían a creer en su existencia.[7]

Sirio B no se portaría de esta forma según los hechos actuales. Hubiera sido una estrella con mucha más masa en la secuencia principal. Luego, mientras se expansionase hasta gigante roja, la materia de la misma se esparciría sobre Sirio B. Esto salvaría a Sirio B de una violenta explosión, pero también incrementaría la masa y el brillo de Sirio A y acortaría su máxima existencia vital.

Es incluso posible que los seres humanos hayan sido testigos del cambio. He averiguado que cierto número de astrónomos antiguos describieron a Sirio como de color rojo y, en ese caso, difícilmente pudieron haberse equivocado al respecto. Es probable que los astrónomos actuales se equivoquen al ver a Sirio de un color azul-blanco.

¿Es posible que los antiguos no observasen a Sirio A como nosotros lo vemos, sino a Sirio B como una gigante roja mientras lanzaba materia sobre la relativamente apagada Sirio A?

Luego, en determinado momento de la alta Edad Media, cuando la astronomía se encontraba en un bajo nivel, y el repentino cambio pasó inadvertido, Sirio B se habría colapsado y convertido en una estrella demasiado apagada como para ser visible con un ojo sin ayuda, dejando detrás el súbitamente realzado brillo azul-blanco de Sirio A.

Volveremos sobre este asunto en el capítulo siguiente.