Capítulo 4
RECETA PARA UN UNIVERSO CALIENTE
Las observaciones examinadas en los dos últimos capítulos han revelado que el Universo se está expandiendo y que está lleno de un fondo universal de radiación, ahora a una temperatura de unos 3 °K. Esta radiación parece ser un residuo que ha quedado de un tiempo en que el Universo era efectivamente opaco, mil veces más pequeño y más caliente que en la actualidad. (Como siempre, cuando decimos que el Universo era mil veces más pequeño, queremos decir sencillamente que la distancia entre todo par de partículas típicas era mil veces menor que ahora). Como preparación final para nuestra descripción de los tres primeros minutos, debemos remontarnos a épocas aún anteriores, cuando el Universo era aún más pequeño y más caliente, usando los ojos de la teoría en vez de los telescopios ópticos o radiotelescopios para examinar las condiciones físicas que imperaban.
Al final del capítulo 3 señalamos que, cuando el Universo era mil veces menor que en la actualidad y su contenido material estaba a punto de hacerse transparente a la radiación, también estaba pasando de una era dominada por la radiación a la actual era dominada por la materia. Durante la era dominada por la radiación, no sólo había el mismo enorme número de fotones por partícula nuclear que ahora, sino que también la energía de los fotones individuales era bastante alta, de modo que la mayor parte de la energía del Universo tenía forma de radiación, no de masa (recuérdese que los fotones son las partículas sin masa, o «cuantos», de las que está compuesta la luz, de acuerdo con la teoría cuántica).
Por consiguiente, considerar al Universo durante aquella época como si estuviera lleno solamente de radiación, esencialmente sin materia, es una buena aproximación.
Debe hacerse una aclaración importante a esta conclusión. Veremos en este capítulo que la época de la radiación pura no comenzó realmente sino al final de los tres primeros minutos, cuando la temperatura descendió por debajo de unos pocos millones de grados Kelvin. En tiempos anteriores la materia era importante, pero era materia de un tipo muy diferente de aquella de la que está compuesto el Universo actual. Mas antes de remontarnos tan lejos consideremos brevemente la verdadera época de la radiación, desde el final de los tres primeros minutos hasta el momento, unos pocos cientos de miles de años más tarde, en que la materia se hizo nuevamente más importante que la radiación.
Para seguir la historia del Universo durante ésa era, todo lo que necesitamos saber es cuán caliente estaba todo en cualquier momento dado. O, para decirlo de otro modo, ¿cómo se relaciona la temperatura con el tamaño del Universo, a medida que éste se expande?
Sería fácil responder a esta pregunta si pudiera considerarse que la radiación se expandía libremente. La longitud de onda de cada fotón sencillamente se habría estirado (por el corrimiento hacia el rojo) en proporción al tamaño del Universo, a medida que éste se expandiese. Además, hemos visto en el capítulo anterior que la longitud de onda media de la radiación de cuerpo negro es inversamente proporcional a la temperatura. Así, la temperatura habría disminuido en proporción inversa al tamaño del Universo, como ocurre ahora.
Afortunadamente para el cosmólogo teórico, la misma relación sencilla es válida aun cuando tomemos en cuenta el hecho de que la radiación en realidad no se expandía libremente: las rápidas colisiones de los fotones con los relativamente escasos electrones y partículas nucleares hacían opaco el contenido del Universo durante la era dominada por la radiación. Mientras un fotón volaba libremente entre dos colisiones, su longitud de onda aumentaba en proporción al tamaño del Universo, y había tantos fotones por partícula que las colisiones sencillamente forzaban a la temperatura de la materia a adecuarse a la temperatura de la radiación, y no a la inversa. Así, por ejemplo, cuando el Universo era diez mil veces menor que ahora, la temperatura habría sido proporcionalmente mayor que ahora, o sea de unos 30 000 °K. Eso en cuanto a la verdadera era de la radiación.
A medida que nos remontamos cada vez más en la historia del Universo, llegamos a un tiempo en que la temperatura era tan elevada que las colisiones entre fotones podían producir partículas materiales a partir de la energía pura. Vamos a ver que las partículas producidas de este modo, a partir de la energía radiante pura, fueron tan importantes como la radiación en los tres primeros minutos, tanto en la determinación de los ritmos de diversas reacciones nucleares como del ritmo de expansión del Universo. Por lo tanto, para seguir el curso de los sucesos en tiempos realmente primitivos, necesitamos saber cuán caliente debía estar el Universo para producir gran cantidad de partículas materiales a partir de la energía de radiación y cuántas partículas se crearon de este modo.
El proceso por el cual se produce materia a partir de la radiación puede comprenderse mejor en términos de la concepción cuántica de la luz. Dos cuantos de radiación, o fotones, pueden chocar y desaparecer, mientras toda su energía y momento van a la producción de dos o más partículas materiales. (Este proceso es realmente observado de manera indirecta en los actuales laboratorios de física nuclear de altas energías). Pero la teoría especial de la relatividad de Einstein nos dice que una partícula material, aunque esté en reposo, tiene una cierta «energía en reposo» dada por la famosa fórmula E= mc2. (Aquí e es la velocidad de la luz. Ésta es la fuente de la energía liberada en las reacciones nucleares, en las cuales se aniquila una fracción de la masa de los núcleos atómicos). Luego, para que dos fotones produzcan dos partículas materiales de masa m en un choque frontal, la energía de cada fotón debe ser al menos igual a la energía en reposo, mc2, de cada partícula. La reacción también ocurrirá si la energía de los fotones individuales es mayor que mc2; el excedente de energía sencillamente imprime a las partículas materiales mayor velocidad. Pero no es posible producir partículas de masa m en la colisión de dos fotones si la energía de éstos es inferior a mc2, porque entonces no hay suficiente energía para producir ni siquiera la masa de estas partículas.
Evidentemente, para juzgar la efectividad de la radiación en la producción de partículas materiales, tenemos que conocer la energía característica de los fotones individuales en el campo de radiación. Se la puede estimar bastante bien para nuestros fines usando una sencilla regla práctica: para hallar la energía característica del fotón, sencillamente hay que multiplicar la temperatura de la radiación por una constante fundamental de la mecánica estadística llamada la constante de Boltzmann. (Ludwig Boltzmann fue, junto con el norteamericano Willard Gibbs, el creador de la moderna mecánica estadística. Se dice que su suicidio, en 1906, se debió, al menos en parte, a la oposición filosófica que encontró su obra, pero todas estas controversias han quedado dirimidas hace largo tiempo). El valor de la constante de Boltzmann es 0,00 008 617 electronvoltios por grado Kelvin. Por ejemplo, a la temperatura de 3000 °K, cuando el contenido del Universo se estaba haciendo transparente, la energía característica de cada fotón era aproximadamente igual a 3000 °K por la constante de Boltzmann, o sea 0,26 electronvoltios. (Recuérdese que un electronvoltio es la energía que adquiere un electrón al desplazarse por una diferencia de potencial eléctrico de un voltio. Las energías de las reacciones son por lo general de un electronvoltio por átomo; por eso, la radiación, a temperaturas superiores a los 3000 °K, es suficientemente caliente como para impedir que una proporción importante de electrones sean incorporados a átomos).
Vimos que para producir partículas materiales de masa m en colisiones entre fotones, la energía característica de los fotones tiene que ser al menos igual a la energía mc2 de las partículas en reposo. Puesto que la energía característica de los fotones es la temperatura por la constante de Boltzmann, se sigue de esto que la temperatura de la radiación tiene que ser al menos del orden de la energía en reposo, mc2, dividida por la constante de Boltzmann. Esto es, para cada tipo de partícula material hay un «umbral de temperatura», dado por la energía en reposo mc2 dividida por la constante de Boltzmann, que es menester alcanzar para que sea posible crear partículas de ese tipo a partir de la energía de radiación.
Por ejemplo, las más ligeras partículas materiales conocidas son el electrón e − y el positrón e + . El positrón es la «antipartícula» del electrón, es decir, tiene carga eléctrica opuesta (positiva en vez de negativa), pero la misma masa y spin. Cuando un positrón choca con un electrón, las cargas pueden anularse, y la energía de las masas de las dos partículas toma la forma de radiación pura. Ésta es la razón, desde luego, de que los positrones sean tan raros en la vida ordinaria: no tienen mucha vida antes de hallar un electrón y aniquilarse. (Los positrones fueron descubiertos en los rayos cósmicos en 1932). El proceso de aniquilamiento puede también producirse a la inversa: dos fotones con suficiente energía pueden chocar y producir un par de partículas, un electrón y un positrón, donde las energías de los fotones se convierten en sus masas.
Para que dos fotones produzcan un electrón y un positrón en un choque frontal, la energía de cada fotón debe superar a la «energía en reposo» mc2 de la masa de un electrón o un positrón. Esta energía es de 0,511003 de millón de electronvoltios. Para hallar el umbral de temperatura en el que los fotones tendrían una buena probabilidad de albergar tanta energía, dividimos la energía por la constante de Boltzmann (0,00 008 617 electronvoltios por grado Kelvin); hallamos un umbral de temperatura de seis mil millones de grados Kelvin (6 x 109 °K). A cualquier temperatura superior, se habría producido la creación libre de electrones y positrones en las colisiones entre fotones, y por ende se hallarían presentes en gran número.
(Dicho sea de paso, el umbral de temperatura de 6 × 109 °K que hemos deducido para la creación de electrones y positrones a partir de la radiación es muy superior a cualquier temperatura que podamos encontrar normalmente en el Universo actual. Aun el centro del Sol se halla solamente a una temperatura de unos 15 millones de grados. Por ello, no estamos acostumbrados a ver surgir electrones y positrones del espacio vacío, allí donde la luz es brillante).
Observaciones similares se aplican a todo tipo de partícula. Una regla fundamental de la física moderna es la de que, para cada tipo de partícula de la naturaleza, hay una «antipartícula» correspondiente, exactamente de la misma masa y spin, pero de carga eléctrica opuesta. La única excepción la forman ciertas partículas puramente neutras, como el fotón mismo, que puede ser considerado como su propia antipartícula. La relación entre partícula y antipartícula es recíproca: el positrón es la antipartícula del electrón, y éste es la antipartícula del positrón. Dada suficiente energía, siempre es posible crear cualquier par partícula-antipartícula en colisiones de pares de fotones.
(La existencia de las antipartículas es una consecuencia matemática directa de los principios de la mecánica cuántica y la teoría especial de la relatividad de Einstein. La existencia del antielectrón fue primero deducida teóricamente por Paul Adrian Maurice Dirac en 1930. Como no quería introducir en su teoría una partícula desconocida, identificó el antielectrón con la única partícula positivamente cargada que se conocía por entonces, el protón. El descubrimiento del positrón, en 1932, verificó la teoría de las antipartículas, y también probó que el protón no es la antipartícula del electrón. El protón tiene su propia antipartícula, el antiprotón, descubierto en Berkeley en el decenio de 1950-1960).
Los siguientes tipos de partículas más ligeras, después del electrón y el positrón, son los muones, o μ−, una especie de electrón pesado inestable, y su antipartícula, el μ+. Al igual que los electrones y positrones, los μ− y μ+ tienen cargas eléctricas opuestas, pero igual masa, y pueden ser creados en colisiones de fotones. Los μ− y μ+ tienen una energía en reposo mc2 igual a 105,6596 millones de electronvoltios; si dividimos por la constante de Boltzmann, el correspondiente umbral de temperatura es 1,2 billones de grados (1,2 × 1012 °K). Los correspondientes umbrales de temperatura para otras partículas aparecen en el cuadro 1 de la página 133. Inspeccionando este cuadro, podemos saber qué partículas pueden haber estado presentes en gran número en diversos momentos de la historia del Universo: son precisamente las partículas cuyos umbrales de temperatura estaban por debajo de la temperatura del Universo en ese momento.
¿Cuántas de estas partículas materiales aparecieron a temperaturas superiores al umbral? En las condiciones de elevada temperatura y densidad que prevalecieron en el Universo primitivo, el número de partículas dependía de la condición básica del equilibrio térmico: el número de partículas suficientemente elevado para que se destruyeran en cada segundo exactamente tantas como se creaban (es decir, la demanda igual a la oferta). La velocidad a la que cualquier par partícula-antipartícula se aniquilaba para dar dos fotones es aproximadamente igual a la velocidad a la que cualquier par dado de fotones de la misma energía se convertían en una partícula y una antipartícula semejantes. Por consiguiente, la condición del equilibrio térmico exige que el número de partículas de cada tipo, cuyo umbral de temperatura esté por debajo de la temperatura real, sea aproximadamente igual al número de fotones. Si hay menos partículas que fotones, serán creadas más rápidamente de lo que son destruidas, y su número aumentará; si hay más partículas que fotones, serán destruidas más rápidamente de lo que son creadas, y su número disminuirá. Por ejemplo, a temperaturas por encima del umbral de 6000 millones de grados el número de electrones y positrones debe haber sido aproximadamente el mismo que el de fotones, y puede considerarse que por entonces el Universo estaba compuesto predominantemente de fotones, electrones y positrones, y no de fotones solamente.
Pero a las temperaturas superiores al umbral, una partícula material se comporta de modo muy similar a un fotón. Su energía media es aproximadamente igual a la temperatura por la constante de Boltzmann, de modo que a temperaturas muy superiores al umbral su energía media es mucho mayor que la energía contenida en la masa de la partícula, por lo que puede despreciarse la masa. En tales condiciones, la presión y la densidad de energía que aportan las partículas materiales de un tipo dado son sencillamente proporcionales a la cuarta potencia de la temperatura, como en el caso de los fotones. Así, podemos concebir el Universo en cualquier tiempo determinado como compuesto de una variedad de tipos de «radiación», un tipo para cada especie de partículas cuyo umbral de temperatura es inferior a la temperatura cósmica en ese momento.
En particular, la densidad de energía del Universo en cualquier momento determinado es proporcional a la cuarta potencia de la temperatura y al número de especies de partículas cuyo umbral de temperatura es inferior a la temperatura cósmica en ese momento. Condiciones de esta clase, con temperaturas tan elevadas que los pares de partícula y antipartícula sean tan comunes en el equilibrio térmico como los fotones, no existen en ninguna parte en el Universo actual, excepto quizás en los núcleos de las estrellas en explosión. Sin embargo, tenemos suficiente confianza en nuestro conocimiento de la mecánica estadística como para sentirnos seguros en la elaboración de teorías acerca de lo que debe haber ocurrido en tan exóticas condiciones en el Universo primitivo.
Para ser precisos, debemos tener en cuenta que una antipartícula como el positrón (e+ ) constituye una especie distinta. De igual modo, las partículas como los fotones y los electrones pueden tener dos estados distintos de spin, que deben ser considerados como especies separadas. Por último, las partículas como el electrón (pero no el fotón) obedecen a una regla especial, el «principio de exclusión de Pauli», el cual excluye la posibilidad de que dos partículas ocupen el mismo estado; esta regla disminuye de manera poderosa su contribución a la densidad de energía total en un factor de siete octavos. (Por el principio de exclusión, los electrones de un átomo no pueden caer todos ellos en la misma capa de energía mínima; por lo tanto, determina la complicada estructura de capas de los átomos que revela la tabla periódica de los elementos). El número efectivo de especies para cada tipo de partícula está registrado, junto con el umbral de temperatura, en el cuadro 1. La densidad de energía del Universo para una temperatura determinada es proporcional a la cuarta potencia de la temperatura y al número efectivo de especies de partículas cuyos umbrales de temperatura son inferiores a la temperatura del Universo.
Ahora preguntémonos cuándo estuvo el Universo a esas altas temperaturas. Es el equilibrio entre el campo gravitacional y el momento centrífugo del contenido del Universo lo que gobierna la velocidad de expansión del Universo. Y es el total de la densidad de energía de fotones, electrones, positrones, etc., el que proporcionó la fuente del campo gravitacional del Universo en tiempos primitivos. Hemos visto que la densidad de energía del Universo depende esencialmente sólo de la temperatura, de modo que la temperatura cósmica puede ser usada como una especie de reloj, que se va enfriando, en lugar de hacer tic-tac, a medida que el Universo se expande. Para ser más específicos, puede demostrarse que el tiempo necesario para que la densidad de energía del Universo disminuya de un valor a otro es proporcional a la diferencia de los recíprocos de la raíz cuadrada de las densidades de energía. (Véase la nota matemática 3). Pero hemos visto que la densidad de energía es proporcional a la cuarta potencia de la temperatura y al número de especies de partículas con umbrales de temperatura inferiores a la temperatura real. Por ende, mientras la temperatura no sobrepase ningún valor «umbral», el tiempo que tarde el Universo en enfriarse de una temperatura a otra es proporcional a la diferencia de los inversos de los cuadrados de esas temperaturas. Por ejemplo, si comenzamos a una temperatura de 100 millones de grados (muy por debajo del umbral de temperatura de los electrones), y hallamos que hicieron falta 0,06 años (ó 22 días) para que la temperatura cayera hasta 10 millones de grados, entonces son necesarios otros 6 años para que la temperatura descienda a un millón de grados, otros 600 años para que la temperatura llegue a 100 000 grados, y así sucesivamente. El tiempo total que necesitó el Universo para enfriarse de 100 millones de grados a 3000° K (esto es, hasta el momento en que el contenido del Universo estaba por hacerse transparente a la radiación) fue de 700 000 años (véase la figura 8). Por supuesto, cuando digo aquí «años» me refiero a un cierto número de unidades absolutas de tiempo, por ejemplo, un cierto número de períodos en los que un electrón completa una órbita alrededor del núcleo en un átomo de hidrógeno. Estamos considerando una época muy anterior al comienzo de las revoluciones de la Tierra alrededor del Sol.
Figura 8. La era dominada por la radiación. Se muestra la temperatura del Universo como función del tiempo, para el periodo comprendido entre el final de la nucleosíntesis hasta la recombinación de los núcleos y los electrones en átomos.
Si en los tres primeros minutos el Universo hubiera estado compuesto realmente de un número exactamente igual de partículas y antipartículas, se habrían aniquilado todas al caer la temperatura por debajo de los 1000 millones de grados y sólo habría quedado radiación. Hay buenos elementos de juicio contra esta posibilidad: ¡estamos aquí! Debe haber habido algún exceso de electrones sobre los positrones, de protones sobre los antiprotones y de neutrones sobre los antineutrones, para que después del aniquilamiento de partículas y antipartículas quedara algo que proporcionara la materia del Universo actual. Hasta ahora he ignorado intencionalmente en este capítulo la cantidad relativamente pequeña de esta materia residual. Y ésta es una buena aproximación, si todo lo que deseamos es calcular la densidad de energía o la velocidad de expansión del Universo primitivo; vimos en el capítulo anterior que la densidad de energía de las partículas nucleares no fue comparable con la densidad de energía de la radiación hasta que el Universo se enfrió a unos 4000 °K. Sin embargo, el pequeño condimento de electrones y partículas nucleares residuales tienen derecho especial a nuestra atención, pues ellos dominan el contenido del Universo actual y, en particular, porque son los principales constituyentes del autor y el lector.
Tan pronto como admitimos la posibilidad de un exceso de materia sobre la antimateria en los tres primeros minutos, se nos presenta el problema de confeccionar una lista detallada de ingredientes para el Universo primitivo. Hay literalmente cientos de las llamadas partículas elementales en la lista que publica cada seis meses el laboratorio Lawrence de Berkeley. ¿Vamos a tener que especificar las cantidades de cada uno de estos tipos de partículas? ¿Y por qué detenerse en las partículas elementales? ¿Tendremos que especificar las cantidades de los diferentes tipos de átomos, de moléculas, de sal y pimienta? En este caso, bien podríamos concluir que el Universo es demasiado complicado y arbitrario para que valga la pena tratar de comprenderlo.
Afortunadamente, el Universo no es tan complicado. Para ver cómo es posible hacer una receta de su contenido, es necesario pensar un poco más sobre lo que significa la condición del equilibrio térmico. Ya he subrayado la importancia de que el Universo haya pasado por un estado de equilibrio térmico, pues es lo que nos permite hablar con tal confianza del contenido del Universo en cualquier tiempo. El examen realizado hasta ahora en este capítulo ha consistido en una serie de aplicaciones de las propiedades conocidas de la materia y la radiación en el equilibrio térmico.
Cuando las colisiones u otros procesos llevan a un sistema físico al estado de equilibrio térmico, hay siempre algunas magnitudes cuyos valores no cambian. Una de estas «magnitudes conservadas» es la energía total; aunque las colisiones puedan transferir energía de una partícula a otra, nunca alteran la energía total de las partículas que toman parte en la colisión. Para cada una de tales leyes de conservación hay una cantidad que debe ser especificada antes de que podamos discernir las propiedades de un sistema en equilibrio térmico: obviamente, si una magnitud no cambia cuando un sistema se aproxima al equilibrio térmico, no puede deducirse su valor de las condiciones para el equilibrio, sino que debe ser especificada de antemano. El hecho realmente notable con respecto a un sistema en equilibrio térmico es que todas sus propiedades quedan unívocamente determinadas una vez que especificamos los valores de las magnitudes conservadas. El Universo ha pasado por un estado de equilibrio térmico, de modo que para dar una receta completa de su contenido en tiempos primitivos todo lo que necesitamos es saber cuáles eran las magnitudes físicas que se conservaban mientras el Universo se expandía y cuáles eran los valores de esas magnitudes.
Habitualmente, como sustituto de la especificación del contenido total de energía de un sistema en equilibrio térmico, especificamos la temperatura. Para el tipo de sistema que, en general, hemos estado considerando hasta ahora, formado exclusivamente de radiación y un número igual de partículas y antipartículas, la temperatura es todo lo que necesitamos para averiguar las propiedades de equilibrio del sistema. Pero en general hay otras magnitudes que se conservan, además de la energía, y es necesario especificar las densidades de cada una de ellas.
Por ejemplo, en un vaso de agua a la temperatura ambiente, hay continuas reacciones en las que una molécula de agua se descompone en un ion hidrógeno (un protón puro, el núcleo del átomo de hidrógeno sin el electrón) y un ion oxhidrilo (un átomo de oxígeno unido a un átomo de hidrógeno, con un electrón adicional), o en las que los iones hidrógeno y oxhidrilo se vuelven a unir para formar una molécula de agua. Obsérvese que en cada una de tales reacciones la desaparición de una molécula de agua va acompañada de la aparición de un ion hidrógeno y viceversa, mientras que los iones hidrógeno y los iones oxhidrilo siempre aparecen o desaparecen juntos. Así, las magnitudes conservadas son el número total de moléculas de agua más el número de iones hidrógeno, y el número de iones hidrógeno menos el número de iones oxhidrilo. (Por supuesto, hay otras magnitudes que se conservan, como el número total de moléculas de agua más iones oxhidrilo, pero éstas sólo son combinaciones simples de las dos magnitudes fundamentales conservadas). Las propiedades de nuestro vaso de agua pueden quedar completamente determinadas si especificamos que la temperatura es de 300 °K (la temperatura ambiente en la escala Kelvin), que la densidad de moléculas de agua más iones hidrógeno es de 3,3 × 1022 moléculas o iones por centímetro cúbico (aproximadamente correspondiente al agua a la presión del nivel del mar) y que la densidad de iones hidrógeno menos iones oxhidrilo es cero (correspondiente a una carga neta cero). Por ejemplo, resulta que en estas condiciones hay un ion hidrógeno por cada diez millones (107) de moléculas de agua. Obsérvese que no necesitamos especificar esto en nuestra receta para un vaso de agua; deducimos la proporción de iones hidrógeno de las reglas del equilibrio térmico. En cambio, no podemos deducir las densidades de las magnitudes conservadas de las condiciones para el equilibrio térmico —por ejemplo, podemos hacer la densidad de las moléculas de agua más iones hidrógeno un poco mayor o menor que 3,3 × 1022 moléculas por centímetro cúbico elevando o reduciendo la presión—, de modo que necesitamos especificarlas para saber qué es lo que hay en nuestro vaso.
Este ejemplo también nos ayuda a comprender el significado variable de lo que llamamos magnitudes «conservadas». Por ejemplo, si el agua está a una temperatura de millones de grados, como en el interior de una estrella, entonces las moléculas o iones se disocian con facilidad y los átomos componentes pierden sus electrones. Las magnitudes conservadas entonces son el número de electrones y de núcleos de oxígeno e hidrógeno. La densidad de las moléculas de agua más átomos oxhidrilo, en estas condiciones, debe ser calculada mediante las reglas de la mecánica estadística, y no puede ser especificada de antemano; por supuesto, tal densidad resulta ser muy pequeña. (Las bolas de nieve son raras en el infierno). En realidad, en tales condiciones se producen reacciones nucleares, de modo que ni siquiera el número de núcleos de cada especie es absolutamente fijo, pero ese número cambia tan lentamente que puede considerarse que un estrella evoluciona gradualmente de un estado de equilibrio a otro.
Finalmente, a las temperaturas de varios miles de millones de grados que encontramos en el Universo primitivo aun los núcleos atómicos se disocian fácilmente en sus componentes, los protones y los neutrones. Las reacciones se producen tan rápidamente que la materia y la antimateria pueden crearse fácilmente a partir de la energía pura, o aniquilarse nuevamente. En estas condiciones, las magnitudes conservadas no son los números de partículas de ninguna especie. En cambio, las leyes de conservación relevantes se reducen a esas pocas que (hasta donde llega nuestro conocimiento) se cumplen en todas las condiciones posibles. Se cree que hay tres magnitudes conservadas, cuyas densidades deben ser especificadas en nuestra receta para el Universo primitivo:
1. La carga eléctrica. —Podemos crear o destruir pares de partículas con cargas eléctricas iguales u opuestas, pero la carga eléctrica neta jamás cambia. (Podemos estar más seguros de esta ley de conservación que de cualquiera de las otras, pues si la carga no se conservara, no tendría ningún sentido la teoría aceptada de Maxwell sobre la electricidad y el magnetismo).
2. El número bariónico. —«Barión» es un término amplio que incluye a las partículas nucleares— los protones y los neutrones— junto con algunas partículas inestables más pesadas llamadas hiperones. Los bariones y antibariones pueden ser creados o destruidos por pares, y los bariones pueden desintegrarse formando otros bariones, como en la «desintegración beta» de un núcleo radiactivo, en la cual un neutrón se convierte en un protón o a la inversa. Sin embargo, el número total de bariones menos el número de antibariones (antiprotones, antineutrones y antihiperones) nunca cambia. Por ello, asignamos un «número bariónico» + 1 al protón, al neutrón y a los hiperones, y un «número bariónico». −1 a las antipartículas correspondientes; la regla es que el número bariónico jamás cambia. El número bariónico no parece tener ninguna significación dinámica como la carga; por lo que sabemos, no hay nada semejante a un campo eléctrico o magnético producido por el número bariónico. El número bariónico es un recurso contable, su significación reside totalmente en el hecho de que se conserva.
3. El número leptónico.-Los «leptones» son las partículas ligeras con carga negativa: el electrón, el muón y una partícula eléctricamente neutra de masa cero llamada el neutrino, junto con sus antipartículas, el positrón, el antimuón y el antineutrino. Pese a su carga y su masa cero, los neutrinos y los antineutrinos no son más ficticios que los fotones; llevan energía y momento, como cualquier otra partícula. La conservación del número leptónico es otra regla de contabilidad: el número total de leptones menos el número total de antileptones jamás cambia. (En 1962, experimentos con haces de neutrinos revelaron que, en realidad, hay al menos dos tipos de neutrinos, un «tipo electrónico» y un «tipo muónico», y dos tipos de número leptónico: el número leptónico electrónico es el número total de electrones más neutrinos de tipo electrónico, menos el número de sus antipartículas, mientras que el número leptónico muónico es el número total de muones más los neutrinos de tipo muónico, menos el número de sus antipartículas. Ambos parecen conservarse absolutamente, pero aún no se sabe esto con gran certeza).
Un buen ejemplo de cómo operan estas leyes lo suministra la desintegración radiactiva de un neutrón n en un protón p, un electrón e, y un antineutrino (de tipo electrónico) ve. Los valores de la carga, el número bariónico y el número leptónico de cada partícula son los siguientes:
El lector puede comprobar fácilmente que la suma de los valores de cualquier magnitud conservada en las partículas del estado final es igual al valor de la misma magnitud en el neutrón inicial. Y esto es lo que queremos decir cuando afirmamos que estas magnitudes se conservan. Las leyes de conservación están lejos de ser vacías, pues ellas nos dicen que muchas reacciones no ocurren, como el proceso de desintegración prohibido en el que un neutrón se desintegra en un protón, un electrón y más de un antineutrino.
Para completar nuestra receta para el contenido del Universo en cualquier tiempo determinado, debemos, pues, especificar la carga, el número bariónico y el número leptónico por unidad de volumen, al igual que la temperatura en ese tiempo. Las leyes de conservación nos dicen que en cualquier volumen que se expande junto con el Universo los valores de esas magnitudes permanecerán fijos. Así, la carga, el número bariónico y el número leptónico por unidad de volumen varían sencillamente en proporción inversa al cubo del tamaño del Universo. Pero el número de fotones por unidad de volumen también varía en proporción inversa al cubo del tamaño del Universo. (Vimos en el capítulo 3 que el número de fotones por unidad de volumen es proporcional al cubo de la temperatura, mientras que, como señalamos al comienzo de este capítulo, la temperatura varía inversamente al tamaño del Universo). Por tanto, la carga, el número bariónico y el número leptónico por fotón permanecen fijos, y podemos formular nuestra receta de una vez por todas especificando los valores de las magnitudes conservadas como una proporción con respecto al número de fotones.
(Hablando en términos estrictos, la magnitud que varía en proporción inversa al cubo del tamaño del Universo no es el número de fotones por unidad de volumen, sino la entropía por unidad de volumen. La entropía es una magnitud fundamental de la mecánica estadística, relacionada con el grado de desorden de un sistema físico. A parte de un factor numérico convencional, la entropía está dada con una aproximación bastante buena por el número total de partículas en equilibrio térmico, tanto partículas materiales como fotones; el aporte de las diferentes especies de partículas se muestra en el cuadro 1. Las constantes que realmente debemos usar para caracterizar nuestro Universo son las proporciones de la carga a la entropía, del número bariónico a la entropía y del número leptónico a la entropía. Sin embargo, aun a muy altas temperaturas el número de partículas materiales es a lo sumo del mismo orden de magnitud que el número de fotones, de modo que no incurriremos en un error muy serio si usamos el número de fotones en lugar de la entropía como medida de comparación).
Es fácil calcular la carga cósmica por fotón. Hasta donde llega nuestro conocimiento, la densidad media de carga eléctrica es cero en todo el Universo. Si la Tierra y el Sol tuviesen un exceso de cargas positivas sobre las negativas (o a la inversa) de sólo una parte en un millón de millones de millones de millones de millones de millones (1036), el rechazo eléctrico entre ellos sería mayor que su atracción gravitacional. Si el Universo es finito y cerrado, hasta podemos elevar esta observación al rango de un teorema: la carga neta del Universo debe ser cero, pues de lo contrario las líneas de fuerza eléctricas darían vuelta una y otra vez al Universo, formando un campo eléctrico infinito. Pero sea el Universo abierto o cerrado, puede afirmarse con confianza que la carga eléctrica cósmica por fotón es despreciable.
El número bariónico por fotón también es fácil de calcular. Los únicos bariones estables son las partículas nucleares, el protón y el neutrón, y sus antipartículas, el antiprotón y el antineutrón. (El neutrón libre es en realidad inestable, y tiene un promedio de vida de 15,3 minutos, pero las fuerzas nucleares hacen al neutrón absolutamente estable en el núcleo atómico de la materia ordinaria). Asimismo, por lo que sabemos, no hay una cantidad apreciable de antimateria en el Universo. (Más adelante volveremos sobre esto). Por ende, el número bariónico de cualquier parte del Universo actual es esencialmente igual al número de partículas nucleares. Señalamos en el capítulo anterior que hay ahora una partícula nuclear por cada 1000 millones de fotones en el fondo de radiación de microondas (no se conoce la cifra exacta), de manera que el número bariónico por fotón es de aproximadamente un mil millonésimo (10−9).
Esta conclusión es realmente notable. Para comprender sus implicaciones, consideremos un tiempo en el pasado en que la temperatura fuera de más de diez billones de grados (1013 ° K), el umbral de temperatura de los neutrones y los protones. En ese tiempo el Universo habría contenido una gran cantidad de partículas y antipartículas nucleares, casi tantas como fotones. Pero el número bariónico es la ferencia entre el número de partículas nucleares y el de antipartículas. Si esta diferencia fuera 1000 millones de veces más pequeña que el número de partículas nucleares, entonces el número de partículas nucleares habría excedido de número de antipartículas en sólo una parte en 1000 millones. En este enfoque, cuando el Universo se enfrió por debajo del umbral de temperatura para las partículas nucleares, las antipartículas se aniquilaron todas con sus correspondientes partículas, dejando ese ínfimo exceso de partículas sobre las antipartículas como residuo que con el tiempo llegaría a constituir el mundo que conocemos.
La aparición en la cosmología de un número puro tan pequeño como una parte en 1000 millones ha llevado a algunos teóricos a suponer que el número realmente es cero, esto es, que el Universo en realidad contiene una cantidad igual de materia que de antimateria. Entonces el hecho de que el número bariónico por fotón parezca ser de una parte en 1000 millones tendría que ser explicado suponiendo que, en algún tiempo anterior a aquél en el cual la temperatura cósmica cayó por debajo del umbral de temperatura de las partículas nucleares, se produjo una segregación del Universo en dominios diferentes, algunos con un ligero exceso (unas pocas partes en 1000 millones) de materia sobre la antimateria, y otros con un ligero exceso de la antimateria sobre la materia. Después del descenso de la temperatura y del aniquilamiento de la mayor cantidad posible de pares partículas-antipartículas, habría quedado un Universo formado por dominios de materia pura y dominios de antimateria pura. El inconveniente de esta idea es que nadie ha observado signos de cantidades apreciables de antimateria en ninguna parte del Universo. Se cree que los rayos cósmicos que penetran en la atmósfera superior de la Tierra provienen en parte de grandes distancias de nuestra galaxia, y quizás en parte de fuera de ella. Los rayos cósmicos son materia, y no antimateria, en abrumadora proporción; en realidad, hasta ahora nadie ha observado un antiprotón o un antinúcleo en los rayos cósmicos. Además, no se observan los fotones que deberían producirse en la aniquilación de materia y antimateria en escala cósmica.
Otra posibilidad es que la densidad de fotones (o, más propiamente, de entropía) no haya seguido siendo inversamente proporcional al cubo del tamaño del Universo. Esto habría podido ocurrir si se hubiese producido alguna alteración del equilibrio térmico, alguna especie de fricción o viscosidad que hubiera calentado el Universo y producido fotones adicionales. En este caso, el número bariónico por fotón podría haber partido de algún valor razonable, tal vez alrededor de uno, y luego disminuido hasta su bajo valor actual a medida que se produjeran más fotones. El problema es que nadie ha podido indicar ningún mecanismo detallado para la producción de estos fotones adicionales. Hace algunos años traté de hallar alguno, pero sin éxito.
En lo que sigue ignoraré todas estas posibilidades «no corrientes», y supondré sencillamente que el número bariónico por fotón es lo que parece ser: aproximadamente de una parte en 1000 millones.
¿Qué sucede con la densidad de leptones en el Universo? El hecho de que el Universo no tenga carga eléctrica nos dice inmediatamente que ahora hay exactamente un electrón de carga negativa por cada protón cargado positivamente. Alrededor del 87 por ciento de las partículas nucleares del Universo actual son protones, de modo que el número de electrones se aproxima al número total de partículas nucleares. Si los electrones fueran los únicos leptones en el Universo actual, podríamos concluir inmediatamente que el número leptónico por fotón es aproximadamente igual al número bariónico por fotón.
Pero hay otro tipo de partícula estable, además del electrón y el positrón, que tiene un número leptónico no nulo. El neutrino y su antipartícula, el antineutrino, son partículas sin masa eléctricamente neutras, como el fotón, pero con números leptónicos + 1 y - 1, respectivamente. Así, para determinar la densidad del número leptónico del Universo actual, tenemos que saber algo acerca de las poblaciones de neutrinos y antineutrinos.
Desafortunadamente esta información es muy difícil de obtener. El neutrino es similar al electrón en que no experimenta la intensa fuerza nuclear que mantiene a protones y neutrones en el interior del núcleo atómico. (A veces usaré la voz «neutrino» para referirme tanto al neutrino como al antineutrino). Pero, a diferencia del electrón, es eléctricamente neutro, de modo que tampoco actúan sobre él las fuerzas eléctricas o magnéticas que mantienen a los electrones dentro del átomo. En realidad, los neutrinos no responden mucho a ningún género de fuerza. Como todas las cosas del Universo, responden a la fuerza de la gravitación, y también a la débil fuerza responsable de los procesos radiactivos, como la desintegración del neutrón mencionada antes, pero estas fuerzas sólo tienen una ínfima interacción con la materia ordinaria. El ejemplo dado habitualmente para mostrar cuán débilmente interaccionan los neutrinos es que, para tener una probabilidad apreciable de detener o dispersar un neutrino producido en algún proceso radiactivo, necesitaríamos colocar en su camino varios años-luz de plomo. El Sol continuamente irradia neutrinos, producidos cuando los protones se convierten en neutrones en las reacciones nucleares del núcleo del Sol; estos neutrinos nos caen de arriba durante el día y nos llegan de abajo durante la noche, cuando el Sol está del otro lado de la Tierra, porque ésta es totalmente transparente a ellos. Los neutrinos fueron postulados hipotéticamente por Wolfgang Pauli mucho antes de ser observados, como medio para explicar el balance de energía en un proceso como la desintegración del neutrón. Sólo a fines del decenio de 1950-1960 fue posible detectar directamente neutrinos y antineutrinos, a base de producirlos en tales grandes cantidades, en reactores nucleares o aceleradores de partículas, que unos pocos cientos de ellos quedaban efectivamente detenidos en el aparato de detección.
Considerando esta extraordinaria debilidad de interacción, es fácil comprender que enormes cantidades de neutrinos y antineutrinos pueden llenar el Universo alrededor nuestro sin que sospechemos su presencia. Es posible establecer límites superiores muy vagos al número de neutrinos y antineutrinos: si estas partículas fueran demasiado numerosas, ciertos procesos de desintegración nuclear débiles se verían ligeramente afectados, y además la aceleración de la expansión cósmica disminuiría más rápidamente de lo observado. Sin embargo, estos límites superiores no excluyen la posibilidad de que haya tantos neutrinos y/o antineutrinos como fotones, y con energías similares.
A pesar de estas observaciones, habitualmente los cosmólogos suponen que el número leptónico (el número de electrones, muones y neutrinos menos el número de sus correspondientes antipartículas) por fotón es pequeño, mucho menor que uno. Esto se basa exclusivamente en una analogía: el número bariónico por fotón es pequeño, por lo tanto, ¿por qué el número leptónico por fotón no habría de ser también pequeño? Éste es uno de los supuestos menos seguros del «modelo corriente», pero afortunadamente, aunque fuera falso, el cuadro general que obtendríamos cambiaría sólo en detalles.
Desde luego, por encima del umbral de temperatura para los electrones había cantidades de leptones y antileptones, aproximadamente tantos electrones y positrones como fotones. Además, en estas condiciones el Universo era tan caliente y denso que hasta los fantasmales neutrinos llegaban al equilibrio térmico, de modo que había también aproximadamente tantos neutrinos y antineutrinos como fotones. La suposición que se hace en el modelo corriente es que el número leptónico, la diferencia entre el número de leptones y de antileptones, es y fue mucho menor que el número de fotones.
Puede haber habido un pequeño exceso de leptones sobre los antileptones, como el pequeño exceso de bariones sobre los antibariones mencionado antes, que ha sobrevivido hasta la actualidad. Además, los neutrinos y los antineutrinos interaccionan tan débilmente que gran número de ellos pueden haber escapado al aniquilamiento, en cuyo caso habría ahora casi igual cantidad de neutrinos y antineutrinos, comparable al número de fotones. Veremos en el capítulo siguiente que esto es lo que sucede, según se cree, pero no parece haber la menor probabilidad en un futuro previsible de observar el gran número de neutrinos y antineutrinos que hay alrededor nuestro.
Ésta es, pues, brevemente nuestra receta para el contenido del Universo primitivo. Tómese una carga por fotón igual a cero, un número bariónico por fotón igual a una parte en 1000 millones y un número leptónico por fotón incierto pero pequeño. Considérese que la temperatura, en cualquier tiempo dado, superaba a la temperatura de 3 °K del actual fondo de radiación en la proporción del actual tamaño del Universo al tamaño de ese tiempo. Agítese bien, de modo que las distribuciones en detalle de partículas de diversos tipos estén determinadas por los requisitos del equilibrio térmico. Colóquese en un Universo en expansión, con un ritmo de expansión regido por el campo gravitacional creado por este medio. Después de una espera suficiente, esta mezcla se convertirá en nuestro Universo actual.