Capítulo 1
INTRODUCCIÓN: EL GIGANTE Y LA VACA
En el Nuevo Edda, una colección de mitos nórdicos compilada aproximadamente en 1220 por el magnate islandés Snorri Sturleson, se explica el origen del Universo. En el origen, dice el Edda, no había nada en absoluto. «No había Tierra, ni Cielo por encima de ella; había un gran Abismo, y en ninguna parte había hierba». Al norte y al sur de esa nada había regiones de hielo y fuego, Niflheim y Muspelheim. El calor de Muspelheim fundió parte del hielo de Niflheim, y de las gotas del líquido surgió un gigante, Ymer. ¿Qué comía Ymer? Al parecer, había también una vaca, Audhumla. ¿Y qué comía ésta? Pues bien, había asimismo un poco de sal. Y así sucesivamente.
No quiero ofender la sensibilidad religiosa, ni siquiera la de los vikingos, pero considero justo decir que éste no es un cuadro muy satisfactorio del origen del Universo. Aun dejando de lado todas las objeciones que pueden hacerse a lo que se sabe de oídas, el relato plantea tantos problemas como los que responde, y cada respuesta exige dar mayor complicación a las condiciones iniciales.
No podemos sencillamente sonreír ante el Edda y renunciar a toda especulación cosmogónica: el deseo de conocer la historia del Universo es irresistible. Desde los comienzos de la ciencia moderna, en los siglos XVI y XVII, los físicos y los astrónomos han vuelto una y otra vez al problema del origen del Universo.
Sin embargo, una aureola de mala reputación rodeó siempre a tales investigaciones. Recuerdo que en la época en que yo era estudiante y luego, cuando comencé mis propias investigaciones (sobre otros problemas), en el decenio de 1950, el estudio del Universo primitivo era considerado en general como algo a lo que no debía dedicar su tiempo un científico respetable. Y este juicio no carecía de justificación. Durante la mayor parte de la historia de la física y la astronomía modernas sencillamente no hubo fundamentos adecuados, de observación y teóricos, sobre los cuales construir una historia del Universo primitivo.
Ahora, en la década que acaba de transcurrir, todo esto ha cambiado. Se ha difundido la aceptación de una teoría sobre el Universo primitivo que los astrónomos suelen llamar «el modelo corriente». Es muy similar a lo que se llama a veces la teoría de «la gran explosión», pero complementada con indicaciones mucho más específicas sobre el contenido del Universo. Esta teoría del Universo primitivo es el objeto de este libro.
Para ver a dónde apuntamos, puede ser útil partir de un resumen de la historia del Universo primitivo según la describe actualmente el modelo corriente. Éste es sólo un breve esbozo; en los capítulos siguientes explicaremos los detalles de esta historia y las razones que tenemos para creer en ella.
En el comienzo hubo una explosión. No una explosión como las que conocemos en la Tierra, que parten de un centro definido y se expanden hasta abarcar una parte más o menos grande del aire circundante, sino una explosión que se produjo simultáneamente en todas partes, llenando todo el espacio desde el comienzo y en la que toda partícula de materia se alejó rápidamente de toda otra partícula. «Todo el espacio», en este contexto, puede significar, o bien la totalidad de un Universo infinito, o bien la totalidad de un Universo finito que se curva sobre sí mismo como la superficie de una esfera. Ninguna de estas posibilidades es fácil de comprender, pero esto no será un obstáculo para nosotros; en el Universo primitivo, importa poco que el espacio sea finito o infinito.
Al cabo de un centésimo de segundo aproximadamente, que es el momento más primitivo del que podemos hablar con cierta seguridad, la temperatura del Universo fue de unos cien mil millones (1011) de grados centígrados. Se trata de un calor mucho mayor aún que el de la estrella más caliente, tan grande, en verdad, que no pueden mantenerse unidos los componentes de la materia ordinaria: moléculas, átomos o siquiera núcleos de átomos. En cambio, la materia separada en esta explosión consistía en diversos tipos de las llamadas partículas elementales, que son el objeto de estudio de la moderna física nuclear de altas energías.
Encontraremos repetidamente estas partículas en este libro; por el momento bastará nombrar a las que eran más abundantes en el Universo primitivo, y dejaremos las explicaciones más detalladas para los capítulos 3 y 4. Un tipo de partícula que estaba presente en gran cantidad era el electrón, la partícula con carga negativa que fluye por los cables en la corriente eléctrica y constituye las partes exteriores de todos los átomos y moléculas del Universo actual. Otro tipo de partícula que abundaba en tiempos primitivos era el positrón, una partícula de carga positiva que tiene exactamente la misma masa que el electrón. En el Universo actual, sólo se encuentran positrones en los laboratorios de altas energías, en algunas especies de radiactividad y en los fenómenos astronómicos violentos, como los rayos cósmicos y las supernovas, pero en el Universo primitivo el número de positrones era casi exactamente igual al número de electrones. Además de los electrones y los positrones, había cantidades similares de diversas clases de neutrinos, fantasmales partículas que carecen de masa y carga eléctrica. Finalmente, el Universo estaba lleno de luz. No debemos considerar a ésta separadamente de las partículas, pues la teoría cuántica nos dice que la luz consiste en partículas de masa cero y carga eléctrica cero llamadas fotones. (Cada vez que un átomo del filamento de una bombilla eléctrica pasa de un estado de alta energía a otro de baja energía se emite un fotón. Hay tantos fotones que salen de una bombilla eléctrica que parecen fundirse en una corriente continua de luz, pero una célula fotoeléctrica puede contar fotones individuales, uno por uno). Todo fotón lleva una cantidad de energía y un momento definidos que dependen de la longitud de onda de la luz. Para describir la luz que llenó el Universo primitivo, podemos decir que el número y la energía media de los fotones eran aproximadamente los mismos que los de electrones, positrones o neutrinos.
Estas partículas —electrones, positrones, neutrinos y fotones— eran creadas continuamente a partir de la energía pura, y después de una corta vida eran aniquiladas nuevamente. Su número, por lo tanto, no estaba prefijado, sino que lo determinaba el balance entre los procesos de creación y de aniquilamiento. De este balance, podemos inferir que la densidad de esta sopa cósmica a una temperatura de cien mil millones de grados era unos cuatro mil millones (4 × 109) de veces mayor que la del agua. Hubo también una pequeña contaminación de partículas más pesadas, protones y neutrones, que en el mundo actual son los constituyentes de los núcleos atómicos. (Los protones tienen carga positiva; los neutrones son un poco más pesados y eléctricamente neutros). Las proporciones eran, más o menos, de un protón y un neutrón por cada mil millones de electrones, positrones, neutrinos o fotones. Este número —mil millones de fotones por partícula nuclear— es la cantidad crucial que tuvo que ser derivada de la observación para elaborar el modelo corriente del Universo. En efecto, el descubrimiento del fondo de radiación cósmica, que examinamos en el capítulo 3, fue una medición de esa magnitud.
A medida que la explosión continuó, la temperatura disminuyó, hasta llegar a los treinta mil millones (3 × 1010) de grados centígrados después de un décimo de segundo, diez mil millones de grados después de un segundo y tres mil millones de grados después de unos catorce segundos. Esta temperatura era suficientemente baja como para que los electrones y positrones comenzaran a aniquilarse más rápidamente de lo que podían ser recreados a partir de los fotones y los neutrinos. La energía liberada en este aniquilamiento de materia hizo disminuir temporalmente la velocidad a la que se enfriaba el Universo, pero la temperatura continuó cayendo, para llegar a los mil millones de grados al final de los tres primeros minutos. Esta temperatura fue entonces suficiente para que los protones y neutrones comenzaran a formar núcleos complejos, comenzando con el núcleo del hidrógeno pesado (o deuterio), que consiste en un protón y un neutrón. La densidad era aún bastante elevada (un poco menor que la del agua), de modo que estos núcleos ligeros pudieron unirse rápidamente en el núcleo ligero más estable, el del helio, que consiste en dos protones y dos neutrones.
Al final de los tres primeros minutos, el Universo contenía principalmente luz, neutrinos y antineutrinos. Había también una pequeña cantidad de material nuclear, formado ahora por un 73 por ciento de hidrógeno y un 27 por ciento de helio, aproximadamente, y por un número igualmente pequeño de electrones que habían quedado de la época del aniquilamiento entre electrones y positrones. Esta materia siguió separándose y se volvió cada vez más fría y menos densa. Mucho más tarde, después de algunos cientos de miles de años, se hizo suficientemente fría como para que los electrones se unieran a los núcleos para formar átomos de hidrógeno y de helio. El gas resultante, bajo la influencia de la gravitación, comenzaría a formar agrupamientos que finalmente se condensarían para formar las galaxias y las estrellas del Universo actual. Pero los ingredientes con los que empezarían su vida las estrellas serían exactamente los preparados en los tres primeros minutos.
El modelo corriente, que acabamos de esbozar, no es la teoría más satisfactoria imaginable del origen del Universo. Como en el Nuevo Edda, hay una embarazosa vaguedad con respecto al comienzo mismo, el primer centésimo de segundo aproximadamente. De igual modo, se presenta la incómoda necesidad de establecer condiciones iniciales, en especial la proporción inicial de mil millones a uno entre los fotones y las partículas nucleares. Preferiríamos una mayor inevitabilidad lógica en la teoría.
Por ejemplo, una teoría alternativa que parece filosóficamente mucho más atractiva es el llamado modelo del estado estable. En esta teoría, propuesta a fines del decenio de 1940 por Hermann Bondi, Thomas Gold y (en una formulación un poco diferente). Fred Hoyle, el Universo ha sido siempre más o menos igual a como es ahora. A medida que se expande, continuamente se crea nueva materia que llena los vacíos entre las galaxias. Potencialmente, todas las cuestiones sobre por qué el Universo es como es pueden responderse en esta teoría mostrando que es así porque es el único modo de que pueda seguir siendo igual. Se elimina el problema del Universo primitivo; no hubo ningún Universo primitivo.
¿Cómo, pues, hemos llegado al «modelo corriente»? ¿Y cómo ha reemplazado a otras teorías, por ejemplo, al modelo del estado estable? Es un tributo a la esencial objetividad de la astrofísica moderna el hecho de que este consenso se ha logrado, no mediante cambios en las preferencias filosóficas o por la influencia de los mandarines astrofísicos, sino bajo la presión de los datos empíricos.
En los dos capítulos próximos describiremos las dos grandes claves, suministradas por la observación astronómica, que nos han llevado al modelo corriente: el descubrimiento del alejamiento de las galaxias distantes y el de una débil electricidad radioestática que llena el Universo. Se trata de una rica historia para el historiador de la ciencia, llena de falsos comienzos, oportunidades perdidas, preconceptos teóricos y la acción de las personalidades.
Después de este examen panorámico de la cosmología observacional, trataré de armar las piezas que proporcionan los datos de modo de formar un cuadro coherente de las condiciones físicas en el Universo primitivo. Esto nos permitirá volver a los tres primeros minutos con mayor detalle. Aquí parece apropiado un tratamiento cinemático: imagen tras imagen, veremos al Universo expandirse, enfriarse y asarse. Intentaremos también penetrar un poco en una época que aún permanece en el misterio: el primer centésimo de segundo y lo que ocurrió antes.
¿Podemos realmente abrigar certidumbre en lo que respecta al modelo corriente? ¿Darán en tierra con él los nuevos descubrimientos y lo reemplazarán por alguna otra cosmogonía o aun revivirán el modelo del estado estable? Quizá. No puedo negar que experimento una sensación de irrealidad cuando escribo sobre los tres primeros minutos como si realmente supiésemos de qué estamos hablando.
Sin embargo, aunque se llegue a reemplazarlo, el modelo corriente habrá desempeñado un papel de gran valor en la historia de la cosmología. Hoy día (aunque desde hace sólo un decenio, aproximadamente) es costumbre respetable poner a prueba ideas teóricas de la física o la astrofísica extrayendo sus consecuencias en el contexto del modelo corriente. Es también práctica común usar el modelo corriente como base teórica para justificar programas de observación astronómica. Así, el modelo corriente brinda un lenguaje común esencial que permite a teóricos y observadores evaluar mutuamente sus realizaciones. Si algún día el modelo corriente es reemplazado por una teoría mejor, probablemente será en virtud de observaciones o cálculos originados en el modelo corriente.
En el capítulo final me referiré al futuro del Universo. Puede continuar expandiéndose eternamente, enfriándose, vaciándose y agonizando. Alternativamente, puede contraerse nuevamente disolviendo otra vez las galaxias, las estrellas, los átomos y los núcleos atómicos en sus constituyentes. Todos los problemas que se nos presentan en la comprensión de los tres primeros minutos surgirán, pues, nuevamente, en la predicción del curso de los sucesos en los últimos tres minutos.