VERTIEFUNGEN

GREGOR MENDEL

Gregor Mendel (1822-1884) gehört zu den seltenen Exemplaren der Menschheit, deren Namen in Tätigkeitswörter umgewandelt worden sind. Tatsächlich definiert der Duden: »Mendeln« heißt, »nach den Vererbungsregeln Mendels in Erscheinung treten«, und wenn bei der Weitergabe durch die Generationen eine vererbbare Eigenschaft verloren geht, sagt man, sie sei »ausgemendelt« worden. Im angelsächsischen Raum heißen die Erbkrankheiten Mendelian diseases, und so scheinen sich alle einig: Mendel hat die wissenschaftliche Erkundung der Vererbung begründet und erste Regeln für sie aufgestellt. Doch stimmt das?

Richtig ist, dass Mendel um 1865 in einem Klostergarten in Brunn mit Erbsen gearbeitet und verschiedene Kreuzungen an ihnen vorgenommen hat. Nicht richtig ist, dass er mit diesen »Versuchen über Pflanzen-Hybriden« Gesetze der Vererbung aufstellen will. Das Wort »vererben« kommt bei ihm nur am Rande vor, und zwar negativ: Das »Verschwinden der grünen Färbung vererbt sich nicht auf die Nachkommen«, so stellte Mendel nach einem Blick auf die Erbsen fest, mit denen er experimentiert hatte.

Trotzdem - die Regeln der Vererbung sind nach Mendel benannt, und sie lassen sich auch mit den Merkmalen nachvollziehen, die er untersucht hat - zum Beispiel Form und Farbe der Samen. Mendel kreuzte Erbsen mit gelben und grünen respektive runden und runzligen Samen und verfolgte diese Merkmale über mehrere Generationen. Dabei entdeckte er zum Einen, dass sich alle Mischungen einstellen können - es gibt runde gelbe, runde grüne, runzlige gelbe und runzlige grüne Samen. Er entdeckt zum Zweiten, dass sich Eigenschaften, die einmal zusammen gekommen sind, auch wieder trennen können. Und während er die Ergebnisse der Kreuzungen zählt, bemerkt er, dass die Farben und Formen nicht gleichberechtigt sind. Einer dominanten Qualität steht eine rezessive gegenüber: Gelb zeigt sich häufiger als grün, und rund setzt sich eher durch als runzlig. Die genetischen Gesetze sind damit gefunden.

So steht es in den Lehrbüchern. Doch die Frage, was Mendel mit seinen Versuchen eigentlich im Sinn hatte, bleibt bis heute unklar. Auf einfache Weise beantwortet sie ein Artikel, der am 9. Februar 1865 im Brünner Tagblatt erscheint und von der Versammlung des Naturforschenden Vereins am Tag zuvor berichtet. Mendel hat bei dieser Gelegenheit einen Vortrag gehalten, und in der Zeitung steht, was er besonders betonte, nämlich seine Beobachtung, dass die durch künstliche Befruchtung hervorgebrachten »Pflanzenhybriden stets geneigt waren, zur Stammart zurückzukehren.« Mit anderen Worten, Mendel meint, dass Pflanzen sich bei allen Variationen selber treu bleiben und nicht entwickeln.

Mendels Arbeit ist leider unverständlich, und der Verdacht bleibt, dass er die Möglichkeit der Evolution anzweifeln wollte. Doch selbst wenn Mendel diese Absicht gehabt hätte - alle Biologen, die sich heute auf ihn berufen (ohne ihn im Original gelesen zu haben), verstehen ihn anders. Sie bewundern an seinen Experimenten, dass sie die im Inneren der Pflanzen verborgenen Mechanismen zugänglich machen, die zur Weitergabe von Merkmalen -also zu ihrer Vererbungführen.

Der Grund, der uns dazu bringt, Mendel als Vater der Genetik zu feiern, steckt vermutlich darin, dass der Augustinermönch keine Ausbildung in Biologie, sondern in Physik erhalten hat. Der Abt des Klosters, in das Mendel 1843 als Novize eingetreten war, hatte ihn dazu ausersehen, Physiklehrer zu werden, und so schickte man ihn auf die Universität nach Wien. Hier lernt er zum Einen die Vorstellung vom atomaren Aufbau der (toten) Materie kennen, und er lernt zum Zweiten, wissenschaftlich zu experimentieren, was heißt, bei Versuchen darauf zu achten, nicht mehrere Parameter auf einmal zu ändern. Offenbar hat Mendel unter Prüfungsangst gelitten, denn er fällt in der Lehrerprüfung gleich zweimal durch. Das Kloster gibt ihm daraufhin die Möglichkeit, seiner zweiten Leidenschaft neben der Wissenschaft zu frönen, der Gärtnerei. Und hier im Klostergarten fängt Mendel an, über Jahre hinweg von durchreisenden Händlern Pflanzensorten zu erwerben, bis er die reinen Sorten zusammen hat, die sich in genau einer Eigenschaft unterscheiden, wie es ihm als Physiker vorschwebte. Sie beginnt er zu kreuzen.

Was nun bei Mendels langjährigen botanischen Versuchen herausgekommen ist, lässt sich ganz einfach ausdrücken, wenn nicht von den Gesetzen der Vererbung geredet werden muss, die zwar ihren würdigen Auftritt im Biologieunterricht haben, die aber bei Mendel selbst nicht zu finden sind. Seine bedeutende Leistung besteht vor allem darin, den physikalischen Gedanken vom atomaren Aufbau der Materie in das Leben übertragen und die Hypothese aufgestellt zu haben, dass es im Inneren der Pflanzen konkrete »Elemente« gibt, die in »lebendiger Wechselwirkung« die Qualitäten hervorbringen, die wir außen wahrnehmen können. Mendels Versuche weisen zudem den Weg, wie man diese Erbelemente zählen kann. Modern ausgedrückt: Mendel hat entdeckt, dass Vererbung an partikuläre Strukturen und nicht an Flüssigkeiten - wie das Blut -gebunden ist.

Mendel hat also die Atome der Vererbung entdeckt, die wir heute Gene nennen. Aber er hat auch verstanden, was sich aus der Wissenschaft heraus nicht sagen lässt, nämlich welche Gene für welche Merkmale zuständig sind. Es lässt sich nur sagen, so Mendel, dass »die unterscheidenden Merkmale zweier Pflanzen zuletzt... auf Differenzen in der Beschaffenheit der Elemente beruhen«. Das galt damals, und das gilt heute: Es gibt keine Gene, die Menschen festlegen; es gibt Unterschiede zwischen Genen, die Unterschiede zwischen Menschen festlegen.

ERBGESETZE

Die meist als Mendel'sche Erbgesetze bezeichneten Regelmäßigkeiten statistischer Art, die bei der Weitergabe von messbaren Qualitä-ten von einer Generation an die nächste beobachtet werden können, lassen sich in knappster Form wie folgt zusammenfassen:

Bei sexuell sich vermehrenden Organismen (wie den Erbsen, die Mendel untersuchte) werden viele Merkmale von zwei getrennten Faktoren-Genen beziehungsweise Allelengesteuert. Einer der Faktoren kann sich gegen den anderen durchsetzen und wahrnehmbare Wirkungen zeigen. Man spricht seit Mendel von dominanten und rezessiven Genen. Einer der Faktoren stammt von der Mutter, der zweite vom Vater. Die Merkmale werden nicht als Ganzes vererbt, sondern einzeln und in getrennten Erbeinheiten (Genen). Die Feststellung, dass die Gene sich unabhängig voneinander trennen können, wird manchmal als das erste Mendel'sche Gesetz bezeichnet. Der Tatbestand, dass Gene (Erbfaktoren) keine Tendenz zeigen zusammenzubleiben und sich als frei kombinierbar erweisen, wird oft als zweites Mendel'sches Gesetz bezeichnet.

Die Erbgesetze werden normalerweise durch die Häufigkeiten ausgedrückt, mit der dominante oder rezessive Gene ihr Vorhandensein in einer nachfolgenden Generation anzeigen. Diese Quantitäten spielen keine Rolle, wenn es nur - wie in diesem Buch - um die Idee des Gens geht; und sie manifestiert sich darin, dass aus Kreuzungsexperimenten auf die Existenz von partikulären Erbelementen - den spä-teren Genen - geschlossen werden konnte. Als sich etwa in den gleichen Jahrzehnten um die Wende zum 20. Jahrhundert herausstellte, dass es farbige Körperchen - »Chromosomen« - in den Zellen gab, die in zweifacher Ausfertigung vorliegen und sich vor einer Zellteilung verdoppeln, hatte man einen ersten Blick auf die Träger der Gene. Bald gab es eine Chromosomentheorie der Vererbung, und sie öffnete das Tor für die genauere Erkundung der Gensubstanz.

FRANCIS CRICK

Im Zentrum der Genetik steht seit bald fünfzig Jahren die Doppelhelix, und ihre beiden Stränge werden von den Molekularbiologen gerne »Watson« und »Crick« genannt. Tatsächlich bilden die beiden genannten Forscher im Bewusstsein vieler Wissenschaftler ein unzertrennliches Paar, aber die Wirklichkeit sieht anders aus. Selten haben zwei derart unterschiedliche Menschen kooperiert, und selten haben zwei Karrieren sich nach der kurzen Zeit der Zusammenarbeit derart verschieden entwickelt. Während der jüngere Watson sich schnell aus der Forschung verabschiedet, um fortan als Lehrer, Autor und Organisator tätig zu werden, bleibt der ältere Crick (*1916) seiner wissenschaftlichen Arbeit treu, und er prägt wie kein Zweiter das intellektuelle Klima der mächtig an Schwung gewinnenden Genetik. Souverän dominiert Crick die Molekularbiologie in den dreizehn Jahren, die zwischen der Darstellung der DNA-Struktur (1953) und der Aufklärung des genetischen Codes (1966) liegen. In dieser Zeit formuliert er auch das berühmte Dogma der Molekularbiologie, das den Genen beziehungsweise der DNA genau eine Aufgabe zuweist, nämlich die Anleitung für den Bau von anderen Molekülen der Zelle zu liefern. Gemeint sind die so genannten Proteine, die für die Reaktionen sorgen, ohne die kein Leben möglich ist. Wie gelingt es einer Zelle, mit Hilfe von Genen die Proteine zu machen, die sie braucht? Das will Crick wissen, und das wird er herausfinden.

Erst kümmert er sich um den Code. Von dieser Idee hat der ursprünglich als Physiker ausgebildete Crick in Schrödingers Was ist Leben? gelesen, und die Suche nach dem Code fesselt seine Aufmerksamkeit unmittelbar nach der Entdeckung der DNA-Struktur. Ein Aspekt der Doppelhelix besteht darin, dass sie wie eine Kette aufgebaut ist und ihre Glieder (Bausteine) wie Perlen aufgereiht sind. Als Crick und Watson auf diese Lösung stießen, machte ebenfalls im britischen Cambridge der Biochemiker Frederick Sanger eine wunderbare Entdeckung. Sanger stellte fest, dass die Proteine einer Zelle genauso gebaut sind wie Gene - nämlich kettenförmig. Für Crick steht damit nicht nur endgültig fest, dass es einen Code geben muss, also eine Vorschrift, nach der die Reihenfolge der DNA-Bausteine in die Reihenfolge der Proteinbausteine übertragen wird. Für ihn steht auch fest, dass dieser Code zu entschlüsseln ist, und er macht sich an die Arbeit.

Das erste Problem ist dabei offensichtlich: Da es in der DNA vier und in den Proteinen zwanzig Bausteine gibt, kommt weder eine Eins-zu-eins- noch eine Zwei-zu-eins-Übertragung in Frage - da gäbe es vier oder höchstens 16 Möglichkeiten. Also stellt Crick die Hypothese auf, dass es drei Bausteine der DNA sind, die einen Baustein der Proteine festlegen. Der Nachweis für diesen Triplett-Code, wie er heute heißt, gelingt Crick mit einer Methode, die genau einen Baustein aus der DNA entfernen kann. Er sagt voraus, dass bei ihrer ein- oder zweimaligen Anwendung die Herstellung des Proteins abbricht, während sie nach dem dritten Mal wieder beginnt. Genau dies wird beobachtet, und nun setzt das Rennen unter den Biochemikern ein, um die Details zu erkunden, was bis 1966 gelingt. Crick beteiligt sich daran nicht direkt. Er unternimmt überhaupt nicht mehr viel Experimente nach dem oben beschriebenen Erfolg und beschließt statt dessen, sich verstärkt einer Theorie der Molekularbiologie zuzuwenden. Seine berühmteste Idee nennt er das zentrale Dogma der Molekularbiologie. Es besagt vor allem, dass die Information, die von der DNA ausgeht und über eine oder mehrere Zwischenstufen zuletzt in ein Protein gelangt, nicht mehr aus diesem Molekül heraus kann, sobald sie dort angekommen ist. Unter Information versteht Crick dabei die präzise Reihenfolge (Sequenz) der Bausteine in der DNA, die vorgibt, in welcher Reihenfolge die Bausteine in den Proteinen anzulegen sind. Mit Cricks Arbeiten (und der vieler Kollegen) geht in den sechziger Jahren das Zeitalter der Klassischen Molekulargenetik zu Ende.

JAMES DEWEY WATSON

Der 1928 in Chicago geborene James D.Watson hat als i8jähriger Erwin Schrödingers Was ist Leben? gelesen und träumt seitdem davon, diese Frage zu beantworten. Für ihn ist die Sache nach der Lektüre sonnenklar: Leben - das ist das Wechselspiel der Gene. Gene bestehen aus DNA, also lohnt es sich zu wissen, wie DNA aussieht und funktioniert. Wie findet man das heraus? Ganz einfach. Man schließt sich einer Forschergruppe an, die über Methoden verfügt, die Struktur von Molekülen zu bestimmen, und wendet deren Verfahren auf die DNA an. Gesagt - getan. Watson schaut sich um und findet, was er sucht, im britischen Cambridge. Hier bemühen sich unter anderem Rosalind Franklin und Francis Crick um die Struktur der DNA, die zuerst in eine Kristallform gebracht und dann mit Hilfe von Röntgenstrahlen untersucht wird. Auf den ersten Blick hat Watson nur eine minimale Chance, doch er nutzt sie, weil er sieht, woran es bei der Konkurrenz hapert, nämlich an der Bereitschaft, über den disziplinaren Zaun zu schauen und an die Biologie der DNA zu denken. Frau Franklin konzentriert sich allein auf die Qualität der Kristalle und verliert dabei die Grundfähigkeit der DNA aus den Augen, sich verdoppeln zu können. Die DNA muss aus zwei Teilen bestehen, die sich ergänzen. Das sagt auch Crick. Doch wie sind ihre Bausteine angebracht? Um diese Frage zu klären, entschließt sich Watson, es ganz einfach zu versuchen - nämlich mit Modellen aus Karton. Er schiebt unermüdlich Pappstücke auf seinem Schreibtisch umher und probiert es solange, bis er erkennt, dass sich die vier Bausteine Adenin, Guanin, Cytosin und Thymin als zwei Paare gleicher Größe anordnen lassen, als AT und GC. In dem Augenblick ist die Doppelhelix geboren, die längst zur Ikone unseres Zeitalters geworden ist. Watson publiziert dieses Ergebnis zusammen mit Crick, und die beiden schließen ihre Beschreibung der DNA-Struktur mit einem inzwischen legendären Satz, mit dem das berühmte briti-

99 sehe Understatement auch in die Wissenschaft einzieht: »Es ist unserer Aufmerksamkeit nicht entgangen, daß die vorgeschlagene spezifische Paarung unmittelbar einen möglichen Mechanismus für die Verdopplung des genetischen Materials nahelegt.« Watson ist 25 Jahre alt, als er gemeinsam mit Crick die Doppelhelix entdeckt, und erahnt, dass sich solch ein wissenschaftlicher Erfolg nicht wiederholen lässt. Er lenkt seine Arbeitskraft deshalb in neue Richtungen und revolutioniert in den kommenden Jahrzehnten die Molekularbiologie auf zwei anderen Ebenen, der des Lehrers und der des Organisators. Watson schreibt als Professor in Harvard das erste Lehrbuch über Die Molekularbiologie des Gens (ursprünglich plante er einen anderen Titel, nämlich Das ist Leben!). Und er beginnt, die Molekularbiologie im großen Stil zu organisieren und ihr Einzugsgebiet zu vergrößern. Er wird Direktor des Cold Spring Harbor Laboratoriums auf Long Island, stellt einige der besten Forscher der Welt ein und beauftragt sie, die Molekularbiologie des Menschen und seiner Evolution zu entwerfen. Sie sind dabei auf dem besten Wege.

DNA

Der Stoff, aus dem die Gene sind, wurde zum ersten Mal von dem in Basel geborenen Biochemiker Friedrich Miescher bearbeitet. Er forschte in einem Laboratorium der Universität Tübingen, als er sich Gedanken »Über die chemische Zusammensetzung der Eiterzellen« machte, wie der Titel seiner Arbeit lautete, die 1871 in der Zeitschrift Hoppe-Seylers Medizinisch-Chemische Untersuchungen erschienen ist. Eigentlich wollte Miescher wie alle seine Kollegen Proteine untersuchen, als ihm auffiel, dass es neben diesen höchst bedeutsamen Substanzen noch einen bislang unbekannten Zellbestandteil gibt, der sich vor allem in den Kernen befindet. Er wurde neugierig, präparierte die gewünschten Objekte aus Eiterzellen - wissenschaftliches Tun ist manchmal nicht sehr angenehm, und man kann sich seinen Untersuchungsgegenstand nicht immer aussuchen - und stellte zum ersten Mal im Jahre 1869 fest, dass es sich um Säuren handelt. Miescher hatte damit die Nukleinsäuren entdeckt, wie man mit dem lateinischen Wort für Zellkern nucleus sagte. Im nächsten Schritt erkannten Biochemiker, allen voran der Heidelberger Albrecht Kossei, dass diese Säuren - anders als etwa die Salzsäure - in eigenständige Einheiten zerlegbar sind. Zum Zweck des Zerlegens musste man die aus Zellen extrahierten Nukleinsäuren erst tagelang kochen und dann zahlreichen chemischen Behandlungen unterwerfen. Am Ende konnte man vier Bausteine identifizieren, die als Stoffklasse Nukleotide heißen und wiederum aus kleineren chemischen Gruppen bestehen. Eines dieser Moleküle ist ein Zucker, und die erste Analyse ließ zwei Sorten erkennen, von denen eine bekannt und eine unbekannt war. Der bekannte Zucker hatte natürlich einen Namen - und zwar Ribose -, und der unbekannte musste eine eigene Untersuchung über sich ergehen lassen. Er sah nicht sehr viel anders als die Ribose aus; genauer gesagt fehlte dem Zucker ein Sauerstoffatom, um Ribose zu sein, weshalb er den Namen Desoxyribose bekam. Mit ihm gab es die Desoxyribonukleinsäure (DNA).

Historisch befinden wir uns in den dreißiger Jahren des 20. Jahrhunderts, und noch lag die biologische Bedeutung der beiden Substanzen im Dunkeln. Heller wurde nur der Blick auf die Komposition der DNA, die als Tetranukleotid gehandelt wurde, weil sie aus vier Nukleotiden bestand, die sich ihrerseits aus einem Zucker, einer Phosphatgruppe und einer von vier Basen zusammensetzten. In der Geschichte der Wissenschaft fing man nach und nach an, sich Gedanken über die Struktur der DNA zu machen (immer noch ohne Kenntnis ihrer biologischen Rolle). Zahlreiche Modelle wurden zum Beispiel von dem Amerikaner Phoebus Levene vorgeschlagen, die alle davon ausgingen, dass die Nukleotide kettenartig zusammenhängen und lange, fadenartige Moleküle bildeten. Während des Zweiten Weltkriegs wurde erkannt, dass DNA die infektiösen Eigenschaften

von Bakterien verändern kann, und zwar so, dass sie vererbt werden. DNA musste also zur Erbsubstanz gehören, was die Aufmerksamkeit für dieses bis dahin eher stiefmütterlich behandelte Molekül drastisch erhöhte. Neben den Chemikern kümmerten sich auch Kristallographien um seine Konfiguration, und es waren vor allem die Röntgenaufnahmen, die Rosalind Franklin von DNA-Kristallen machen konnte, die den Weg zu der berühmten Doppelhelix öffneten. Dazu trug auch die chemische Entdeckung bei, die Erwin Chargaff zu verdanken ist und seinen Namen trägt. Die von ihm gefundenen Chargaff-Regeln besagen, dass in der DNA das Verhältnis der Basen Adenin und Thymin gleich dem Verhältnis der Basen Guanin und Cytosin ist, und der Zahlenwert ist in beiden Fällen Eins. Mit anderen Worten, in der Erbsubstanz DNA gibt es genau so viel A wie T und genau so viel G wie C. Dies wusste Anfang 1953 jeder, der es wissen wollte. Leiderführt von diesem Messergebnis kein direkter Weg zur Doppelhe-

lix. Um diese herrliche Struktur zu finden, brauchte es mehr als die Kenntnis der Chargaff-Regeln, die sich dann sofort aus dem DNA-Modell ableiten. Was dieses Mehr ist, kann hier offen bleiben.

RNA

RNA ist die Abkürzung für Ribonukleinsäure. Der im Namen angesprochene Unterschied zur DNA besteht in dem Zuckermolekül, das sich in den Bausteinen (Ribonukleotiden) findet und das Ribose heißt. Das Hauptaugenmerk der Biologen hat jahrzehntelang den Proteinen und der DNA gegolten. Dabei konnte man immer annehmen, dass die RNA nur als eine Art Zwischenglied fungiert und leicht zu erfassen ist. Tatsächlich hat sich nach und nach gezeigt, dass die RNA äußerst vielseitig ist und komplex agiert. Als Boten-RNA (mRNA) enthält sie die Information zum Bau eines Proteinanteils (einer Polypeptidkette), als Transfer-RNA (tRNA) sorgt sie für den korrekten Einbau der Aminosäuren in ein Protein nach Maßgabe des genetischen Codes, und als ribosomale RNA (rRNA) - als Baustein der Zellorganellen namens Ribosomen - hilft sie den Ort zu bereiten, an dem sich die Synthese eines Proteins vollzieht.

Waren diese drei in den sechziger Jahren erfassten Möglichkeiten schon eindrucksvoll genug, so hat sich in letzter Zeit gezeigt, dass das RNA-Spektrum noch viel bunter ist, als man gedacht hat. In den achtziger Jahren ist zum Beispiel entdeckt worden, dass RNA-Moleküle auch chemische Reaktionen katalysieren können und also wie Enzyme agieren. Man spricht von Ribozymen und glaubt, mit diesen Molekülen die Frage nach dem Ursprung des Lebens beantworten zu können. Doch diese Entdeckung, für die Thomas Cech und Sidney Altmann 1989 mit Nobelwürden ausgestattet wurden, war nur der Anfang für weitere Überraschungen auf dem Terrain der RNA. Heute kennt man neben den genannten Varianten noch die so genannte mikroRNA und die Interferenz-RNA. In den Fachblättern der Genetik wird schon von einem ganz neuen Forschungsgebiet geredet, das RNAi genannt wird, womit eben alle Zellphänomene gemeint sind, bei denen sich die neuen RNA-Moleküle einschalten (mit denen sie interferieren). Der Ausdruck Interferenz bezieht sich auf die Herstellung von Proteinen, denen die genannten RNA-Moleküle ins Gehege kommen. Sie lagern sich an andere RNA-Moleküle an und geben sie auf diese Weise für den Abbau frei. Der einfache biologische Sinn dieses Eingreifens scheint der Schutz vor Viren oder anderen Erregern zu sein, deren Erbmaterial aus RNA besteht. Darüber hinaus ist aber kürzlich bekannt geworden, dass zumindest einige menschliche Chromosomen zehnmal mehr von diesen kleinen Ribonukleinsäuren ablesen, als die Zahl der Gene vermuten lässt. Es könnten also vielleicht diese eher kurzen und nicht kodierenden RNA-Sequenzen sein, die zur Komplexität eines Lebens beitragen. Die oben erwähnte mikroRNA wird nicht direkt von Genen abgelesen, sondern aus bereits vorhandenen RNA-Molekülen mittels biochemischer Verfahren ausgeschnitten, um anschließend laufende Proteinsynthesen anzuhalten. Vielleicht - so wird spekuliert - kann eine Zelle auf diese Weise schneller auf einen Wechsel im Milieu reagieren. Auf jeden Fall sprechen fast alle Zeichen dafür, dass die Bedeutung der RNA zunimmt und es weniger auf die Pole Gen und Protein, sondern mehr auf das ankommt, was sich dazwischen abspielt.

PROTEINSYNTHESE

Die Synthese eines Proteins ist ein sehr komplizierter Vorgang, der hier nur in wenigen groben Zügen vorgestellt werden kann (und für die Geschichte des Gens nicht übermäßig wichtig ist, wohl aber für die Geschichte der Genetik). Der Prozess beginnt mit der Überschreibung (Transkription) einer DNA-Sequenz in eine RNA-Sequenz. Dieses primäre Transkript kann in Bakterien direkt als Messenger (mRNA) verwendet werden; es verlässt den Zellkern und sucht Zellpartikel, die als Ribosomen bezeichnet werden. Diese Gebilde hält die mRNA so fest, dass einige Tripletts exponiert werden, an die eine andere Sorte von RNA anbinden kann, die Transfer-RNA (tRNA) heißt und mit einer Aminosäure beladen ist. Wenn eine tRNA an dem Ribosom andockt, wird die von ihr mitgebrachte Aminosäure abgelöst und mit den anderen Proteinbausteinen verbunden, die mit anderen tRNA-Molekülen herbeigeschafft worden sind. Nach und nach entsteht eine Kette aus Aminosäuren, die sich zuletzt selbständig macht und ihre dreidimensionale Konfiguration ohne genetische Hilfe einnimmt. Wirklich ohne? Inzwischen kennt man Proteine, die bei der Strukturbildung (»Auffaltung«) anwesend sein müssen, damit alles ordentlich zugeht. Sie heißen nach dem französischen Ausdruck für Anstandsdame Chaperone.

Wenn das bisher Gesagte schon schwierig war, so wird das genetische Geschehen noch komplizierter, wenn es um eukaryontische Zellen geht. Hier gibt es die Mosaikgene, was konkret bedeutet, dass dem Primärtranskript, das nach wie vor angefertigt wird, die Sequenzen entnommen werden müssen, die als Introns stumm bleiben sollen. Die Herstellung der mRNA wird als Spleißen bezeichnet. Erst nach der Reifung der RNA, wie es manchmal auch heißt, geht es zu den Ribosomen, die in eukaryontischen Zellen etwas größer sind als in Bakterien, aber im Prinzip ähnlich funktionieren.

Unabhängig von allen ungeklärten Details - die Behauptung, dass Gene Proteine machen, wirkt eher komisch angesichts der genannten Mechanismen. So einfach ist den Genen nicht beizukommen.

CODE

Der genetische Code kann als eine Tabelle dargestellt werden, in der ablesbar ist, wie die Reihenfolge von DNA-Bausteinen eines Gens in die Reihenfolge von Aminosäuren einer Polypeptidkette überführt wird, die selbst Teil eines Proteins ist. Der genetische Code ist nahezu universell (mit einer bekannten Ausnahme in Genen, die in Mitochondrien sitzen) und vor allem dadurch charakterisiert, dass drei Basen - ein Triplett - für eine Aminosäure stehen. Bei vier Basen in der DNA kann die Natur insgesamt 43 Tripletts bilden, also 64 Stück, was die Zahl der Aminosäuren (zwanzig) deutlich überschreitet und erkennen lässt, dass der Code redundant ist, selbst wenn noch die Tripletts abgezogen werden, die besondere Signale geben. So gibt es ein Basentrio, das anzeigt, wo die Überschreibung der genetischen Information in der DNA zu beginnen hat: das so genannte Start-Codon. Und es gibt drei Basentrios, die anzeigen, wo die Instruktionen enden und die Überschreibung aufzuhören hat: die so genannten Stopp-Codons. Die sechzig verbleibenden Tripletts legen die zwanzig Aminosäuren und ihre Reihenfolge in einem Protein fest, was zu der spannenden Frage führt, was der genetische Code in Wirklichkeit ist. Eine Tabelle? Eine Summe von Korrelationen? Oder ein Naturgesetz? In diesem historischen Abriss geht es weniger um dieses eher philosophische Thema als um die Frage, wie der Code entdeckt und entschlüsselt worden ist. Die Idee von kodierten Informationen lag nach dem Zweiten Weltkrieg in der wissenschaftlichen Luft, als eine neue Disziplin namens Kybernetik gegründet (1947) und eine Informationstheorie für die Übertragung von Nachrichten vorgelegt wurde (1948). Kurz nach der Entdeckung der Doppelhelix wurden erste Vorschläge unterbreitet, wie die Relation zwischen DNA und Protein aussehen könnte. Zunächst war nur klar, dass nicht eine Base für eine Aminosäure stehen konnte und auch zwei Basen nicht ausreichten, mit denen höchstens 16 Kombinationen möglich waren. Lange weiß man auch nicht, ob der genetische Code nur Wörter oder

-wie unsere Schrift - auch Kommas und Punkte zu liefern hat. Und ebenso unklar ist, ob die genetische Information wie ein Text ohne jede Überlappung geschrieben ist oder ob schon mitten in einem Wort ein zweites oder drittes anfangen kann.

Nach vielen falschen Anfängen steht seit 1956 fest, dass der genetische Code mit Tripletts agiert, dass er kommafrei ist und dass es -im Rahmen eines einzelnen Gens - keine Überlappungen gibt. Das Interesse konzentriert sich nun auf die konkrete Zuweisung eines Tripletts zu einer Aminosäure, was damals deshalb ungeheuer schwierig war, weil man weder eine einzige DNA-Sequenz kannte noch einen Weg wusste, um sie zu bestimmen. Die Forschung musste noch zwei Jahrzehnte warten, bis dies möglich wurde. Bis dahin gab es für die wissenschaftliche Neugier nur die Sequenzen von Aminosäuren in Proteinen.

Der entscheidende Durchbruch zur Offenlegung des genetischen Codes kam im Mai 1961. Da trotz der Kenntnis vieler Einzelheiten noch immer umstritten ist, wer was richtig gemacht und gedacht und wer was nur zufällig beobachtet oder später übernommen hat, wird hier nicht behauptet, die wahre Geschichte erzählen zu können. Aber einige Dinge stehen fest, zum Beispiel die Tatsache, dass das entscheidende Experiment von dem deutschen Biochemiker Heinrich Matthaei durchgeführt worden ist, der als Postdoc in dem Laboratorium von Marshall Nirenberg gearbeitet hat, der später mit Nobelpreisehren ausgestattet worden ist. Was Matthaei tat, steht auch fest. Er stellte ein Reaktionsgemisch zusammen, mit dem in vitro Proteine hergestellt werden konnten (was ungefähr so zuverlässig funktionierte wie ein kompliziertes Kochrezept, für das schon einige Kochkünste verlangt werden). Matthaei fügte alle zwanzig Aminosäuren, eine chemische Energiequelle, ein paar Standardingredienzien und noch etwas hinzu. Dieses »noch etwas« bestand aus einer künstlich hergestellten RNA, bei der sich ein und derselbe Baustein wiederholte, nämlich der Baustein namens Uracil. Das Uracil spielt in der RNA die Rolle, die das Thymin in der DNA spielt. Wenn eine Zelle ihre DNA in RNA überschreibt, wird Adenin zu Adenin, Cytosin zu Cytosin, Guanin zu Guanin, und nur das Thymin wird zu Uracil,abgekürzt U. Dieses Vorgehen der Natur und der Zellen muss man hinnehmen, ohne es erklären zu können.

Also: Am Nachmittag des 22. Mai 1961, einem Montag, fügt Matthaei die künstlich hergestellte RNA, die nur aus U besteht und folglich im Laborjargon Poly-U heißt, dem ansonsten standardisierten Reaktionsgemisch hinzu - und plötzlich passiert die Sensation. In den Reagenzgläsern fällt etwas aus und dadurch auf. Mit dem Poly-U ist ein Polypeptid entstanden, aber welches? Matthaei braucht den Rest der Woche in Tag- und Nachtarbeit, um seine Identität zu ermitteln. Am Samstag, dem 27. Mai, ist er in den frühen Morgenstunden soweit. Das Polypeptid besteht - wie die eingesetzte RNA - aus einer Kette mit nur einem Glied, der Aminosäure Phenylalanin. Aus UUU oder von der DNA aus gesehen aus TTT wird Phe, wie Biochemiker die genannte Aminosäure abkürzen, und das erste Wort des genetischen Codes ist bekannt.

Und nicht nur das. Mit Matthaeis Erfolg ist klar, wie man vorgehen muss: Alle möglichen synthetischen RNA-Moleküle mit allen möglichen Kombinationen herstellen, dem oben beschriebenen Reaktionsgemisch hinzufügen und das Protein analysieren. Matthaeis Chef, Leiter einer großen Labororganisation, findet in den frühen sechziger Jahren die anderen Zuordnungen und etabliert den genetischen Code so, wie er heute in den Schul- und Lehrbüchern steht.

REKOMBINATION

Der Ausdruck Rekombination wurde ursprünglich in der Genetik benutzt. Mit ihm bezeichnete man das gemeinsame Auftreten von Eigenschaften in einer nachfolgenden Generation, die bei den Eltern noch getrennt (bei Vater und Mutter) waren. Bald wurde die Basis der Neukombinierung verstanden, da sie im Mikroskop sichtbar wurde. Chromosomen können in dem Vorgang, den man als Crossingover bezeichnet, ganze Abschnitte austauschen und auf diese Weise die dort befindlichen Gene rekombinieren. Da Chromosomen unter anderem aus durchgängigen DNA-Fäden bestehen, müssen Zellen über Werkzeuge verfügen, einen DNA-Doppelstrang durchzutrennen und wieder zusammenzufügen, wobei jeder einzelne Baustein eines Gens als Zielpunkt der Rekombination in Frage kommt. Diese Werkzeuge wurden als Proteine identifiziert, die als Enzyme, die DNA in der Mitte durchschneiden können, Endonukleasen genannt wurden und werden. In den siebziger Jahren zeigte sich, dass der Schnitt so erfolgen kann, dass ein Stück Einzelstrang am Ende frei bleibt, was natürlich nützlich für das erneute Verbinden ist. Allerdings muss man nicht die DNA-Fragmente verbinden, die man vorher zerstückelt hat. Man kann DNA-Abschnitte aus unterschiedlichen Quellen rekombinieren, etwa aus Bakterien- und Pflanzenzellen. Wer dies ausführt, betreibt Gentechnik, stellt also rekombinierte DNA - oder rekombinante DNA, wie es manchmal im Anklang an das englische recombinant DNA genannt wird - her. Rekombinierte DNA kann rekombinierte Proteine hervorbringen, und damit ist eine neue Möglichkeit der Biomedizin bezeichnet, bessere und wirksamere Medikamente herzustellen.

Es ist übrigens die Gentechnik, die sowohl das öffentliche Interesse an den Genen als auch die wissenschaftlichen Möglichkeiten mit ihnen gesteigert hat. Die Rekombination ist das eigentlich spannende Element - in der Wissenschaft, in der Zelle und in der Evolution. Man muss sich dauernd austauschen und erneuern, um mithalten zu können. Die Rekombination ist vermutlich der Schlüssel zum Geheimnis des Lebens. Sie ist der Grund für all unsere Flexibilität, und die Bakterien und ihre Viren wurden für weitere Kreise erst interessant, als man nachweisen konnte, dass sie die Fähigkeit besitzen, ihre genetischen Moleküle zu rekombinieren. Während man sich leicht vorstellen konnte, wie dieser Vorgang bei den Phagen funktioniert -man sorgt dafür, dass ein Bakterium von zwei Phagen gleichzeitig infiziert wird (Mischinfektion), und wartet darauf, dass sich die beiden DNA-Stränge im Inneren der Bakterien treffen und austauschen -, hatte man lange keine Ahnung, wie Bakterien dies zustande bringen. Wie kommen die Gene eines Bakteriums mit den Genen eines anderen Bakteriums in Berührung, wenn sich diese Einzeller nur durch Teilung vermehren?

Tun sie gar nicht, lautet die Antwort. Wenn man (sehr) genau (und geduldig) hinsieht, stellt man fest, dass einige Bakterien die Nähe eines Partners spüren, kleine Fühler zu ihm ausstrecken, die innen hohl sind und durch die DNA-Moleküle geleitet und dann übertragen werden können. Die ersten Wissenschaftler, die dies entdeckt haben, kamen aus Frankreich. Sie liebten es, den Bakterien beim Genaustausch zuzuschauen, und sie dachten sich ein Experiment aus, wie sie die Länge der DNA-Übergabe (»Koitus«) kontrollieren konnten. Bei dem dazugehörigen »Koitusinterruptus-Experiment« sollte gezeigt werden, dass die DNA wie ein Faden im Verlauf der Zeit vom Donor in den Rezeptor gelangt. Je später die Unterbrechung kommt, so die Überlegung, desto mehr Gene können während des Kontakts übertragen worden sein. Genau so ist es.

MUTATION

Unter einer Mutation verstand man ursprünglich eine sprunghafte Veränderung im Erscheinungsbild eines Organismus, etwa seiner Farbe oder seiner Größe, wenn diese Änderung vererbbar ist. Bald meinte der Begriff die erbliche Variation eines Chromosoms, und heute erfasst Mutation alle Möglichkeiten, mit denen die DNA einer Zelle variiert werden kann. Die DNA besteht als Doppelhelix aus einer Folge von Basenpaaren, wobei deren Reihenfolge als genetische Information funktioniert. Änderungen in der DNA-Sequenz -etwa die Änderung eines Buchstabens an einer Stelle, das Auslassen von Buchstaben, die Wiederholung von Sequenzen und so weiter -führen zu Mutationen. Nicht alle Mutationen müssen Auswirkungen im Erscheinungsbild einer Zelle oder eines Organismus nach sich ziehen. Dies hängt zum Beispiel mit der Redundanz des genetischen Codes zusammen, bei dem mehrere Tripletts eine Aminosäure kodieren können. Von Mutationen nimmt man an, dass sie entweder spontan oder durch äußere Einwirkungen wie UV-Licht oder Röntgenstrahlen zustande kommen. Spontan meint so viel wie zufällig, und es leuchtet ein, dass bei der Herstellung von Milliarden Bausteinen von DNA nicht alles perfekt verläuft, sondern sich Fehler einschleichen können. Gene sind auch nicht besser als Menschen. Die Fehler haben ja sogar ihre Funktion, denn wenn alles perfekt zuginge im zellulären Leben, könnte es keine Entwicklung der Art geben, wie sie in der Evolution sichtbar wird. Seit einigen Jahren besteht daher der Verdacht, dass Mutationen gar nicht so zufällig zustande kommen, wie es bislang scheint. Vielmehr könnte es sein, dass die Zelle über Mechanismen verfügt, die die genetischen Moleküle genügend instabil machen, um ausreichend Variationen von ihnen einführen und testen zu können. Es könnte sein, dass ein genaues Verstehen des Auftretens von Mutationen, die über eine Beschreibung ihrer molekularen Details hinausgeht, erst gelingt, wenn man versteht, wie das Innen einer Zelle (mit der DNA) und ihr Außen (also die Umwelt) auf eine Weise zusammenwirken, die man ganzheitlich nennen könnte und die einen gerichteten Prozess ergeben würde.

HOMEO-BOX

Die Geschichte der Homeo-Box wird von einem ihrer Entdecker selbst erzählt, und zwar von Walter Gehring, der immer schon verstehen wollte, Wie die Gene die Entwicklung steuern - so der Titel seines Buches. Um dies zu verstehen, muss man mindestens die beiden Aktivitäten von Genen unterscheiden, die durch die Bezeichnungen Strukturgen und Regulatorgen ausgedrückt werden. Auf solch eine differentielle Genaktivität hat übrigens - wer sonst - zum ersten Mal T. H. Morgan hingewiesen, als er 1934 schrieb: »Bei der Interpretation der genetischen Experimente wird meist implizit angenommen, daß alle Gene über die ganze Zeit und auf die gleiche Weise wirken. Diese Annahme bietet jedoch keine Erklärung dafür, daß bestimmte Zellen im Embryo den einen Entwicklungsgang einschlagen, während andere sich in eine andere Richtung entwickeln, falls diese Unterschiede allein durch die Gene bedingt sind. Eine Alternative wäre die Vorstellung, dass verschiedene Batterien von Genen im Verlauf der Entwicklung aktiv werden.«

Dies trifft tatsächlich zu, wie man heute weiß. Nur - wie sammelt man die Evidenz dafür? Ausgangspunkt waren wie so oft Mutanten von Drosophila. Bereits 1915 entdeckte Calvin Bridges in Morgans Fliegenraum eine Variante der Fliege, die - wie heute gesagt wird -das Ergebnis einer Mutation in einem homeotischen Gen ist. Mit Homeosis sind dabei Änderungen gemeint, bei denen eine Struktur ausfällt und durch eine ersetzt wird, die einer Struktur ähnelt, die es an anderer Stelle gibt. Konkret können sich statt Antennen Beine im Kopf zeigen - dies ist bei der Antennapedia-Mutante der Fall - oder der Thorax kann partiell verdoppelt auftreten - dies trifft für die Bithorax-Mutante zu, die 1915 gesichtet wurde. Fliegen, die mit dieser Mutation geboren werden, tragen statt winziger Schwingkölbchen (Halteren) ein zweites (wenn auch verkümmertes) Flügelpaar im Thoraxbereich.

Was die Bithorax-Mutante auszeichnet, konnte erst nach dem Zweiten Weltkrieg erkannt werden. Die Arbeit an diesem Problem ist das Lebenswerk von Ed Lewis, der bis heute in Morgans altem Fliegenraum arbeitet und mit Nobelwürden ausgestattet worden ist. Lewis konnte erst zeigen, dass es dabei um einen ganzen Genkomplex geht, der offenbar durch eine tandemartige Duplikation im Laufe der Evolution entstanden ist, und er konnte weiter zeigen, dass in diesem Komplex einzelne Gene auszumachen sind, die zur Bildung von Körperteilen wie Beinen oder Sinnesorganen führen und deren Morphogenese anstoßen. Nach und nach wurde nach dieser Pioniertat klar, dass es erstens für jedes Körpersegment ein solches Entwicklungsgen gab und dass zweitens diese Gene auf den Chromosomen auch noch so angeordnet sind, wie sie entlang der Körperachse zur Expression kommen. Diese Gene bekamen den Namen homeotische Gene, und sie wurden als Masterkontrollgene verstanden.

Wie sie im Detail gebaut sind, entzog sich solange dem wissenschaftlichen Zugriff, wie es keine Gentechnik und damit die Möglichkeit einer Klonierung der entsprechenden DNA-Abschnitte gab. (Die Genetiker nennen die Zeit vor der Möglichkeit zum Klonieren scherzhaft oft B.C., was nicht »Before Christ« meint, sondern »Before Cloning« abkürzt.) Mit den neuen Methoden (und mit neuen Mutanten) konnte man sich an die Charakterisierung von Masterkontrollgenen machen, und dabei stellte sich heraus, dass es erstens in ihnen ein Segment von 180 Basenpaaren gibt, das allen homeotischen Genen gemeinsam ist, und dass selbst solche Lebensformen homeotische Gene haben, bei denen das Auge äußerlich gar keine Körpersegmente erkennen kann, die es zu spezifizieren gäbe. Die Gene, die helfen, die Identität eines Abschnitts festzulegen, heißen manchmal auch Hox-Gene, und sie scheinen ein zentrales Element in der Evolution von komplexen Bauplänen zu sein. Hox-Gene, die inzwischen bei Ringelwürmern, Krebsen, Insekten und Wirbeltieren nachgewiesen werden konnten, lassen wahrscheinlich bald erkennen, wie sich die Baupläne des Lebendigen seit der Zeit des Kambriums entwickelt haben, die vor 500 Millionen Jahren war. Möglicherweise gewährt die Analyse der entsprechenden Gene auch einen Blick auf den Übergang von den Flossen der Fische zu den Gliedmaßen der Amphibien. Auf jeden Fall hat die Entdeckung der Homeo-Box einen universalen Kontrollmechanismus der Morphogenese ans Licht gebracht.

REPLIKATION

In der legendären Arbeit, mit der Watson und Crick 1953 die DNA als Doppelhelix präsentieren, gibt es gegen Ende den wahrscheinlich meist zitierten Satz der Wissenschaftsliteratur: »It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible mechanism for the genetic material.« Es ist der Aufmerksamkeit von Watson und Crick also nicht entgangen, dass die spezifische Paarung der Basen, die sie in ihrem Modell vorschlagen, unmittelbar zu erkennen gibt, wie das genetische Material verdoppelt werden kann. Es geht um die Replikation der DNA, wie es in der Fachsprache zunächst heißt, bevor allgemeiner von der DNA-Synthese die Rede ist.

Watson und Crick meinen, dass der Doppelstrang getrennt wird und dann jeder Einzelstrang als Vorlage (Matrize) für die Anfertigung einer neuen Doppelhelix dient. Auf diese Weise gehen aus einem Gen zwei hervor - im Prinzip wenigstens. Doch wie so oft steckt der liebe Gott - oder der Teufel - im Detail, und davon gibt es bei der Replikation von DNA genug. Nachdem zunächst in einem sehr eleganten Versuch von Franklin Stahl und Matthew Meselson im Jahre 1958 gezeigt werden konnte, dass die Synthese von DNA tatsächlich dadurch funktioniert, dass zwei (alte) Einzelstränge in zwei (halbneue) Doppelstränge verwandelt werden, blieb noch lange unklar, wie zum Beispiel die hermetisch verriegelte Doppelhelix geöffnet wird und wie die Verdrillung des Fadens berücksichtigt und entspannt wird. Bei der Erforschung sind viele unerwartete Einzelheiten zutage getreten, etwa dass auf den ersten Stücken der zu replizierenden DNA keine DNA-, sondern RNA-Bausteine aufgesetzt werden. Sie heißen nach ihrem Entdecker Okazaki-Fragmente und werden später wieder entfernt werden und DNA-Bausteinen weichen. Außerdem hat die Zelle ein umfangreiches Arsenal an Instrumenten (Proteinen) entwickelt, um die sich doch unentwegt und rasch vollziehende Replikation auf Fehler hin zu untersuchen. Molekulare Korrekturleser sind permanent im Einsatz, um Kopierfehler zu finden und zu beheben. Die Gene einer Zelle beziehungsweise ihre DNA befinden sich höchst selten im Zustand der Ruhe, wie es das Bild der Doppelhelix suggeriert, mit dem Watson und Crick die Welt verblüfft haben. Sie werden vielmehr unentwegt vermehrt, verlesen, stabilisiert und ausgebessert.

DOGMA DER MOLEKULARBIOLOGIE

Das Dogma der Molekularbiologie ist denkbar einfach. Es besagt, dass die Information in einer Zelle von der DNA zur RNA und von dort zu einem Protein fließt, aus dem sie nicht mehr herauskommen kann. Diese Ansicht der fünfziger Jahre des 20. Jahrhunderts weichte der Vater des Dogmas, Francis Crick, selbst im Verlauf der sechziger Jahre auf, als er weitere Wege der Information hinzufügte, etwa den von der DNA zu sich selbst, wie es bei der Replikation der Fall ist, oder den von der RNA zu sich selbst. Crick konnte sich auch vorstellen, dass die DNA-Sequenzen direkt auf ein Protein Einfluss nahmen, und er rechnete sogar mit der Möglichkeit, den Weg von der DNA zur RNA auch umgekehrt zu gehen, was dann in den siebziger Jahren tatsächlich nachgewiesen werden konnte. Doch trotz dieser Erweiterung oder Erweichung des Dogmas hält sich unter den Molekularbiologen die Rede von den Einheiten Gen (DNA), RNA und Protein, obwohl die modernen Techniken der Genetik den Zugriff zu drei anderen und umfassenderen Einheiten eröffnen: i) zum Genom mit seinen Sequenzen, 2) zu dem kompletten Spektrum an transkribierten RNA-Molekülen, für das manchmal - in Analogie zum Genom -der Ausdruck Transkriptom benutzt wird, und 3) zu dem Gesamtbestand an Proteinen in einer Zelle, der inzwischen als Proteom Karriere macht. Das moderne Dogma der Molekularbiologie müsste versuchen, den alten Dreischritt DNA-RNA-Protein in den neuen Dreischritt Genom-Transkriptom-Proteom zu erweitern, bei dem sich dann vielleicht die Wege für das Verteilen der biologischen Information zeigen, die immer noch fehlen, um dahin zu kommen, wo die Biologie eigentlich hin möchte - nämlich zum Erscheinungsbild eines Organismus.

INTERDISZIPLINARITÄT

Es ist wichtig zu betonen, dass die moderne Genetik von Anfang an als eine interdisziplinäre Wissenschaft begründet worden ist und gar nicht anders betrieben werden kann. Der erste entscheidende Schritt in die Molekularbiologie gelingt, als sich ein Physiker, Max Delbrück, und ein klassischer Genetiker, Nicolai Timoféef-Ressovsky, zusammentun, um die Natur der Genmutation zu erkunden. Bakteriengenetik entsteht, als ein Physiker, erneut Delbrück, mit einem Mediziner, Salvatore Luria, nach den Ursachen von Mutationen fragt. Und besonders deutlich lässt sich die Bedeutung der Interdisziplinarität am Beispiel der Entdeckung der Doppelhelix zeigen, die eben nicht denjenigen gelungen ist, die sich streng an die Grenzen ihrer Disziplinen gehalten haben, sondern denjenigen, die mutig genug waren, sich von Anfang an darüber hinweg zu setzen, auch wenn dies zunächst viel Ärger mit sich gebracht hat. Wer die Struktur der DNA erkunden will, muss natürlich etwas von Genetik verstehen; er muss die Bakterien als Quelle der DNA kennen und also etwas von Bakteriologie verstehen; er muss Kristalle züchten können, und also etwas von Festkörperphysik verstehen; er muss Röntgenstrukturanalysen durchführen, und also etwas von Kristallographie verstehen; er muss die Bindung zwischen Basen beschreiben können, und also etwas von physikalischer Chemie verstehen, und so weiter und so fort. Das Problem steckt dabei in der Vielzahl der Disziplinen, die niemand komplett lernen und umfassend beherrschen kann, bevor er sich an die Arbeit macht. Natürlich muss man eine Wissenschaft -etwa die Biochemie - gründlich studieren, aber man muss versuchen, von Kollegen zu erfahren, was aus ihrer Sicht für eine Fragestellung wichtig ist. Zuviel Fachwissen kann den Blick für die Lösung versperren, wie der Volksmund weiß, der Menschen kennt, die vor lauter Bäumen den Wald nicht sehen. Die Geschichte der Genetik ist ein Triumph der Interdisziplinarität, was sich auch so ausdrücken lässt, dass die Molekularbiologie eine kooperative und sozial organisierte Wissenschaft ist, die nicht durch große Einzelpersönlichkeiten, sondern erst in Gruppen - etwa Morgans Fliegenschule - und Paaren -wie Watson und Crick - und dann in immer größeren Teams operierte und funktionierte. Diese Teams können sich industriell oder akademisch formieren - mit dem Konsortium als derzeitigem Höhepunkt, dem wir die im Februar 2001 publizierte Sequenz des menschlichen Genoms verdanken.

IRRTÜMER

In einem Buch über das Gen oder die Gene sollte auf einige Irrtümer hingewiesen werden, die über Gene verbreitet sind. Da ist zum Ersten die Überzeugung, dass Gene sich selbst verdoppeln. Gene allein tun nichts. Sie liegen als molekulare Gebilde eher hilflos in den Zellen herum, und sie benötigen Hilfe für alles. Die Replikation von DNA - also die Verdopplung eines Gens - gelingt nur mit Hilfe von Proteinen (und RNA-Molekülen), sodass es richtig heißen muss, dass Proteine Gene verdoppeln.

Der zweite populäre Irrtum besagt, dass Gene Proteine machen (nach der alten Ein-Gen-ein-Protein-Hypothese). Wenn überhaupt, dann lässt sich sagen, Gene spezifizieren Proteine. Was das Machen angeht, so braucht es dazu erneut Proteine (und mehr), und eigent-lich müsste man sagen, dass Proteine (mit Hilfe einiger anderer Moleküle, die nicht DNA sind) Proteine machen.

Der dritte gängige Irrtum über Gene besagt, dass sie Eigenschaften hervorbringen. Schon Johannsen sprach von Genen für Bohnenfarbe oder Genen für Stengellänge. Da war Mendel schon weiter, demzufolge sich nur sagen lässt, dass die (vererbbaren) Unterschiede zwischen zwei Organismen auf Unterschiede bei den Genen zurückgeführt werden können. Aus dem Vorhandensein eines Gen folgt noch wenig, erst aus dem Vorhandensein eines Unterschieds zwischen Genen folgt mehr. Es lebe der Unterschied.

Wie sehr der Gedanke von den ›Charaktergenen‹ heute in den Menschen festsitzt und dabei das Denken beeinflusst, hat Werner Bartens an vielen Beispielen in seinem Buch Die Tyrannei der Gene vorgestellt, von denen zwei hier aufgeführt werden sollen. Er berichtet etwa von Fußballreportern, die den Spielern wenig erfolgreicher Mannschaften bescheinigen, ohne ein »Killergen« anzutreten, das entscheidend beim Torschuss helfen soll. Oder er erzählt, dass Joe Cocker seine unstete Lebensweise durch ein Gen erklärt, »das auf Selbstzerstörung programmiert ist und in regelmäßigen Abständen die Übermacht gewinnt«.

Der Biologe David Jackson hat 1995 davor gewarnt, den Einfluss der Unterhaltungsindustrie auf das öffentliche Verständnis der Genetik auf die leichte Schulter zu nehmen: »Schließlich sind es nicht wissenschaftliche Tagungen, von denen die meisten Leute etwas über Molekularbiologie und Gentechnik lernen, sondern Filme und Bü-cher wie Jurassic Park, Boys from Brazil etc.«

Doch nicht nur auf diese Weise kann in der Öffentlichkeit ein völlig falsches Verständnis für Gene entstehen. Dies geht auch durch die Experten selbst, die stark in ihren Ansichten schwanken können und sich gerne dem Zeitgeist unterwerfen. Als Beispiel sei auf die Frage verwiesen, was für den Schulerfolg (Intelligenz) eines Kindes verantwortlich ist. Heute bekommt man nahezu ausschließlich etwas von Genen als Antwort zu hören, während in den politisch bewegteren sechziger Jahren jeder Hinweis auf die Natur des Menschen als diskriminierend angesehen wurde und alle Schuld für ein Versagen in der Umwelt gesucht wurde, die damals noch Milieu hieß.

Wie wenig sich die Genetik bis heute aus der sprachlichen Falle befreit hat und nach wie vor Irrtümer verbreitet, zeigt eine kürzlich in Science erschienene Kritik des Amerikaners Dean Hamer, der dringend rät, die Verhaltensgenetik zu überdenken, die ein äußerst aktives Forschungsfeld darstellt, das uns laufend über Verbindungen zwischen Genorten und beispielsweise aggressivem Verhalten oder Angstzuständen informiert. Das Problem - so Hamer - sind weder die Daten noch die Methoden der Genetiker. Das Problem steckt in der Interpretation, die allzu gerne übersieht, dass ein postulierter Zusammenhang zwischen einem Gen und einer Verhaltensweise bestenfalls für eine kleine Gruppe von Personen zutrifft, die zweitens gerne den kulturellen Hintergrund ignoriert, und die drittens außer Acht lässt, dass eine Verhaltensweise - etwa die Lust, Sport zu treiben - von Hunderten oder Tausenden Genen abhängen wird, die alle unterschiedlich reguliert sein können. Der Hauptirrtum steckt vermutlich in der Annahme, dass eine Interpretation von Genen allein von Naturwissenschaftlern geliefert werden kann, die meinen, es reiche, den genetischen Text zu lesen. Man muss ihn vielmehr verstehen und deuten, und dafür ist eine andere Fakultät zuständig.