Arnout Jozef CeulemansTheoretical Chemistry and Computational
ModellingGroup Theory Applied to Chemistry201310.1007/978-94-007-6863-5©
Springer Science+Business Media Dordrecht 2013
Appendix A Character Tables
Contents
A.1
Finite Point Groups 192
C
1 and the Binary Groups C s , C i , C 2 192
The Cyclic Groups C n ( n =3,4,5,6,7,8) 192
The Dihedral Groups D n ( n =2,3,4,5,6) 194
The Conical Groups C nv ( n =2,3,4,5,6) 195
The C
nh Groups (
n =2,3,4,5,6) 196
The Rotation–Reflection Groups S 2 n ( n =2,3,4) 197
The Prismatic Groups D nh ( n =2,3,4,5,6,8) 198
The Antiprismatic Groups D nd ( n =2,3,4,5,6) 199
The Tetrahedral and Cubic Groups 201
The Icosahedral Groups 202
A.2
Infinite Groups 203
Cylindrical Symmetry 203
Spherical Symmetry 204
Character tables were introduced to chemistry
through the pioneering work of Robert Mulliken [ 1 ]. The book on “Chemical Applications of Group
Theory” by F. Albert Cotton has been instrumental in disseminating
their use in chemistry [ 2 ].
Atkins, Child, and Phillips [ 3 ]
produced a handy pamphlet of the point group character tables.
1
A.1 Finite Point Groups
C 1 and the Binary Groups C s , C i , C 2
![A303787_1_En_BookBackmatter_Figa_HTML.gif](A303787_1_En_BookBackmatter_Figa_HTML.gif)
![A303787_1_En_BookBackmatter_Figb_HTML.gif](A303787_1_En_BookBackmatter_Figb_HTML.gif)
![A303787_1_En_BookBackmatter_Figc_HTML.gif](A303787_1_En_BookBackmatter_Figc_HTML.gif)
![A303787_1_En_BookBackmatter_Figd_HTML.gif](A303787_1_En_BookBackmatter_Figd_HTML.gif)
The Cyclic Groups C n ( n =3,4,5,6,7,8)
![A303787_1_En_BookBackmatter_Fige_HTML.gif](A303787_1_En_BookBackmatter_Fige_HTML.gif)
![A303787_1_En_BookBackmatter_Figf_HTML.gif](A303787_1_En_BookBackmatter_Figf_HTML.gif)
![A303787_1_En_BookBackmatter_Figg_HTML.gif](A303787_1_En_BookBackmatter_Figg_HTML.gif)
![A303787_1_En_BookBackmatter_Figh_HTML.gif](A303787_1_En_BookBackmatter_Figh_HTML.gif)
![A303787_1_En_BookBackmatter_Figi_HTML.gif](A303787_1_En_BookBackmatter_Figi_HTML.gif)
![A303787_1_En_BookBackmatter_Figj_HTML.gif](A303787_1_En_BookBackmatter_Figj_HTML.gif)
The Dihedral Groups D n ( n =2,3,4,5,6)
![A303787_1_En_BookBackmatter_Figk_HTML.gif](A303787_1_En_BookBackmatter_Figk_HTML.gif)
![A303787_1_En_BookBackmatter_Figl_HTML.gif](A303787_1_En_BookBackmatter_Figl_HTML.gif)
![A303787_1_En_BookBackmatter_Figm_HTML.gif](A303787_1_En_BookBackmatter_Figm_HTML.gif)
![A303787_1_En_BookBackmatter_Fign_HTML.gif](A303787_1_En_BookBackmatter_Fign_HTML.gif)
![A303787_1_En_BookBackmatter_Figo_HTML.gif](A303787_1_En_BookBackmatter_Figo_HTML.gif)
The Conical Groups C nv ( n =2,3,4,5,6)
![A303787_1_En_BookBackmatter_Figp_HTML.gif](A303787_1_En_BookBackmatter_Figp_HTML.gif)
![A303787_1_En_BookBackmatter_Figq_HTML.gif](A303787_1_En_BookBackmatter_Figq_HTML.gif)
![A303787_1_En_BookBackmatter_Figr_HTML.gif](A303787_1_En_BookBackmatter_Figr_HTML.gif)
![A303787_1_En_BookBackmatter_Figs_HTML.gif](A303787_1_En_BookBackmatter_Figs_HTML.gif)
![A303787_1_En_BookBackmatter_Figt_HTML.gif](A303787_1_En_BookBackmatter_Figt_HTML.gif)
The C nh Groups ( n =2,3,4,5,6)
![A303787_1_En_BookBackmatter_Figu_HTML.gif](A303787_1_En_BookBackmatter_Figu_HTML.gif)
![A303787_1_En_BookBackmatter_Figv_HTML.gif](A303787_1_En_BookBackmatter_Figv_HTML.gif)
![A303787_1_En_BookBackmatter_Figw_HTML.gif](A303787_1_En_BookBackmatter_Figw_HTML.gif)
![A303787_1_En_BookBackmatter_Figx_HTML.gif](A303787_1_En_BookBackmatter_Figx_HTML.gif)
![A303787_1_En_BookBackmatter_Figy_HTML.gif](A303787_1_En_BookBackmatter_Figy_HTML.gif)
The Rotation–Reflection Groups S 2 n ( n =2,3,4)
![A303787_1_En_BookBackmatter_Figz_HTML.gif](A303787_1_En_BookBackmatter_Figz_HTML.gif)
![A303787_1_En_BookBackmatter_Figaa_HTML.gif](A303787_1_En_BookBackmatter_Figaa_HTML.gif)
![A303787_1_En_BookBackmatter_Figab_HTML.gif](A303787_1_En_BookBackmatter_Figab_HTML.gif)
The Prismatic Groups D nh ( n =2,3,4,5,6,8)
![A303787_1_En_BookBackmatter_Figac_HTML.gif](A303787_1_En_BookBackmatter_Figac_HTML.gif)
![A303787_1_En_BookBackmatter_Figad_HTML.gif](A303787_1_En_BookBackmatter_Figad_HTML.gif)
![A303787_1_En_BookBackmatter_Figae_HTML.gif](A303787_1_En_BookBackmatter_Figae_HTML.gif)
![A303787_1_En_BookBackmatter_Figaf_HTML.gif](A303787_1_En_BookBackmatter_Figaf_HTML.gif)
![A303787_1_En_BookBackmatter_Figag_HTML.gif](A303787_1_En_BookBackmatter_Figag_HTML.gif)
![A303787_1_En_BookBackmatter_Figah_HTML.gif](A303787_1_En_BookBackmatter_Figah_HTML.gif)
The Antiprismatic Groups D nd ( n =2,3,4,5,6)
![A303787_1_En_BookBackmatter_Figai_HTML.gif](A303787_1_En_BookBackmatter_Figai_HTML.gif)
![A303787_1_En_BookBackmatter_Figaj_HTML.gif](A303787_1_En_BookBackmatter_Figaj_HTML.gif)
![A303787_1_En_BookBackmatter_Figak_HTML.gif](A303787_1_En_BookBackmatter_Figak_HTML.gif)
![A303787_1_En_BookBackmatter_Figal_HTML.gif](A303787_1_En_BookBackmatter_Figal_HTML.gif)
![A303787_1_En_BookBackmatter_Figam_HTML.gif](A303787_1_En_BookBackmatter_Figam_HTML.gif)
The Tetrahedral and Cubic Groups
![A303787_1_En_BookBackmatter_Figan_HTML.gif](A303787_1_En_BookBackmatter_Figan_HTML.gif)
![A303787_1_En_BookBackmatter_Figao_HTML.gif](A303787_1_En_BookBackmatter_Figao_HTML.gif)
![A303787_1_En_BookBackmatter_Figap_HTML.gif](A303787_1_En_BookBackmatter_Figap_HTML.gif)
![A303787_1_En_BookBackmatter_Figaq_HTML.gif](A303787_1_En_BookBackmatter_Figaq_HTML.gif)
![A303787_1_En_BookBackmatter_Figar_HTML.gif](A303787_1_En_BookBackmatter_Figar_HTML.gif)
The Icosahedral Groups
![A303787_1_En_BookBackmatter_Figas_HTML.gif](A303787_1_En_BookBackmatter_Figas_HTML.gif)
![A303787_1_En_BookBackmatter_Figat_HTML.gif](A303787_1_En_BookBackmatter_Figat_HTML.gif)
A.2 Infinite Groups
Cylindrical Symmetry
![A303787_1_En_BookBackmatter_Figau_HTML.gif](A303787_1_En_BookBackmatter_Figau_HTML.gif)
![A303787_1_En_BookBackmatter_Figav_HTML.gif](A303787_1_En_BookBackmatter_Figav_HTML.gif)
![A303787_1_En_BookBackmatter_Figaw_HTML.gif](A303787_1_En_BookBackmatter_Figaw_HTML.gif)
![A303787_1_En_BookBackmatter_Figax_HTML.gif](A303787_1_En_BookBackmatter_Figax_HTML.gif)
Spherical Symmetry
![A303787_1_En_BookBackmatter_Figay_HTML.gif](A303787_1_En_BookBackmatter_Figay_HTML.gif)
![A303787_1_En_BookBackmatter_Figaz_HTML.gif](A303787_1_En_BookBackmatter_Figaz_HTML.gif)
Appendix B Symmetry Breaking by Uniform Linear Electric and Magnetic Fields
Contents
B.1
Spherical Groups 205
B.2
Binary and Cylindrical Groups 205
B.1 Spherical Groups
![A303787_1_En_BookBackmatter_Figba_HTML.gif](A303787_1_En_BookBackmatter_Figba_HTML.gif)
B.2 Binary and Cylindrical Groups
The ∥ notation refers to a field oriented along
the principal cylindrical axis; in the ⊥ direction several symmetry
breakings are possible: C
2 symmetry implies that the field coincides with the
axis; a magnetic field perpendicular to a
symmetry plane or an electric field in a symmetry plane will
conserve at least C
s symmetry.
![$\hat{C}_{2}$](A303787_1_En_BookBackmatter_OnlinePDF_IEq3.gif)
![A303787_1_En_BookBackmatter_Figbb_HTML.gif](A303787_1_En_BookBackmatter_Figbb_HTML.gif)
Appendix C Subduction and Induction
Contents
C.1
Subduction G ↓ H 207
C.2
Induction: H ↑ G 211
C.1 Subduction G ↓ H
![A303787_1_En_BookBackmatter_Figbc_HTML.gif](A303787_1_En_BookBackmatter_Figbc_HTML.gif)
![A303787_1_En_BookBackmatter_Figbd_HTML.gif](A303787_1_En_BookBackmatter_Figbd_HTML.gif)
![A303787_1_En_BookBackmatter_Figbe_HTML.gif](A303787_1_En_BookBackmatter_Figbe_HTML.gif)
![A303787_1_En_BookBackmatter_Figbf_HTML.gif](A303787_1_En_BookBackmatter_Figbf_HTML.gif)
![A303787_1_En_BookBackmatter_Figbg_HTML.gif](A303787_1_En_BookBackmatter_Figbg_HTML.gif)
![A303787_1_En_BookBackmatter_Figbh_HTML.gif](A303787_1_En_BookBackmatter_Figbh_HTML.gif)
![A303787_1_En_BookBackmatter_Figbi_HTML.gif](A303787_1_En_BookBackmatter_Figbi_HTML.gif)
![A303787_1_En_BookBackmatter_Figbj_HTML.gif](A303787_1_En_BookBackmatter_Figbj_HTML.gif)
C.2 Induction: H ↑ G
Ascent in symmetry tables have been provided by
Boyle [ 4 ]. Fowler and Quinn have
listed the irreps that are induced by σ -, π -, and δ -type orbitals on molecular sites [
5 ]. These tables are reproduced
below. They are useful for the construction of cluster orbitals.
always denotes the regular
representation. Γ
σ corresponds to
the positional representation. The mechanical representation is the
sum Γ σ + Γ π .
![$\varGamma_{\it reg}$](A303787_1_En_BookBackmatter_OnlinePDF_IEq4.gif)
![A303787_1_En_BookBackmatter_Figbk_HTML.gif](A303787_1_En_BookBackmatter_Figbk_HTML.gif)
![A303787_1_En_BookBackmatter_Figbl_HTML.gif](A303787_1_En_BookBackmatter_Figbl_HTML.gif)
![A303787_1_En_BookBackmatter_Figbm_HTML.gif](A303787_1_En_BookBackmatter_Figbm_HTML.gif)
![A303787_1_En_BookBackmatter_Figbn_HTML.gif](A303787_1_En_BookBackmatter_Figbn_HTML.gif)
Appendix D Canonical-Basis Relationships
The importance of canonical-basis relationships
was demonstrated by Griffith in his monumental work on the theory
of transition-metal ions [ 6 ]. The
icosahedral basis sets were defined by Boyle and Parker [
7 ].
![A303787_1_En_BookBackmatter_Figbo_HTML.gif](A303787_1_En_BookBackmatter_Figbo_HTML.gif)
![A303787_1_En_BookBackmatter_Figbp_HTML.gif](A303787_1_En_BookBackmatter_Figbp_HTML.gif)
![A303787_1_En_BookBackmatter_Figbq_HTML.gif](A303787_1_En_BookBackmatter_Figbq_HTML.gif)
![A303787_1_En_BookBackmatter_Figbr_HTML.gif](A303787_1_En_BookBackmatter_Figbr_HTML.gif)
![A303787_1_En_BookBackmatter_Figbs_HTML.gif](A303787_1_En_BookBackmatter_Figbs_HTML.gif)
(See Fig. D.1 .) Transformation to
trigonal basis set:
![$$\begin{aligned} |E_{\theta}\rangle =& d_{z^2} = \frac{1}{\sqrt{3}} (-d_{x'^2-y'^2}- \sqrt{2}d_{y'z'} ) \\ |E_{\epsilon}\rangle =& d_{x^2-y^2} = \frac{1}{\sqrt{3}} (d_{x'y'}+ \sqrt{2} d_{x'z'} ) \\ |T_{1a}\rangle =& \frac{1}{\sqrt{3}} \bigl( |T_{1x}\rangle + |T_{1y}\rangle+|T_{1z}\rangle \bigr) = p_{z'} \\ |T_{1\theta}\rangle =& \frac{1}{\sqrt{2}} \bigl( |T_{1x}\rangle - |T_{1y}\rangle \bigr) = p_{x'} \\ |T_{1\epsilon}\rangle =& \frac{1}{\sqrt{6}} \bigl( |T_{1x}\rangle + |T_{1y}\rangle-2|T_{1z}\rangle \bigr) = p_{y'} \\ |T_{2a}\rangle =& \frac{1}{\sqrt{3}} \bigl( |T_{2\xi}\rangle + |T_{2\eta}\rangle+|T_{2\zeta}\rangle \bigr) = d_{z'^2} \\ |T_{2\theta}\rangle =& \frac{1}{\sqrt{6}} \bigl( |T_{2\xi}\rangle + |T_{2\eta}\rangle-2|T_{2\zeta}\rangle \bigr) = \frac{1}{\sqrt{3}} ( \sqrt{2}d_{x'^2-y'^2}- d_{y'z'} ) \\ |T_{2\epsilon}\rangle =& \frac{1}{\sqrt{2}} \bigl( |T_{2\eta}\rangle - |T_{2\xi}\rangle \bigr) = \frac{1}{\sqrt{3}} (- \sqrt{2}d_{x'y'}+ d_{x'z'} ) \end{aligned}$$](A303787_1_En_BookBackmatter_OnlinePDF_Equa.gif)
![A303787_1_En_BookBackmatter_Figbt_HTML.gif](A303787_1_En_BookBackmatter_Figbt_HTML.gif)
![A303787_1_En_BookBackmatter_Figbu_HTML.gif](A303787_1_En_BookBackmatter_Figbu_HTML.gif)
![A303787_1_En_BookBackmatter_Figbv_HTML.gif](A303787_1_En_BookBackmatter_Figbv_HTML.gif)
![A303787_1_En_BookBackmatter_Fig1_HTML.gif](A303787_1_En_BookBackmatter_Fig1_HTML.gif)
Fig. D.1
Octahedron with x , y , z coordinates in D 4 and D 3 setting
![A303787_1_En_BookBackmatter_Fig2_HTML.gif](A303787_1_En_BookBackmatter_Fig2_HTML.gif)
Fig. D.2
Icosahedron with x , y , z coordinates in D 2 setting
It is important to note that in the Boyle and
Parker basis the | Hθ 〉 and
| Hϵ 〉 components do not
denote components that transform like the functions
and
, but refer to linear combinations
of these:
![$d_{z^{2}}$](A303787_1_En_BookBackmatter_OnlinePDF_IEq5.gif)
![$d_{x^{2}-y^{2}}$](A303787_1_En_BookBackmatter_OnlinePDF_IEq6.gif)
![$$\begin{aligned} |H\theta\rangle =& \sqrt{\frac{3}{8}} d_{z^2} +\sqrt{ \frac{5}{8}}d_{x^2-y^2} \\ |H\epsilon\rangle =& -\sqrt{\frac{5}{8}} d_{z^2} +\sqrt{ \frac{3}{8}}d_{x^2-y^2} \end{aligned}$$](A303787_1_En_BookBackmatter_OnlinePDF_Equb.gif)
Griffith has presented the subduction of
spherical | JM 〉 states to
point-group canonical bases for the case of the octahedral group.
Similar tables for subduction to the icosahedral canonical basis
have been published by Qiu and Ceulemans [ 8 ]. Extensive tables of bases in terms of
spherical harmonics for several branching schemes are also provided
by Butler [ 9 ].
Appendix E Direct-Product Tables
Extensive direct-product tables are provided by
Herzberg [ 10 ]. Antisymmetrized
and symmetrized parts of direct squares are indicated by braces and
brackets, respectively.
![A303787_1_En_BookBackmatter_Figbw_HTML.gif](A303787_1_En_BookBackmatter_Figbw_HTML.gif)
![A303787_1_En_BookBackmatter_Figbx_HTML.gif](A303787_1_En_BookBackmatter_Figbx_HTML.gif)
![A303787_1_En_BookBackmatter_Figby_HTML.gif](A303787_1_En_BookBackmatter_Figby_HTML.gif)
![A303787_1_En_BookBackmatter_Figbz_HTML.gif](A303787_1_En_BookBackmatter_Figbz_HTML.gif)
![A303787_1_En_BookBackmatter_Figca_HTML.gif](A303787_1_En_BookBackmatter_Figca_HTML.gif)
![A303787_1_En_BookBackmatter_Figcb_HTML.gif](A303787_1_En_BookBackmatter_Figcb_HTML.gif)
![A303787_1_En_BookBackmatter_Figcc_HTML.gif](A303787_1_En_BookBackmatter_Figcc_HTML.gif)
Appendix F Coupling Coefficients
Coupling coefficients are denoted as 3
Γ symbols: 〈 Γ a γ a Γ b γ b | Γγ 〉. Their symmetry properties were
given in Sect. 6.3 . Octahedral coefficients have
been listed by Griffith. Icosahedral coefficients are taken from
the work of Fowler and Ceulemans [ 11 ].
![A303787_1_En_BookBackmatter_Figcd_HTML.gif](A303787_1_En_BookBackmatter_Figcd_HTML.gif)
![A303787_1_En_BookBackmatter_Figce_HTML.gif](A303787_1_En_BookBackmatter_Figce_HTML.gif)
![A303787_1_En_BookBackmatter_Figcf_HTML.gif](A303787_1_En_BookBackmatter_Figcf_HTML.gif)
![A303787_1_En_BookBackmatter_Figcg_HTML.gif](A303787_1_En_BookBackmatter_Figcg_HTML.gif)
![A303787_1_En_BookBackmatter_Figch_HTML.gif](A303787_1_En_BookBackmatter_Figch_HTML.gif)
![A303787_1_En_BookBackmatter_Figci_HTML.gif](A303787_1_En_BookBackmatter_Figci_HTML.gif)
![A303787_1_En_BookBackmatter_Figcj_HTML.gif](A303787_1_En_BookBackmatter_Figcj_HTML.gif)
![A303787_1_En_BookBackmatter_Figck_HTML.gif](A303787_1_En_BookBackmatter_Figck_HTML.gif)
![A303787_1_En_BookBackmatter_Figcl_HTML.gif](A303787_1_En_BookBackmatter_Figcl_HTML.gif)
![A303787_1_En_BookBackmatter_Figcm_HTML.gif](A303787_1_En_BookBackmatter_Figcm_HTML.gif)
In the icosahedral tables, ϕ denotes the golden number
, and α =3 ϕ −1, β =3 ϕ −1 +1.
![$(1+\sqrt{5} )/2$](A303787_1_En_BookBackmatter_OnlinePDF_IEq7.gif)
![A303787_1_En_BookBackmatter_Figcn_HTML.gif](A303787_1_En_BookBackmatter_Figcn_HTML.gif)
![A303787_1_En_BookBackmatter_Figco_HTML.gif](A303787_1_En_BookBackmatter_Figco_HTML.gif)
![A303787_1_En_BookBackmatter_Figcp_HTML.gif](A303787_1_En_BookBackmatter_Figcp_HTML.gif)
![A303787_1_En_BookBackmatter_Figcq_HTML.gif](A303787_1_En_BookBackmatter_Figcq_HTML.gif)
![A303787_1_En_BookBackmatter_Figcr_HTML.gif](A303787_1_En_BookBackmatter_Figcr_HTML.gif)
![A303787_1_En_BookBackmatter_Figcs_HTML.gif](A303787_1_En_BookBackmatter_Figcs_HTML.gif)
![A303787_1_En_BookBackmatter_Figct_HTML.gif](A303787_1_En_BookBackmatter_Figct_HTML.gif)
![A303787_1_En_BookBackmatter_Figcu_HTML.gif](A303787_1_En_BookBackmatter_Figcu_HTML.gif)
![A303787_1_En_BookBackmatter_Figcv_HTML.gif](A303787_1_En_BookBackmatter_Figcv_HTML.gif)
![A303787_1_En_BookBackmatter_Figcw_HTML.gif](A303787_1_En_BookBackmatter_Figcw_HTML.gif)
![A303787_1_En_BookBackmatter_Figcx_HTML.gif](A303787_1_En_BookBackmatter_Figcx_HTML.gif)
![A303787_1_En_BookBackmatter_Figcy_HTML.gif](A303787_1_En_BookBackmatter_Figcy_HTML.gif)
![A303787_1_En_BookBackmatter_Figcz_HTML.gif](A303787_1_En_BookBackmatter_Figcz_HTML.gif)
Appendix G Spinor Representations
Contents
G.1
Character Tables 235
G.2
Subduction 237
G.3
Canonical-Basis Relationships 237
G.4
Direct-Product Tables 240
G.5
Coupling Coefficients 241
Extensive character tables for double groups were
provided by Herzberg. The ℵ symbol in the present table corresponds
to the Bethe rotation through an angle of 2 π . Spin-orbit coupling coefficients
for the icosahedral double group have been listed by Fowler and
Ceulemans [ 12 ]. The notation
ρ 1 ,
ρ 2 for
conjugate components follows Griffith. The single-valued irreps in
Appendix A also represent the double groups. The rotation
through 2 π leaves these
irreps invariant. Their characters under
and
are thus the same.
![$\hat{R}$](A303787_1_En_BookBackmatter_OnlinePDF_IEq8.gif)
![$\aleph \hat{R}$](A303787_1_En_BookBackmatter_OnlinePDF_IEq9.gif)
G.1 Character Tables
![A303787_1_En_BookBackmatter_Figda_HTML.gif](A303787_1_En_BookBackmatter_Figda_HTML.gif)
![A303787_1_En_BookBackmatter_Figdb_HTML.gif](A303787_1_En_BookBackmatter_Figdb_HTML.gif)
![A303787_1_En_BookBackmatter_Figdc_HTML.gif](A303787_1_En_BookBackmatter_Figdc_HTML.gif)
![A303787_1_En_BookBackmatter_Figdd_HTML.gif](A303787_1_En_BookBackmatter_Figdd_HTML.gif)
![A303787_1_En_BookBackmatter_Figde_HTML.gif](A303787_1_En_BookBackmatter_Figde_HTML.gif)
![A303787_1_En_BookBackmatter_Figdf_HTML.gif](A303787_1_En_BookBackmatter_Figdf_HTML.gif)
![A303787_1_En_BookBackmatter_Figdg_HTML.gif](A303787_1_En_BookBackmatter_Figdg_HTML.gif)
![A303787_1_En_BookBackmatter_Figdh_HTML.gif](A303787_1_En_BookBackmatter_Figdh_HTML.gif)
G.2 Subduction
![A303787_1_En_BookBackmatter_Figdi_HTML.gif](A303787_1_En_BookBackmatter_Figdi_HTML.gif)
G.3 Canonical-Basis Relationships
![A303787_1_En_BookBackmatter_Figdj_HTML.gif](A303787_1_En_BookBackmatter_Figdj_HTML.gif)
![A303787_1_En_BookBackmatter_Figdk_HTML.gif](A303787_1_En_BookBackmatter_Figdk_HTML.gif)
![A303787_1_En_BookBackmatter_Figdl_HTML.gif](A303787_1_En_BookBackmatter_Figdl_HTML.gif)
![A303787_1_En_BookBackmatter_Figdm_HTML.gif](A303787_1_En_BookBackmatter_Figdm_HTML.gif)
![A303787_1_En_BookBackmatter_Figdn_HTML.gif](A303787_1_En_BookBackmatter_Figdn_HTML.gif)
![A303787_1_En_BookBackmatter_Figdo_HTML.gif](A303787_1_En_BookBackmatter_Figdo_HTML.gif)
![A303787_1_En_BookBackmatter_Figdp_HTML.gif](A303787_1_En_BookBackmatter_Figdp_HTML.gif)
G.4 Direct-Product Tables
![A303787_1_En_BookBackmatter_Figdq_HTML.gif](A303787_1_En_BookBackmatter_Figdq_HTML.gif)
![A303787_1_En_BookBackmatter_Figdr_HTML.gif](A303787_1_En_BookBackmatter_Figdr_HTML.gif)
![A303787_1_En_BookBackmatter_Figds_HTML.gif](A303787_1_En_BookBackmatter_Figds_HTML.gif)
![A303787_1_En_BookBackmatter_Figdt_HTML.gif](A303787_1_En_BookBackmatter_Figdt_HTML.gif)
![A303787_1_En_BookBackmatter_Figdu_HTML.gif](A303787_1_En_BookBackmatter_Figdu_HTML.gif)
![A303787_1_En_BookBackmatter_Figdv_HTML.gif](A303787_1_En_BookBackmatter_Figdv_HTML.gif)
G.5 Coupling Coefficients
![A303787_1_En_BookBackmatter_Figdw_HTML.gif](A303787_1_En_BookBackmatter_Figdw_HTML.gif)
![A303787_1_En_BookBackmatter_Figdx_HTML.gif](A303787_1_En_BookBackmatter_Figdx_HTML.gif)
![A303787_1_En_BookBackmatter_Figdy_HTML.gif](A303787_1_En_BookBackmatter_Figdy_HTML.gif)
Canonical complex T 1 and T 2 basis functions:
![$$\begin{aligned} T_1: \ \ & |1\rangle = \frac{1}{\sqrt{2}} \bigl[ -|T_{1x} \rangle - i |T_{1y}\rangle \bigr] \\ \ \ & |{0}\rangle =|T_{1z}\rangle \\ \ \ & |{-}1\rangle = \frac{1}{\sqrt{2}} \bigl[ |T_{1x}\rangle - i |T_{1y}\rangle \bigr] \\ T_2: \ \ & |1\rangle = \frac{1}{\sqrt{2}} \bigl[ -|T_{2x} \rangle - i |T_{2y}\rangle \bigr] \\ \ \ & |{0}\rangle = |T_{2z}\rangle \\ \ \ & |{-}1\rangle = \frac{1}{\sqrt{2}} \bigl[ |T_{2x}\rangle - i |T_{2y}\rangle \bigr] \end{aligned}$$](A303787_1_En_BookBackmatter_OnlinePDF_Equc.gif)
![A303787_1_En_BookBackmatter_Figdz_HTML.gif](A303787_1_En_BookBackmatter_Figdz_HTML.gif)
![A303787_1_En_BookBackmatter_Figea_HTML.gif](A303787_1_En_BookBackmatter_Figea_HTML.gif)
![A303787_1_En_BookBackmatter_Figeb_HTML.gif](A303787_1_En_BookBackmatter_Figeb_HTML.gif)
![A303787_1_En_BookBackmatter_Figec_HTML.gif](A303787_1_En_BookBackmatter_Figec_HTML.gif)
Solutions to Problems
1.1
The diagram for the product
is the same as in
Fig. 1.1 , except for the intermediate
point P 2 , which should be denoted by a circle instead
of a cross, since it is now below the gray disc. However, the end
point P 3 remains the same, irrespective of the order of
the operators. This implies that their commutator vanishes.
![$\hat{C}_{2}^{z} \;\hat{\imath}$](A303787_1_En_BookBackmatter_OnlinePDF_IEq10.gif)
1.2
Represent the rotation of the coordinates by the
rotational matrix
as given by
Express the sum
as the scalar
product of the coordinate row with the coordinate column and verify
that this scalar product remains invariant under the matrix
transformation.
![$\mathbb{D}$](A303787_1_En_BookBackmatter_OnlinePDF_IEq11.gif)
![$$\begin{aligned} &\left ( {\begin{array}{c} {{\mathrm{x}_2}} \\ {{\mathrm{y}_2}} \\ \end{array} } \right ) = \mathbb{D} \left ( {\begin{array}{c} \mathrm{x}_1 \\ \mathrm{y}_1 \\ \end{array} } \right ) =\left ( {\begin{array}{c@{\quad}c} {\cos \alpha } & { - \sin \alpha } \\ {\sin \alpha } & { \cos \alpha } \\ \end{array} } \right ) \left ( {\begin{array}{c} \mathrm{x}_1 \\ \mathrm{y}_1 \\ \end{array} } \right ) \\ &\left ( {\begin{array}{c@{\quad}c} {{\mathrm{x}_2}} & {{\mathrm{y}_2}} \end{array} } \right ) = \left ( {\begin{array}{c@{\quad}c} {{\mathrm{x}_1}} & {{\mathrm{y}_1}} \end{array} } \right ) \mathbb{D}^T =\left ( {\begin{array}{c@{\quad}c} {{\mathrm{x}_1}} & {{\mathrm{y}_1}} \end{array} } \right ) \left ( {\begin{array}{c@{\quad}c} {\cos \alpha } & { \sin \alpha } \\ {-\sin \alpha } & { \cos \alpha } \\ \end{array} } \right ) \end{aligned}$$](A303787_1_En_BookBackmatter_OnlinePDF_Equd.gif)
![$\mathrm{x}_{2}^{2} +\mathrm{y}^{2}_{2}$](A303787_1_En_BookBackmatter_OnlinePDF_IEq12.gif)
1.3
In general, the radius does not change if
is orthogonal, i.e., if
![$\mathbb{D}$](A303787_1_En_BookBackmatter_OnlinePDF_IEq13.gif)
![$$ \mathbb{D}^T\times\mathbb{D} =\mathbb{I} $$](A303787_1_En_BookBackmatter_OnlinePDF_Eque.gif)
1.4
Apply the general rule that a displacement of the
function corresponds to an opposite coordinate displacement. As a
result of the transformation, the function acquires an additional
phase factor:
![$$ \mathcal{T}_a \; e^{ikx} =e^{ik(x-a)} = e^{-ika}e^{ikx} $$](A303787_1_En_BookBackmatter_OnlinePDF_Equf.gif)
1.5
The action of a rotation about the z -axis can be expressed by a
differential operator as
The unit element corresponds to α =0, and hence,
The angular momentum operator is given by
The angular momentum operator thus is proportional to an
infinitesimal rotation in the neighborhood of the unit
element.
![$$ \hat{O}(\alpha) = \cos{\alpha} \biggl( x\frac{\partial}{\partial x} +y\frac{\partial}{\partial y} \biggr) + \sin{\alpha} \biggl( y\frac{\partial}{\partial x} -x\frac{\partial}{\partial y} \biggr) $$](A303787_1_En_BookBackmatter_OnlinePDF_Equg.gif)
![$$ \hat{E} =\hat{O}(0) = \biggl( x\frac{\partial}{\partial x} +y\frac{\partial}{\partial y} \biggr) $$](A303787_1_En_BookBackmatter_OnlinePDF_Equh.gif)
![$$\begin{aligned} \mathcal{L}_z =& xp_y - yp_x \\ =& \frac{\hbar}{i} \biggl(x\frac{\partial}{\partial y} -y\frac{\partial}{\partial x} \biggr) \\ =& - \frac{\hbar}{i}\lim_{\alpha \rightarrow 0} \frac{\hat{O}(\alpha) -\hat{E}}{\alpha} \end{aligned}$$](A303787_1_En_BookBackmatter_OnlinePDF_Equi.gif)
2.1
The condition that
be unitary gives rise to six equations:
From these equations it is clear that | a |=| d | and | b |=| c |. The phase relationships may be
reduced to
With the help of these results the four matrix entries can be
rewritten as
The general U (2) matrix
may thus be rewritten as
with | a | 2 +|
b | 2 =1. Note
that a general phase factor has been taken out. The remaining
matrix has determinant +1 and is called a special unitary matrix
(see further in Chap. 7 ).
![$\mathbb{C}$](A303787_1_En_BookBackmatter_OnlinePDF_IEq14.gif)
![$$\begin{aligned} 1 =& |a|^2 + |b|^2 \\ 1 =&|a|^2 +|c|^2 \\ 1 =&|b|^2 +|d|^2 \\ 1 =& |c|^2 + |d|^2 \\ 0 =&|ac|e^{i(\alpha-\gamma)} +|bd| e^{i(\beta-\delta)} \\ 0 =&|ab|e^{i(\alpha-\beta)} +|cd| e^{i(\gamma-\delta)} \end{aligned}$$](A303787_1_En_BookBackmatter_OnlinePDF_Equj.gif)
![$$ e^{i(\beta + \gamma)} = -e^{i(\alpha + \delta)} $$](A303787_1_En_BookBackmatter_OnlinePDF_Equk.gif)
![$$\begin{aligned} |a|e^{i\alpha} =& |a|e^{i(\alpha+\delta)/2} e^{i(\alpha - \delta)/2} \\ |d|e^{i\delta} =& |a|e^{i(\alpha+\delta)/2} e^{-i(\alpha - \delta)/2} \\ |b|e^{i\beta} =& |b|e^{i(\alpha+\delta)/2} e^{i [\beta -\frac{\alpha + \delta}{2} ]} \\ |c|e^{i\gamma} =& -|b|e^{i(\alpha+\delta)/2} e^{i [-\beta +\frac{\alpha + \delta}{2} ]} \end{aligned}$$](A303787_1_En_BookBackmatter_OnlinePDF_Equl.gif)
![$$ \mathbb{U} = e^{i(\alpha+\delta)/2}\left ( {\begin{array}{c@{\quad}c} |a| e^{i(\alpha - \delta)/2} & |b|e^{i [\beta -\frac{\alpha + \delta}{2} ]} \\ -|b| e^{i [-\beta +\frac{\alpha + \delta}{2} ]} & |a|e^{-i(\alpha - \delta)/2} \\ \end{array} } \right ) $$](A303787_1_En_BookBackmatter_OnlinePDF_Equm.gif)
2.2
The relevant integrals are given by
The normalized cyclic waves are thus given by
and these waves are orthogonal: 〈− k | k 〉=0.
![$$\begin{aligned} \int_0^{2\pi}e^{-ik\phi}e^{ik\phi}d \phi = [\phi]_0^{2\pi} = 2\pi& \\ \int_0^{2\pi}e^{\pm 2ik\phi}d\phi = \frac{1}{\pm 2ik}\bigl[e^{\pm 2ik\phi}\bigr]_0^{2\pi} = 0& \end{aligned}$$](A303787_1_En_BookBackmatter_OnlinePDF_Equn.gif)
![$$ |\pm k\rangle = \frac{1}{\sqrt{2\pi}} e^{\pm i k\phi} $$](A303787_1_En_BookBackmatter_OnlinePDF_Equo.gif)
2.3
The combination of transposition and complex
conjugation is called the adjoint operation, indicated by a
dagger. A Hermitian matrix is thus self-adjoint. An eigenfunction
of this matrix, operating in a function space, may be expressed as
a linear combination
We may arrange the expansion coefficients as a column vector
c . This is called the
eigenvector. Its adjoint, c
† , is then the complex-conjugate row vector. The
corresponding eigenvalue is denoted as E m . Now start by writing the
eigenvalue equation and multiply left and right with the adjoint
eigenvector:
Now take the adjoint and use the self-adjoint property of
:
A comparison of both results shows that the eigenvalue must be
equal to its complex conjugate and hence be real. If
is skew-symmetric, a similar argument
shows that the eigenvalue must be imaginary.
![$$ |\psi_m\rangle = \sum_{k}c_{k} |f_k\rangle $$](A303787_1_En_BookBackmatter_OnlinePDF_Equp.gif)
![$$\begin{aligned} \mathbb{H} \mathbf{c} =& E_m \mathbf{c} \\ \mathbf{c}^\dagger \mathbb{H} \mathbf{c} =& E_m \mathbf{c}^\dagger \mathbf{c} \end{aligned}$$](A303787_1_En_BookBackmatter_OnlinePDF_Equq.gif)
![$\mathbb{H}$](A303787_1_En_BookBackmatter_OnlinePDF_IEq15.gif)
![$$\begin{aligned} \mathbf{c}^\dagger \mathbb{H}^{\dagger} \mathbf{c} =& \bar{E}_m\mathbf{c}^\dagger \mathbf{c} \\ \mathbf{c}^\dagger \mathbb{H} \mathbf{c} =& \bar{E}_m \mathbf{c}^\dagger \mathbf{c} \end{aligned}$$](A303787_1_En_BookBackmatter_OnlinePDF_Equr.gif)
![$\mathbb{H}$](A303787_1_En_BookBackmatter_OnlinePDF_IEq16.gif)
3.1
The table is a valid multiplication table of a
group that is isomorphic to D 2 . The element
C is the unit element.
There are six ways to assign the three twofold axes to the letters
A , B , D .
3.2
Any nonlinear triatomic molecule with three
different atoms has only C
s symmetry,
e.g., a water molecule with one hydrogen replaced by deuterium.
C 2 symmetry
requires a nonplanar tetra-atomic molecule, such as H 2
O 2 . In the free state the dihedral angle of this
molecule is almost a right angle (see the figure). To realize
C i symmetry, one needs at least
six atoms. Since three atoms are always coplanar, the smallest
molecule with no symmetry at all has at least four atoms.
![A303787_1_En_BookBackmatter_Figed_HTML.gif](A303787_1_En_BookBackmatter_Figed_HTML.gif)
3.3
There are only three regular tesselations of the
plane: triangles, squares, and hexagons.
3.4
The rotation generates points that are lying on a
circle, perpendicular to the rotation. If the rotational angle is
not a rational fraction of a full angle, every time the rotation is
repeated, a new point will be generated. To obtain an integer
order, the additional requirement is to be added that the original
point is retrieved after one full turn.
3.5
Consider a subgroup H ⊂ G such that | G |/| H |=2. Then the coset expansion of
G will be limited to only
two cosets:
Here
is a coset generator outside H . The subgroup is normal if the right
and left cosets coincide, Since there is only one coset outside
H , it is required that
Suppose that this equation does not hold. Then this can only mean
that there are elements in H such that
But then the coset generator must be an element of H , which contradicts the staring
assumption.
![$$ G= H + \hat{g}H $$](A303787_1_En_BookBackmatter_OnlinePDF_Equs.gif)
![$\hat{g}$](A303787_1_En_BookBackmatter_OnlinePDF_IEq17.gif)
![$$ \hat{g} H = H \hat{g} $$](A303787_1_En_BookBackmatter_OnlinePDF_Equt.gif)
![$$ \hat{h}_x \hat{g} = \hat{h}_y $$](A303787_1_En_BookBackmatter_OnlinePDF_Equu.gif)
3.6
Soccer ball: I h . Tennis ball: D 2 d . Basketball: D 2 h . Trefoil knot: D 3 .
3.7
The figure (from Wikipedia) shows the helix
function for n =1. One full
turn is realized for t /
a =2 π ≈6.283. This is a right-handed helix.
![A303787_1_En_BookBackmatter_Figee_HTML.gif](A303787_1_En_BookBackmatter_Figee_HTML.gif)
The enantiomeric function reads:
Note that a uniform sign change of t would leave the right-handed helix
unchanged. For the discrete helix, the screw symmetry consists of a
translation in the z
-direction over a distance 2 πa / m in combination with a rotation around
the z -axis over an angle 2
πn / m . If m is irrational, the helix will not be
periodic, and the screw symmetry is lost.
![$$\begin{aligned} x(t) =& a\cos\biggl(\frac{nt}{a}\biggr) \\ y(t) =&a \sin\biggl(-\frac{nt}{a}\biggr) \\ z(t) = & t \end{aligned}$$](A303787_1_En_BookBackmatter_OnlinePDF_Equv.gif)
4.1
The site symmetry of a cube is T h . The cube is an invariant of
its site group and transforms as a g in T h . The set of five cubes thus
spans the induced representation: aT h ↑ I h . Applying the Frobenius
theorem to the subduction (see Sect. C.1 ), one obtains
![$$ aT_h\uparrow I_h = A_g + G_g $$](A303787_1_En_BookBackmatter_OnlinePDF_Equ1.gif)
(1)
4.2
The irreps can be obtained from the induction
table in Sect. C.2 , as Γ π C 3 v ↑ T d :
The SALCs shown span the tetrahedral E irrep, the one on the left is the
E θ component, and the one on the
right is the E
ϵ component.
Note that they transform into each other by rotating all
π -orbitals over 90
∘ in the same sense [ 13 ].
![$$ \varGamma_{\pi} C_{3v} \uparrow T_d = E + T_1 + T_2 $$](A303787_1_En_BookBackmatter_OnlinePDF_Equ2.gif)
(2)
4.3
The 24 carbon atoms of coronene form three
orbits: two orbits of six atoms, corresponding to the internal
hexagon and to the six atoms on the outer ring that have bonds to
the inner ring, and one orbit of the twelve remaining atoms. The
elements of the 6-orbit occupy sites of
symmetry, based on
in
D 6 h . The p z orbitals on these sites
transform as b 1
, and hence the induced irreps are as in the case of benzene:
The remaining 12-orbit connects carbon atoms with only C s site symmetry, the p z orbitals on these sites
transforming as a ″. The
induced irreps read:
The A 1 u and B 1 g irreps only appear in the
12-orbit, so we can infer that the molecular orbitals with this
symmetry will entirely be localized on the 12-orbit. The SALCs can
easily be constructed, as they should be antisymmetric with respect
to the
planes in order not to hybridize with
the SALCs based on the 6-orbits.
![$C'_{2v}$](A303787_1_En_BookBackmatter_OnlinePDF_IEq18.gif)
![$\hat{C}_{2}', \hat{\sigma}_{h}, \hat{\sigma}_{v}$](A303787_1_En_BookBackmatter_OnlinePDF_IEq19.gif)
![$$ b_1 C_{2v}\uparrow D_{6h} = B_{2g} + A_{2u} + E_{1g} + E_{2u} $$](A303787_1_En_BookBackmatter_OnlinePDF_Equ3.gif)
(3)
![$$ a'' C_{s}\uparrow D_{6h} = B_{1g} + B_{2g} + A_{1u} + A_{2u} + 2E_{1g} + 2E_{2u} $$](A303787_1_En_BookBackmatter_OnlinePDF_Equ4.gif)
(4)
![$\hat{\sigma}_{v}$](A303787_1_En_BookBackmatter_OnlinePDF_IEq20.gif)
![A303787_1_En_BookBackmatter_Figef_HTML.gif](A303787_1_En_BookBackmatter_Figef_HTML.gif)
4.4
The tangential π -orbitals transform as Γ π in the C 5 v site group of I h . According to Sect.
C.2 , one
has:
![$$ \varGamma_\pi \; C_{5v}\uparrow I_h = T_{1g}+T_{1u}+G_g+G_u+H_g+H_u $$](A303787_1_En_BookBackmatter_OnlinePDF_Equw.gif)
4.5
When the projector that generated the component
is characterized as
, the other components
may be found by varying the k index.
![$\hat{P}^{\varGamma_{i}}_{kl}$](A303787_1_En_BookBackmatter_OnlinePDF_IEq21.gif)
4.6
Act with an operator
on the projector and carry out the substitution
:
![$\hat{S}$](A303787_1_En_BookBackmatter_OnlinePDF_IEq22.gif)
![$\hat{R}=\hat{S}^{-1}\hat{T}$](A303787_1_En_BookBackmatter_OnlinePDF_IEq23.gif)
![$$\begin{aligned} \hat{S} \hat{P}^{\varGamma_0}_{11} =& \hat{S} \frac{1}{|G|} \sum_R \hat{R} \\ =& \frac{1}{|G|}\sum_R \hat{S}\hat{R} = \frac{1}{|G|} \sum_T \hat{T} = \hat{P}^{\varGamma_0}_{11} \end{aligned}$$](A303787_1_En_BookBackmatter_OnlinePDF_Equx.gif)
4.7
Applying the inverse transformation to the SALCs
of the hydrogens in ammonia yields
![$$ \left ( {\begin{array}{c@{\quad}c@{\quad}c} |sp^2_{ {A}}\rangle & |sp^2_{ {B}}\rangle & |sp^2_C\rangle \end{array} } \right ) = \left ( {\begin{array}{c@{\quad}c@{\quad}c} |2s\rangle & |2p_x\rangle & |2p_y\rangle \end{array} } \right ) \left ( {\begin{array}{c@{\quad}c@{\quad}c} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}}\\ 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \end{array}} \right ) $$](A303787_1_En_BookBackmatter_OnlinePDF_Equy.gif)
4.8
This mode transforms as E y . It can be written as a linear
combination of a radial and a tangent mode:
with
This mode preserves the center of mass and is a genuine normal
mode.
![$$ Q = \frac{-1}{\sqrt{2}}Q^{\mathrm{rad}}_y + \frac{1}{\sqrt{2}}Q^{\mathrm{tan}}_{y} $$](A303787_1_En_BookBackmatter_OnlinePDF_Equz.gif)
![$$\begin{aligned} Q^{\mathrm{rad}}_y =& \frac{1}{\sqrt{2}} ( \Delta R_{{B}} - \Delta R_{{C}} ) \\ Q_{y}^{\mathrm{tan}} =& \frac{1}{\sqrt{6}} R ( 2 \Delta \phi_{{A}} - \Delta \phi_{{B}} - \Delta \phi_{{C}} ) \end{aligned}$$](A303787_1_En_BookBackmatter_OnlinePDF_Equaa.gif)
4.9
Since all irreps are one-dimensional, the
characters can only consist of a phase factor:
The fifth power of the generator will yield the unit element, and
hence,
This is the Euler equation. Its solutions are the characters in the
table of C 5 ,
as given in Appendix A .
![$$ \mathbb{D}(C_5) = e^{i\lambda} \mathbb{I} $$](A303787_1_En_BookBackmatter_OnlinePDF_Equ5.gif)
(5)
![$$ e^{5i \lambda} =1 $$](A303787_1_En_BookBackmatter_OnlinePDF_Equ6.gif)
(6)
4.10
The product of inversion with a
axis must yield a reflection plane,
perpendicular to this axis. As an example, a product of type
must yield a reflection
plane of
type, as this is perpendicular to the
primed twofold axis. For the one-dimensional irreps of D 6 h , one thus should have
This is indeed verified to be the case.
![$\hat{C}_{2}$](A303787_1_En_BookBackmatter_OnlinePDF_IEq24.gif)
![$\hat{\imath} \cdot \hat{C}_{2}'$](A303787_1_En_BookBackmatter_OnlinePDF_IEq25.gif)
![$\hat{\sigma}_{d}$](A303787_1_En_BookBackmatter_OnlinePDF_IEq26.gif)
![$$ \chi(\imath) \chi \bigl(C_2'\bigr) = \chi( \sigma_d) $$](A303787_1_En_BookBackmatter_OnlinePDF_Equ7.gif)
(7)
4.11
The
distortion is antisymmetric with respect to
, and
. As a result, when the mode is launched,
all these symmetry elements will be destroyed, and the symmetry
reduces to the subgroup C
3 v . In
general, the result of a distortion will always be the maximal
subgroup for which the distortion is totally symmetric [
14 ].
![$a_{2}''$](A303787_1_En_BookBackmatter_OnlinePDF_IEq27.gif)
![$3\hat{C}_{2}, \hat{\sigma}_{h}$](A303787_1_En_BookBackmatter_OnlinePDF_IEq28.gif)
![$2\hat{S}_{3}$](A303787_1_En_BookBackmatter_OnlinePDF_IEq29.gif)
4.12
The group of this fullerene is D 6 d . The 24 atoms separate into
two orbits: a 12-orbit containing the top and bottom hexagons and
another 12-orbit containing the crown of the 12 atoms, numbered
from 7 to 18. In both cases the site group is only C s , and hence both orbits will
span the same irreps:
Quite remarkably, the Hückel spectrum for this fullerene has a
nonbonding level of E
4 symmetry.
![$$ a' C_s\uparrow D_{6d} = A_1 + B_2 + E_1 + E_2 + E_3 +E_4 + E_5 $$](A303787_1_En_BookBackmatter_OnlinePDF_Equab.gif)
5.1
Let r
i and
r j denote the position vectors of
electrons i and
j . The electron repulsion
operator contains the distance between both electrons as |
r i − r j |. The matrix
expresses the transformation of the
Cartesian coordinates under a rotation. This matrix will also
rotate the coordinate differences :
Exactly as in the derivation for Problem 1.2, the square of the
distance between the two electrons is then found to be invariant
under any orthogonal transformation of the coordinates.
![$\mathbb{D}(R)$](A303787_1_En_BookBackmatter_OnlinePDF_IEq30.gif)
![$$ \hat{R} \left ( {\begin{array}{c} {{\mathrm{x}_i}-\mathrm{x}_j} \\ {{\mathrm{y}_i}-\mathrm{y}_j} \\ {{\mathrm{z}_i}-\mathrm{z}_j} \\ \end{array} } \right ) = \mathbb{D}(R) \left ( {\begin{array}{c} {{\mathrm{x}_i}-\mathrm{x}_j} \\ {{\mathrm{y}_i}-\mathrm{y}_j} \\ {{\mathrm{z}_i}-\mathrm{z}_j} \\ \end{array} } \right ) $$](A303787_1_En_BookBackmatter_OnlinePDF_Equ8.gif)
(8)
5.2
For the G
irrep, it is noted from Sect. C.1 that a tetrahedral
splitting field will branch G into A + T . It thus acts as a splitting field
to isolate the unique Ga
component. Symmetry adaptation to
will yield two totally symmetric
components, one of which will be the Ga already obtained; the remaining one
is then Gz . The
corresponding Gx and
Gy may then be found by
cyclic permutation under the
axis.
![$\hat{C}_{2}^{z}$](A303787_1_En_BookBackmatter_OnlinePDF_IEq31.gif)
![$\hat{C}_{3}^{xyz}$](A303787_1_En_BookBackmatter_OnlinePDF_IEq32.gif)
For the H
irrep, one may make use of the
axis again. It resolves
H into A 1 +2 E . This unique A 1 component will be the
sum Hξ + Hη + Hζ . We can project the Hζ component out of this sum by using
the
axis. Although the H level subduces three totally
symmetric irreps in C
2 , there will be no contamination with Hθ and Hϵ since these were already removed in
the first step by projecting out the trigonal A 1 .
![$\hat{C}_{3}^{xyz}$](A303787_1_En_BookBackmatter_OnlinePDF_IEq33.gif)
![$\hat{C}_{2}^{z}$](A303787_1_En_BookBackmatter_OnlinePDF_IEq34.gif)
5.3
The total number of nuclear permutations and
permutation-inversions for CH 3 BF 2 is 24.
This is the product of six permutations of the protons, two
permutations of the fluorine nuclei, and the binary group of the
spatial inversion. However, as the fluxionality of this molecule is
limited to free rotations of the methyl group, the operations
should be limited to those permutations or permutation-inversions
that lead to structures that can be rotated back to the original
frame or to a rotamer of this
frame . Only half of the operations will comply with this
requirement. As an example, the odd permutations of the protons are
not allowed since the resulting structure cannot be turned into the
original one by outer rotations or by rotations of the methyl group
around the C-B bond. The results are given in [ 15 ]. The corresponding symmetry group is
isomorphic with D 3
h .
5.4
Ferrocene is a molecule with two identical
coaxial rotors. Its nuclear permutation-inversion group consists of
100 elements. It has a halving rotational subgroup of 50 proper
permutations: for each of the cyclo-pentadienyl rings, there are 5
cyclic permutation operations, yielding a total of 5 2
=25 operations, and this number must be doubled to account for the
permutation of the upper and lower rings. In addition, there is a
coset of improper permutation-inversions containing the other 50
elements. This coset also contains two kinds of elements. In the
table we summarize the structure of the group. The carbon atoms are
numbered 1,…,5 in the upper ring and 6,…,10 in the lower ring.
![A303787_1_En_BookBackmatter_Figeg_HTML.gif](A303787_1_En_BookBackmatter_Figeg_HTML.gif)
6.1
The ( t
1 u )
2 configuration gives rise to 15 states. The direct
product decomposes as follows (see Appendix D ):
The symmetrized part will give rise to six singlet functions, while
there are nine triplet substates, forming a 3
T 1 g multiplet. Since the 3-electron
Ψ state is a quartet, the
singlet states cannot contribute, and we need to couple the triplet
to a 2 T 1
u state, resulting
from a ( t 1
u ) 1
configuration. The orbital part of the triplet is obtained from the
T 1 ×
T 1 =
T 1 coupling
table in Appendix F :
The coupling with the third electron can yield A 1 u , E u , T 1 u , and T 2 u states. Our results is based on
the A 1 u product. This yields
This should be multiplied by the product of the three α -spins, α 1 α 2 α 3 , to obtain the
4 A 1
u ground state of the
( t 1 u ) 3
configuration.
![$$ T_{1u}\times T_{1u} = [A_{1g}+E_g + T_{2g}] + \{T_{1g}\} $$](A303787_1_En_BookBackmatter_OnlinePDF_Equac.gif)
![$$\begin{aligned} |T_{1g}x\rangle =& \frac{1}{\sqrt{2}} \bigl[ - y(1)z(2) + z(1)y(2) \bigr] \\ |T_{1g}y\rangle =& \frac{1}{\sqrt{2}} \bigl[ x(1)z(2) - z(1)x(2) \bigr] \\ |T_{1g}z\rangle =& \frac{1}{\sqrt{2}} \bigl[ - x(1)y(2) + y(1)x(2) \bigr] \end{aligned}$$](A303787_1_En_BookBackmatter_OnlinePDF_Equad.gif)
![$$\begin{aligned} A_{1u} =& \frac{1}{\sqrt{3}} \bigl[|T_{1g}x\rangle | x(3) \rangle +|T_{1g}y\rangle |y(3)\rangle +|T_{1g}z\rangle |z(3) \rangle \bigr] \\ =& -\frac{1}{\sqrt{6}}\left \vert {\begin{array}{c@{\quad}c@{\quad}c} x(1) & y(1) & z(1) \\ x(2) & y(2) & z(2) \\ x(3) & y(3) & z(3) \\ \end{array} } \right \vert \end{aligned}$$](A303787_1_En_BookBackmatter_OnlinePDF_Equae.gif)
6.2
The JT problem is determined by the symmetrized
direct product of T 1
u . As we have seen
in the previous problem, this product contains A 1 g + E g + T 2 g . Since A 1 g modes do not break the
symmetry, the JT problem is of type T 1 ×( e + t 2 ). In the linear problem
only two force elements are required. The distortion matrix is thus
as follows:
![$$ \mathcal{H}' = \frac{F_E}{\sqrt{6}} \left ( {\begin{array}{c@{\quad}c@{\quad}c} Q_\theta & 0 & 0 \\ 0 & Q_{\theta} & 0 \\ 0 & 0 & -2Q_\theta \\ \end{array} } \right ) +\frac{F_T}{\sqrt{2}} \left ( {\begin{array}{c@{\quad}c@{\quad}c} 0 & -Q_\zeta & -Q_\eta \\ -Q_\zeta & 0 & -Q_\xi \\ -Q_\eta & 0_\xi& 0 \\ \end{array} } \right ) $$](A303787_1_En_BookBackmatter_OnlinePDF_Equaf.gif)
6.3
The magnetic dipole operator transforms as
T 1 g , while the direct square of
e g irreps yields A 1 g + A 2 g + E g . Since the operator irrep is
not contained in the product space, the selection rules will not
allow a dipole matrix element between e g orbitals.
6.4
We first draw a simple diagram representing the
R -conformation. The point
group is C 2 .
The twofold-axis is oriented along the y -direction, and the centers of the
two chromophores are placed on the positive and negative
x -axes. The dipole moments
are then oriented as
![$$\begin{aligned} \boldsymbol{\mu}_1 =& \mu \biggl( 0,\cos{\frac{\alpha}{2}},-\sin {\frac{\alpha}{2}} \biggr) \\ \boldsymbol{\mu}_2 =& \mu \biggl( 0,\cos{\frac{\alpha}{2}},\sin { \frac{\alpha}{2}} \biggr) \end{aligned}$$](A303787_1_En_BookBackmatter_OnlinePDF_Equag.gif)
![A303787_1_En_BookBackmatter_Figeh_HTML.gif](A303787_1_En_BookBackmatter_Figeh_HTML.gif)
The exciton states on both chromophores are
interchanged by the twofold axis and can be recombined to yield a
symmetric and an antisymmetric combination, denoted as A and B , respectively. One has:
The corresponding transition dipoles are oriented along the
positive y - and negative
z -direction, respectively:
The dipole-dipole interaction is given by
For α < π /2, the dipole orientation is
repulsive. As a result, the in-phase coupled exciton state |
Ψ A 〉 will be at higher energy than
the out-of-phase | Ψ
B 〉 state.
Finally, we also calculate the magnetic transition dipoles, using
the expressions from Sect. 6.8 :
These results are now combined in the Rosenfeld equation to yield
the rotatory strength of both exciton states:
This result predicts a normal CD sign, with a lower negative branch
(B-state) and an upper positive branch (A-state) [ 16 ]. This is a typical right-handed helix,
corresponding to a rotation of the dipoles in the right-handed
sense when going from chromophore 1 to chromophore 2 along the
inter-chromophore axis. In the S -conformation the sign of
α will change, and the CD
spectrum will be inverted.
![$$\begin{aligned} |\varPsi_A\rangle =& \frac{1}{\sqrt{2}} \bigl( |\varPsi_1 \rangle + |\varPsi_2\rangle \bigr) \\ |\varPsi_B\rangle =& \frac{1}{\sqrt{2}} \bigl( |\varPsi_1 \rangle - |\varPsi_2\rangle \bigr) \end{aligned}$$](A303787_1_En_BookBackmatter_OnlinePDF_Equah.gif)
![$$\begin{aligned} \boldsymbol{\mu}_A =& \sqrt{2} \mu \biggl( 0,\cos{ \frac{\alpha}{2}},0 \biggr) \\ \boldsymbol{\mu}_B =& \sqrt{2} \mu \biggl( 0,0,-\sin{ \frac{\alpha}{2}} \biggr) \end{aligned}$$](A303787_1_En_BookBackmatter_OnlinePDF_Equai.gif)
![$$ V_{12} = \frac{1}{4 \pi \epsilon_0} \frac{\cos \alpha}{R_{12}^3} $$](A303787_1_En_BookBackmatter_OnlinePDF_Equ9.gif)
(9)
![$$\begin{aligned} \mathbf{m}_A =& \frac{i \pi \nu}{\sqrt{2}} (\mathbf{r}_1 \times \boldsymbol{\mu}_1 + \mathbf{r}_2\times \boldsymbol{\mu}_2 ) = \frac{i \pi \nu \mu}{\sqrt{2}} R_{12} \sin \frac{\alpha}{2} (0,1,0) \\ \mathbf{m}_B =& \frac{i \pi \nu}{\sqrt{2}} (\mathbf{r}_1 \times \boldsymbol{\mu}_1 - \mathbf{r}_2\times \boldsymbol{\mu}_2 ) = \frac{i \pi \nu \mu}{\sqrt{2}} R_{12} \cos \frac{\alpha}{2} (0,0,1) \end{aligned}$$](A303787_1_En_BookBackmatter_OnlinePDF_Equaj.gif)
![$$\begin{aligned} \mathcal{R}_A =& \frac{\pi \nu \mu^2}{2} R_{12} \sin \alpha \\ \mathcal{R}_B =& -\frac{\pi \nu \mu^2}{2} R_{12} \sin \alpha \end{aligned}$$](A303787_1_En_BookBackmatter_OnlinePDF_Equak.gif)
6.5
The direct square of the e -irrep in D 2 d yields four coupled states:
The corresponding coupling coefficients are given in the table
below. This table is almost the same as the table for D 4 in Appendix
F , but note
that B 1 and
B 2 are
interchanged. Such details are important, and therefore we draw
again a simple picture of the molecule in a Cartesian system. Both
in D 4 and in
D 2 d , the B 1 and B 2 irreps are distinguished
by their symmetry with respect to the
axes.
![$$ e\times e = A_1 + A_2 + B_1 + B_2 $$](A303787_1_En_BookBackmatter_OnlinePDF_Equ10.gif)
(10)
![$\hat{C}_{2}'$](A303787_1_En_BookBackmatter_OnlinePDF_IEq35.gif)
![A303787_1_En_BookBackmatter_Figei_HTML.gif](A303787_1_En_BookBackmatter_Figei_HTML.gif)
In the orientation of twisted ethylene, as
indicated in the figure below, the directions of these axes are
along the bisectors of x
and y . In contrast,
in the standard orientation for D 4 they are along the x and y axes, while the bisector directions
coincide with the
axes, and hence the interchange between
B 1 and
B 2 .
![$\hat{C}_{2}''$](A303787_1_En_BookBackmatter_OnlinePDF_IEq36.gif)
![A303787_1_En_BookBackmatter_Figej_HTML.gif](A303787_1_En_BookBackmatter_Figej_HTML.gif)
Note that the two-electron states are
symmetrized, except the A
2 combination. The symmetrized states will combine with
singlet spin states, while the A 2 state will be a triplet.
One thus has:
The 1 A
1 and 1 B 2 states are the
zwitterionic states , while
the 1 B
1 and 3 A 2 states are called the
diradical states. It is
clear from the expressions that in both cases the two radical
carbon sites are neutral. The zwitterionic states are easily
polarizable though.
![$$\begin{aligned} {}^1A_1 =& \frac{1}{\sqrt{2}} \bigl( x(1)x(2) + y(1)y(2) \bigr) \frac{1}{\sqrt{2}} \bigl( \alpha(1)\beta(2) -\beta(1)\alpha(2) \bigr) \\ =& \frac{1}{\sqrt{2}} \bigl( \big|(x\alpha) (x\beta)\big| + \big|(y\alpha) (y\beta)\big| \bigr) \\ {}^1B_1 =& \frac{1}{\sqrt{2}} \bigl( \big|(x\alpha) (y \beta)\big| + \big|(y\alpha) (x\beta)\big| \bigr) \\ {}^1B_2 =& \frac{1}{\sqrt{2}} \bigl(-\big|(x\alpha) (x \beta)\big| + \big|(y\alpha) (y\beta)\big| \bigr) \\ {}^3A_2 =& \big|(x\alpha) ( y\alpha)\big| \end{aligned}$$](A303787_1_En_BookBackmatter_OnlinePDF_Equal.gif)
6.6
The carbon atoms form two orbits. The
p z orbital on the central atom is
in the center of the symmetry group and transforms as
. The three methylene orbitals are in
C 2 v sites, transforming as the
b 2 irrep of the
site group, i.e., they are antisymmetric with respect to
and symmetric with respect to
. The induced representation is
The SALCs are entirely similar to the hydrogen SALCs in the case of
ammonia; this implies, for instance, that the component labeled
x is symmetric under the
vertical symmetry plane through atom A. It will be antisymmetric
for the twofold-axis going through atom A since the relevant
orbital is of p
z type:
The
orbitals interact to yield bonding and
antibonding combinations at
. Since the graph is
bipartite, the remaining e
″ orbitals are necessarily nonbonding and will be occupied by two
electrons. The direct square of this irrep yields symmetrized
and E ′
states and an antisymmetrized
state. The expressions for these states are
obtained from the coupling coefficients for D 3 in Appendix
F :
Note that the distinction between zwitterionic and diradical states
does not hold in this case. Formally, TMM can be described as a
valence isomer between three configurations in which one of the
peripheral atoms has a double bond to the central atom and the
other two sites carry an unpaired electron.
![$a_{2}''$](A303787_1_En_BookBackmatter_OnlinePDF_IEq37.gif)
![$\hat{\sigma}_{h}$](A303787_1_En_BookBackmatter_OnlinePDF_IEq38.gif)
![$\hat{\sigma}_{v}$](A303787_1_En_BookBackmatter_OnlinePDF_IEq39.gif)
![$$ b_2C_{2v}\uparrow D_{3h} = a_2'' + e'' $$](A303787_1_En_BookBackmatter_OnlinePDF_Equ11.gif)
(11)
![$$\begin{aligned} |\varPsi_a\rangle =& \frac{1}{\sqrt{3}} \bigl(|p_A\rangle + |p_B\rangle +|p_C\rangle \bigr) \\ |\varPsi_x\rangle =& \frac{1}{\sqrt{6}} \bigl(2|p_A\rangle - |p_B\rangle -|p_C\rangle \bigr) \\ |\varPsi_y\rangle =& \frac{1}{\sqrt{2}} \bigl(|p_B\rangle -|p_C\rangle \bigr) \end{aligned}$$](A303787_1_En_BookBackmatter_OnlinePDF_Equam.gif)
![$a_{2}''$](A303787_1_En_BookBackmatter_OnlinePDF_IEq40.gif)
![$E=\alpha \pm \sqrt{3} \beta$](A303787_1_En_BookBackmatter_OnlinePDF_IEq41.gif)
![$A_{1}'$](A303787_1_En_BookBackmatter_OnlinePDF_IEq42.gif)
![$A_{2}'$](A303787_1_En_BookBackmatter_OnlinePDF_IEq43.gif)
![$$\begin{aligned} {}^1A_1' =& \frac{1}{\sqrt{2}} \bigl( x(1)x(2) + y(1)y(2) \bigr) \frac{1}{\sqrt{2}} \bigl( \alpha(1)\beta(2) -\beta(1) \alpha(2) \bigr) \\ =& \frac{1}{\sqrt{2}} \bigl(\big|(x\alpha) ( x\beta)\big| + \big|(y\alpha) ( y\beta)\big| \bigr) \\ {}^1E_x' =&\frac{1}{\sqrt{2}} \bigl(\big|(x \alpha) ( y\beta)\big| +\big |( y\alpha) (x\beta)\big| \bigr) \\ {}^1E_y' =&\frac{1}{\sqrt{2}} \bigl(-\big|(x \alpha) ( x\beta)\big| + \big|(y\alpha) ( y\beta)\big| \bigr) \\ {}^3A_2 =&\big|(x\alpha) ( y\alpha)\big| \end{aligned}$$](A303787_1_En_BookBackmatter_OnlinePDF_Equan.gif)
7.1
In a cube the d -shell also splits in e g + t 2 g , but the ordering is reversed.
Explicit calculation of the potential shows that the splitting is
reduced by a factor 8/9:
![$$ \Delta_{\mathrm{cube}} = -\frac{8}{9} \Delta_{\mathrm{octahhedron}} $$](A303787_1_En_BookBackmatter_OnlinePDF_Equao.gif)
7.2
Perform the matrix multiplication and verify that
the product matrix is of Cayley–Klein form. The multiplication is
not commutative:
![$$ \left ( {\begin{array}{c@{\quad}c} a_1 & b_1 \\ -\bar{b}_1 & \bar{a}_1 \\ \end{array} } \right ) \times \left ( {\begin{array}{c@{\quad}c} a_2 & b_2 \\ -\bar{b}_2 & \bar{a}_2 \\ \end{array} } \right ) = \left ( {\begin{array}{c@{\quad}c} a_1a_2-b_1\bar{b}_2 & a_1b_2+\bar{a}_2b_1 \\ -\bar{a}_1\bar{b}_2-{a}_2\bar{b}_1 & \bar{a}_1\bar{a}_2- \bar{b}_1b_2 \\ \end{array} } \right ) $$](A303787_1_En_BookBackmatter_OnlinePDF_Equ12.gif)
(12)
7.3
The double group
contains 12 elements. In Table
7.5 we have listed the six
representation matrices for the elements on the positive
hemisphere. The
axis is along the x -direction,
is at −60 ∘ and
is at +60 ∘ . The derivation
of the multiplication table and the underlying class structure (see
Table 7.6 ) is based on a straightforward
matrix multiplication.
![$D_{3}^{*}$](A303787_1_En_BookBackmatter_OnlinePDF_IEq44.gif)
![$\hat{C}_{2}^{A}$](A303787_1_En_BookBackmatter_OnlinePDF_IEq45.gif)
![$\hat{C}_{2}^{B}$](A303787_1_En_BookBackmatter_OnlinePDF_IEq46.gif)
![$\hat{C}_{2}^{C}$](A303787_1_En_BookBackmatter_OnlinePDF_IEq47.gif)
![A303787_1_En_BookBackmatter_Figek_HTML.gif](A303787_1_En_BookBackmatter_Figek_HTML.gif)
7.4
The action of the spin operators on the
components of a spin-triplet can be found by acting on the coupled
states, as summarized in Table 7.2 . As an example, where we have
added the electron labels 1 and 2 for clarity:
These results can be generalized as follows:
The action of the spin Hamiltonian in the fictitious spin basis
gives then rise to the following Hamiltonian matrix (in units of
μ B ):
![$$\begin{aligned} S_x |+1\rangle =& S_x\bigl [ |\alpha_1\rangle | \alpha_2\rangle \bigr] =\bigl[S_x |\alpha_1\rangle\bigr] | \alpha_2\rangle + |\alpha_1\rangle \bigl[S_x| \alpha_2\rangle\bigr] \\ =& \frac{\hbar}{2} \bigl[ |\beta_1\rangle |\alpha_2 \rangle + |\alpha_1\rangle |\beta_2\rangle \big] = \frac{\hbar}{\sqrt{2}}|0\rangle \\ S_y |-1\rangle =& -\frac{i\hbar}{\sqrt{2}} |0\rangle \end{aligned}$$](A303787_1_En_BookBackmatter_OnlinePDF_Equap.gif)
![$$\begin{aligned} {S}_z |M_S\rangle =& \hbar M_S |M_S\rangle \\ ( {S}_x \pm i {S}_y )|M_S\rangle =& \hbar \bigl[ (S\mp M_S) (S\pm M_s + 1) \bigr]^{\frac{1}{2}} |M_s \pm 1\rangle \end{aligned}$$](A303787_1_En_BookBackmatter_OnlinePDF_Equaq.gif)
![]() |
|0〉
|
|+1〉
|
|−1〉
|
---|---|---|---|
〈0|
|
0
|
![]() |
![]() |
〈+1|
|
![]() |
g
|| B
z
|
0
|
〈−1|
|
![]() |
0
|
− g
|| B
z
|
We can now identify these expressions with the
actual matrix elements in the basis of the three D 3 components, keeping in
mind the relationship between the complex and real triplet basis,
as given in Eq. ( 7.39 ). One obtains:
From these equations the parameters may be identified as follows:
The Zeeman Hamiltonian does not include the zero-field splitting
between the A 1
and E states. This can be
rendered by a second-order spin operator, which transforms as the
octahedral E
g θ quadrupole component:
One then obtains
![$$\begin{aligned} \langle 0 |\mathcal{H}_{Ze} |+1\rangle =& -\frac{1}{\sqrt{2}}\langle A_1|\mathcal{H}| E_x + i E_y\rangle = \frac{1}{\sqrt{2}} \bigl[ -a +d +i (-b-c) \bigr] \\ \langle 0 |\mathcal{H}_{Ze} |-1\rangle =& \frac{1}{\sqrt{2}}\langle A_1|\mathcal{H}| E_x - i E_y\rangle = \frac{1}{\sqrt{2}} \bigl[ a +d +i (b-c) \bigr] \\ \langle \pm 1|\mathcal{H}_{Ze}|\pm 1\rangle =& \frac{1}{2} \bigl[ \langle x|\mathcal{H}|x\rangle +\langle y|\mathcal{H}|y\rangle \pm i \bigl( \langle x|\mathcal{H}|y\rangle -\langle y|\mathcal{H}|x\rangle \bigr)\bigr] = \pm f \end{aligned}$$](A303787_1_En_BookBackmatter_OnlinePDF_Equar.gif)
![$$\begin{aligned} a =& 0 \\ b =& -g_{\perp}B_y \\ c =& 0 \\ d =& g_{\perp}B_x \\ e =& 0 \\ f =& g_{||} B_z \end{aligned}$$](A303787_1_En_BookBackmatter_OnlinePDF_Equas.gif)
![$$ \mathcal{H}_{ZF}= \frac{D}{3\hbar^2} \bigl( 2\tilde{S}_z^2 -\tilde{S}_x^2-\tilde{S}_y^2 \bigr) = \frac{D}{\hbar^2}\biggl(\tilde{S}_z^2 - \frac{1}{3}\tilde{S}^2\biggr) $$](A303787_1_En_BookBackmatter_OnlinePDF_Equat.gif)
![$$ D= 3 \Delta $$](A303787_1_En_BookBackmatter_OnlinePDF_Equau.gif)
7.5
The action of the components of the fictitious
spin operator on the Γ
8 basis is dictated by the general expressions for the
action of the spin operators on the
basis functions. It is verified that the
spin-Hamiltonian that generates the J p part of the matrix precisely
corresponds to
The fictitious spin operator indeed transforms as a T 1 operator and has the
tensorial rank of a p
-orbital. However, as we have shown, the full Hamiltonian also
includes a J
f part, which
involves an f -like
operator. To mimic this part by a spin Hamiltonian, one thus will
need a symmetrized triple product of the fictitious spin, which
will embody an f -tensor,
transforming in the octahedral symmetry as the T 1 irrep. These
f -functions can be found
in Table 7.1 and are of type z (5 z 2 −3 r 2 ). But beware! To find
the corresponding spin operator, it is not sufficient simply to
substitute the Cartesian variables by the corresponding spinor
components, i.e., z by
, etc.; indeed, while products of
x , y , and z are commutative, the products of the
corresponding operators are not. Hence, when constructing the
octupolar product of the spin components, products of noncommuting
operators must be fully symmetrized. For the
function, this is the case for the functions
3 zx 2 and 3
xy 2 , which are
parts of 3 zr 3
. As an example, the operator analogue of 3 zx 2 reads
One then has for the operator equivalent of 3 z ( x 2 + y 2 ):
where we have used the commutation relation for the spin-operators:
The octupolar spin operator will then be of type
In order to identify the parameter correspondence, let us work out
the action of this operator on the quartet functions. As an example
for a magnetic field along the z -direction, the matrix is diagonal,
and its elements (in units of μ B ) are given by
By comparing these elements to the results in Table
7.8 we can identify the parameter
correspondence as
![$S=\frac{3}{2}$](A303787_1_En_BookBackmatter_OnlinePDF_IEq53.gif)
![$$ \mathcal{H}_p = J_p \mathbf{B} \cdot \tilde{ \mathbf{S}} $$](A303787_1_En_BookBackmatter_OnlinePDF_Equav.gif)
![$\tilde{S}_{z}$](A303787_1_En_BookBackmatter_OnlinePDF_IEq54.gif)
![$f_{z^{3}}$](A303787_1_En_BookBackmatter_OnlinePDF_IEq55.gif)
![$$ 3zx^2 \rightarrow \tilde{S}_z \tilde{S_x} \tilde{S_x}+ \tilde{S_x}\tilde{S}_z \tilde{S_x}+ \tilde{S_x}\tilde{S_x} \tilde{S}_z $$](A303787_1_En_BookBackmatter_OnlinePDF_Equaw.gif)
![$$\begin{aligned} &\tilde{S}_z \tilde{S_x}\tilde{S_x}+ \tilde{S_x}\tilde{S}_z \tilde{S_x}+ \tilde{S_x}\tilde{S_x}\tilde{S}_z + \tilde{S}_z \tilde{S_y}\tilde{S_y}+ \tilde{S_y}\tilde{S}_z \tilde{S_y}+ \tilde{S_y}\tilde{S_y}\tilde{S}_z \\ &\quad = 3\tilde{S}_z \bigl(\tilde{S}_x^2 + \tilde{S}_y^2\bigr) +i\hbar (\tilde{S}_x \tilde{S}_y - \tilde{S}_y\tilde{S}_x ) =3 \tilde{S}_z \bigl(\tilde{S}_x^2 + \tilde{S}_y^2\bigr) -\hbar^2 \tilde{S}_z \end{aligned}$$](A303787_1_En_BookBackmatter_OnlinePDF_Equax.gif)
![$$ {S}_x{S}_y - {S}_y{S}_x =i\hbar {S}_z $$](A303787_1_En_BookBackmatter_OnlinePDF_Equay.gif)
![$$\begin{aligned} \mathcal{H}_f =& \frac{\mu_B}{\hbar^3} g_f B_z \biggl( \tilde{S}_z^3 - \frac{3}{5} \tilde{S}_z \tilde{S}^2 + \frac{1}{5}\hbar^2\tilde{S}_z \biggr)+ B_x \biggl( \tilde{S}_x^3 - \frac{3}{5} \tilde{S}_x \tilde{S}^2 + \frac{1}{5}\hbar^2 \tilde{S}_x \biggr) \\ &{}+B_y \biggl( \tilde{S}_y^3 - \frac{3}{5} \tilde{S}_y \tilde{S}^2 + \frac{1}{5}\hbar^2\tilde{S}_y \biggr) \end{aligned}$$](A303787_1_En_BookBackmatter_OnlinePDF_Equaz.gif)
![$$\begin{aligned} \biggl\langle \pm \frac{3}{2}\bigg |\mathcal{H}_f\bigg| \pm \frac{3}{2}\biggr\rangle =& \pm g_f B_z \frac{3}{2} \biggl(\frac{9}{4} -\frac{45}{20} + \frac{1}{5} \biggr) = \pm \frac{3}{10} g_f B_z \\ \biggl\langle \pm \frac{1}{2} \bigg|\mathcal{H}_f\bigg| \pm \frac{1}{2}\biggr\rangle =& \mp \frac{9}{10} g_fB_z \end{aligned}$$](A303787_1_En_BookBackmatter_OnlinePDF_Equba.gif)
![$$ J_f = -\frac{3}{10}g_f $$](A303787_1_En_BookBackmatter_OnlinePDF_Equ13.gif)
(13)
References
1.
Mulliken, R.S., Ramsay, D.A.,
Hinze, J. (eds.): Selected Papers. University of Chicago Press,
Chicago (1975)
2.
Cotton, F.A.: Chemical
Applications of Group Theory. Wiley, New York (1963)
3.
Atkins, P.W., Child, M.S.,
Phillips, C.S.G.: Tables for Group Theory. Oxford University Press,
Oxford (1970)
4.
Boyle, L.L.: The method of
ascent in symmetry. I. Theory and tables. Acta Cryst. A
28 , 172 (1972)
5.
Fowler, P.W., Quinn, C.M.:
Theor. Chim. Acta 70 , 333
(1986)
6.
Griffith, J.S.: The Theory of
Transition-Metal Ions. Cambridge University Press, Cambridge
(1961)
7.
Boyle, L.L., Parker, Y.M.:
Symmetry coordinates and vibration frequencies for an icosahedral
cage. Mol. Phys. 39 , 95
(1980)
8.
Qiu, Q.C., Ceulemans, A.:
Icosahedral symmetry adaptation of | JM 〉 bases. Mol. Phys. 100 , 255 (2002)
9.
Butler, P.H.: Point Group
Symmetry Applications, Methods and Tables. Plenum Press, New York
(1981)
10.
Herzberg, G.: Molecular
Spectra and Molecular Structure. III. Electronic Spectra and
Electronic Structure of Polyatomic Molecules. Van Nostrand,
Princeton (1966)
11.
Fowler, P.W., Ceulemans, A.:
Symmetry relations in the property surfaces of icosahedral
molecules. Mol. Phys. 54 ,
767 (1985)
12.
Fowler, P.W., Ceulemans, A.:
Spin-orbit coupling coefficients for icosahedral molecules. Theor.
Chim. Acta 86 , 315
(1993)
13.
Stone, A.J.: A new approach
to bonding in transition-metal clusters. Theory. Mol. Phys.
41 , 1339 (1980)
14.
Ceulemans, A.,
Vanquickenborne, L.G.: The epikernel principle. Structure and
Bonding 71 , 125–159
(1989)
15.
Longuet-Higgins, H.C.: The
symmetry group of non-rigid molecules. Mol. Phys. 6 , 445 (1963)
16.
Kobayashi, N., Higashi, R.,
Titeca, B.C., Lamote, F., Ceulemans, A.: Substituent-induced
circular dichroism in phthalocyanines. J. Am. Chem. Soc.
121 , 12018 (1999)
Index
Symbols
10 Dq
Δ-enantiomer
Γ 8 quartet
π
-modes
σ
-mode
A
Abel
Abelian
Abragam
Absorption spectra
acac −
Aldridge
Allene
Alternant
Altmann
Ammonia
Ammonia
Dynamic symmetry
Permutation symmetry
Point group
SALC
Angular momentum
Annulene
Antiprisms
Antisymmetrization
Archimedean solids
Archimedene
Aromaticity
Associativity
Atkins
Atomic population
Automorphism group
Azimuthal coordinate
B
Balabanov
Barut
Barycentre rule
Basis set, canonical
Bending modes
Benfey
Benzene
Bernoulli
Berry
Berry phase
Bersuker
Bethe
Beyens
Biel
Bilinear interaction
Binary elements
Bipy
Bisphenoid
Bleaney
Boggs
Bohr magneton
Bond order
Born-Oppenheimer condition
Boundary condition
Boundary operation
Boyle
Bra function
Bracket
Branching rule
Braun
Bruns
Buckminsterfullerene
Bunker
Butler
C
C 60
Calabrese
Cauchy theorem
Cayley
graph
theorem
Cayley–Klein parameters
Centrosymmetry
Ceulemans
Character
string
table
theorem
Charge-transfer (CT) transitions
Chatterjee
Chemical bonding
Chemical shift
Chibotaru
Child
Chirality
Chromophore
Circular dichroism
Circular polarization
Clar
Class
Clebsch-Gordan (CG) coefficient
Closed shell
Closure
Clusters
Commutator
Compernolle
Condon
Condon–Shortley convention
Cone
Conical intersection
Conjugation
class
complex
Conrotatory
Contact term
Continuity condition
Coordinate system
Cartesian
D2 setting
tetragonal
trigonal
Coordination compounds
Coset
Cotton
Coulomb interaction
Coulson
Coulson–Rushbrooke theorem
Coupling channel
Coupling coefficients
exchange symmetry
Crystal-field potential
Crystallography
Cube
Cuboctahedron
Curie principle
Curl
Cvetković
Cyclobutene
Cyclohexadiene
Cylinder
D
Day
Day and Sanders model
Degeneracy
Deltahedron
Determinant
unimodular
Diatomic
Dihedral
Dipole
induced
moment
Dirac
Dirac notation
Direct square
Dish
Dish Archimedene
Disrotatory
Dissymmetry
Distortion modes
Dodecahedrane
Dodecahedron
Domcke
Donor–acceptor interactions
Doob
Double group
Dual
Dynamic symmetry
E
Edge representation
Edmonds
Eigenfunctions
Eigenvalues
Electric
see Stark effect
crystal field
dipole
field (E)
symmetry breaking
Electron diffraction
Electron precise
Enantiomers
Equivalent electrons
Euclid
Euler equation
Euler theorem
Excited state
Exciton
F
Face representation
Fagan
Faraday effect
Ferrocene
Fibre bundle
Flint
Fowler
Franck-Condon principle
Fries
Frobenius
Frontier orbitals
Fullerenes
Function space
G
Gauge
Genealogical tree
GFP protein
Gilmore
Graph
automorphism
bipartite
Great Orthogonality Theorem (GOT)
Griffith
Group
see Lie groups
see point groups
Abelian
alternating
cyclic
definition
double
generator
halving
orthogonal
permutation
symmetric
unitary
H
Haake
Halevi
Half-integral momentum
Hamiltonian
Heath
Helicity
Hemisphere
Hermitian
Hessian
Hexadecapole
Hilbert space
Hilton
Hoffmann
HOMO
Homomorphism
Hückel theory
Hydrocarbon
I
Icosahedron
Indistinguishability
Induction
Integral
hopping
overlap
resonance
Intensity
Intra-ligand (IL) transitions
Inversion
Irrep
Isolobal analogy
Isomorphism
Isotope shift
J
Jahn
Jahn–Teller effect
Judd
K
Katzir
Kinetic energy
Klein
see Cayley
four-group
Kobayashi
Köppel
Kramers’ degeneracy
Kronecker delta
Kroto
L
Lagrange theorem
Lagrangian
Lanthanides
Le Bel
Leapfrog
Lie groups
SO(3), O(3)
SU(2), U(2)
Ligand orbitals
Ligator
Lijnen
Linear dichroism
Linearly polarized
Lipscomb
London
London approximation
Longuet-Higgins
Lulek
LUMO
M
Magnetic
see Faraday
see London
dipole
field (B)
flux
symmetry breaking
Mallion
Malone
Manifold
Manolopoulos
Martins
Mass-weighted coordinates
Matrix
adjacency
circulant
complex conjugate
diagonalization
element
orthogonal
trace
transposed
unitary
Matsuda
M(CO) 3 fragments
Melvin
Methane
Mexican hat potential
Mingos
Miura
Molecular-symmetry group
Monopole
Mulliken
Mulliken symbols
Multiplication table
Mys
N
Neumann principle
Nordén
Normal modes
O
O’Brien
OCAMS
Octahedron
Octupole
Odabaşi
Ojha
O’Leary
Omnicapping
Opechowski
Opechowski theorem
Operator
action on a function
action on a point
action on an operator
anti-linear
congruence
idempotent
inverse
inversion
ladder
linear
projection
proper and improper
rotation
rotation-reflection
spin
Orbitals
d
f
molecular
Order of a group
Organo–transition–metal complexes
Orgel
Orthonormality
Orthorhombic
P
Paquette
Parity
permutational
space
Parker
Partial derivative
Partitioning
Pauli exclusion principle
Pauling
Pekker
Permutation group
Perturbation theory
Phase convention
Phillips
Platonic solids
Point groups
C
2 , C
i , C s
C
3 v
C
n , C nh , C nv
D
2
D
2 h
D
6 h
D
n , D nd , D nh
I
, I h
O
, O h
S
2 n
T
, T d , T h
Polarization function
Polyhedrane
Polyhedron
Potential energy
Prisms
Product
antisymmetrized
direct group
direct representation
multiplicity
scalar
symmetrized
Pseudo Jahn–Teller effect (PJT)
Pseudo-doublet
Pseudo-scalar representation
Pythagorean tradition
Q
Qiu
Quantum chemistry
Quartet spin state
Quinn
R
Rank
Reciprocity theorem
Reduced matrix element
Representation
determinantal
faithful
ground
irreducible
mechanical
positional
pseudoscalar
Reversal
space
time
Rhombohedral
Right-thumb rule
Ring closure
Rodger
Rodrigues
Rosenfeld equation
Rotation
bodily
matrix
operator
optical
pole
Rotatory strength
Rouvray
Ru(bipy) 3
Ruthenocene
S
Sachs
SALC
Salem
Samuel
Sanders
Satten
Schäffer
Schrödinger
stationary equation
time-dependent equation
Schulman
Schur
Secular equation
see Zeeman
Selection rule
Shapere
Shimanouchi
Similarity transformation
Singleton
Site symmetry
Smalley
sp 3 -hybridization
Spherical harmonics
Spin, spinor
Spin-orbit coupling
Splitting scheme
Stabilizer
Standard fibre
Stanger
Stark effect
Stereo-isomers
Stone
Stretching modes
Subduction
Subelement
Subgroup
Subporphyrin
Subrepresentation
Sum rule
Symmetry
see operators
see point groups
active definition
breaking
dynamic
hidden
spherical
T
Takeuchi
Tangential modes
Teller
Tetragonal compression
Tetragonal elongation
Tetrahedron
Tight-binding model
Time reversal
Time-even, time-odd
Topology
Trace
Transfer term
Transition dipole
Translation
Triangular condition
Triphenylmethyl
Trischelate complex
Trivalent polyhedron
Troullier
Truncation
Twisted cylinder
Two-well potential
U
Uni-axial
Unit element
Uranium
V
Vanquickenborne
Van’t Hoff
Vector
axial
polar
potential
row versus column
Vertex representation
Vibrational modes
Vibronic interaction
Vollhardt
W
Walçerz
Wales
Walsh diagram
Wigner
Wigner–Eckart theorem
Wilczek
Woodward–Hoffmann rule
Wunderlich
Wylie
Y
Yarkony
Yersin
Yu-De
Yun-Guang
Z
Zeeman interaction
Footnotes
1
In the tables the columns on the right list
representative coordinate functions that transform according to the
corresponding irrep. The symbols R x , R y , R z stand for rotations about the
Cartesian directions.