Standard deviations (SDs) are often being used
for summarizing the spread of the data from a sample. If the spread
in the data is small, then the same will be true for the standard
deviation. Underneath the calculation is illustrated with the help
of a data example.
55
|
||
54
|
||
51
|
||
55
|
||
53
|
||
53
|
||
54
|
||
52+
|
||
Mean
|
=>
|
…/8 = 53.375
|
SD=
|
||
55
|
(55–53.375)2
|
|
54
|
(54–53.375)2
|
|
51
|
(51–53.375)2
|
|
55
|
(55–53.375)2
|
|
53
|
(53–53.375)2
|
|
53
|
(53–53.375)2
|
|
54
|
(54–53.375)2
|
|
52
|
(52–53.375) 2+
|
|
SD=
|
………… =>…./ n−1=> √….=>
1.407885953
|
Each scientific pocket calculator has a modus for
data-analysis. It is helpful to calculate in a few minutes the mean
and standard deviation of a sample.
Calculate
standard deviation: mean = 53.375 SD = 1.407885953
The next steps are required:
Casio fx-825 scientific
|
On … mode … shift … AC … 55 … M+ … 54 … M+
… 51 … M+ … 55 … M+
… 53 … M+ … 53 … M+ … 54 … M+ … 52 … M+
…shift … [x] … shift
… σxn–1
|
Texas TI-30 scientific
|
On … 55 … Σ+ … 54 … Σ+ … 51 … Σ+ …55 … Σ+ …
53 … Σ+ … 53 … Σ+
… 54 … Σ+ … 52 … Σ+ … 2nd … x … 2nd …
σxn–1
|
Sigma AK 222 and Commodoor
|
On … 2ndf … on … 55 … M+ … 54 … M+ … 51 …
M+ … 55 … M+ … 53
… M+ … 53 … M+ … 54 … M+ … 52 … M+ …
x=>M … MR
|
Calculator: Electronic Calculator
|
On … mode … 2 … 55 … M+ … 54 … M+ … 51 … M+
… 55 … M+ … 53 … M+ … 53
... M+ … 54 … M+ … 52 … M+ … Shift … S-var
… 1 …
= … (mean) … Shift … S-var … 3 … (sd)
|
Example:
What is the mean value, what is de SD?
5
|
4
|
5
|
4
|
5
|
4
|
5
|
4
|