Once upon a time, astronauts tooled around the moon in an open two-seat electric buggy. It was the sort of thing one might see on a golf course or at one of those big Miami delis whose elderly patrons appreciate a lift to and from the parking lot. It gave lunar exploration in the seventies a relaxed, retirement-community feel. That’s gone now. NASA’s new rover prototypes more resemble a futuristic camper van. The entire cab is pressurized, which is good, because that means the astronauts can take off their bulky, uncomfortable white bubble-head EVA suits. The NASA shorthand for a pressurized interior is “a shirtsleeve environment,” which makes me picture astronauts in polo shirts and no pants. If NASA ever builds an outpost on the moon,* astronauts will be undertaking rover traverses of unprecedented length and complexity. Teams of explorers will head out in two vehicles that rendezvous daily, finally returning to the base after two weeks on the roll. The new rovers sleep two and are equipped with a food warmer, a toilet with “privacy curtain,” and cup holders (two).
Before actual prototypes of the pressurized rovers are tested in analog settings—earthly terrain that resembles the moon’s surface—NASA is undertaking some rough cuts. These are two-day “excerpts” of fourteen-day traverses using similarly sized Earth vehicles. Simulated traverses help NASA get a hands-on sense of “performance and productivity”—how much gets done, how long things take, what works and what doesn’t. This summer, the Small Pressurized Rover† simulator is an orange Humvee that lives at the HMP Research Station on Devon Island in Canada’s High Arctic. (HMP stands for Haughton-Mars Project; Devon Island also resembles parts of Mars, and simulated Martian traverses have also taken place up here.)
In short, Devon Island is as close to the moon as you can come without a rocket. Twelve-mile-wide Haughton Crater is a ringer for the moon’s Shackleton Crater, upon whose rim NASA had, since 2004, been planning to establish a base. Craters are formed by strikes from meteoroids* hurtling through space at somewhere in the neighborhood of 100,000 miles per hour; with no atmospheric friction to slow them down and burn them up, as happens above Earth, even tiny ones blast holes in the moon’s surface. A pebble strike can open a crater a few feet across. Planetary scientists are fond of meteorites because they’re natural excavators, yielding access to geological material from past eras that is normally costly and difficult to get to.
Devon Island is also, like the moon or Mars, extremely inconvenient. It’s thousands of miles from the things one needs for a geology expedition. Devon is uninhabited: no electricity, no cell coverage, no port or airport or supplies. That is part of the draw. Doing science here is a lesson in extreme planning. A moon or Mars analog, rather than the orb itself, is the place to figure out that, say, three people might be a better size for an exploration party than two. Or that it takes twice as long as the mission planners thought to drive a rover over a block field or twice as much oxygen to climb the loose scree on the slope of a crater. As someone at yesterday’s pretraverse planning meeting said, “This is the place to make mistakes.”
LIKE THE MOON, Devon Island doesn’t get interesting until you start to get close. Out the window of a low-flying Twin Otter, ground that had appeared on satellite images to be dirt, straight no chaser, reveals itself to be riverine windings of tan, gray, gold, cream, rust. Polar meltwater has carved, scoured, and tinted the ground in such a way that you feel as though you’re flying over an expanse of Italian marbled paper.
Set out on foot, and you soon see why planetary geologists make their way to the top of the Earth to visit this place. There are other places where meteorites have gouged out craters the size of Haughton, but most are covered with forest or mall. The High Arctic is landscape at its most elemental: earth and sky. Radiating out from the center of Haughton Crater is an “ejecta blanket” of the same kind you find around lunar craters. When a meteoroid slams a fellow celestial body, the energy of the impact simultaneously smashes and renders molten the rock beneath. The resulting magmalike rock stew is blasted away from the impact, lands, and cools into a sort of nougat, called impact breccia (pronounced as though it were an Italian delicacy). And then sits for 39 million years until some guy in hiking boots and a space helmet comes along and picks it up.
Today there are two guys in helmets. In the driver’s seat of the Small Pressurized Rover simulator is planetary scientist and Haughton-Mars project director Pascal Lee. With support from NASA, the SETI Institute, the Mars Institute, and other partners, Lee established the HMP Research Station at Haughton Crater in 1997. Riding shotgun is Andrew Abercromby, of NASA’s EVA Physiology Systems and Performance Project. Abercromby has blond, freckled good looks that are rescued from Buzz Lightyear all-American wholesomeness by a curious silver-dollar-sized circle of white hair and a Fyfe accent. Squeezed between Lee and Abercromby is HMP intern Jonathan Nelson and Lee’s ubiquitous canine pal Ping Pong. Three all-terrain vehicles (ATVs) follow along behind the Humvee, carrying camp mechanic Jesse Weaver, spacesuit engineer Tom Chase, and me. Together we six are Small Pressurized Rover Alpha, or as “ground control” calls us, SPR-Alpha. Out on a different route, scheduled to rendezvous with us at the end of the day, are the men and women of SPR-Bravo.
We’re driving slowly, keeping to the projected 6-miles-per-hour average of the actual rover. The low, gravelly hills are more uniformly grey here than elsewhere on the island. The scenery looks a lot like the moon’s Taurus-Littrow Valley, where Apollo 17 astronauts explored by rover in 1972. Tooling along this barren terrain in a bulbous, visored ATV helmet, I find it easy, if embarrassing, to pretend I’m on the moon. Lee’s evident excitement over the excursion—“Can you believe I get paid for this, barely?”—has become easier for me to understand. The place has made geeks of all of us.
Except our mechanic. Weaver never looks around to admire the scenery. I do, almost constantly. Yesterday, I came within inches of slamming the back of the ATV in front of me. Lunar scenery was a potentially dangerous distraction during Apollo landings. Concerned mission planners built gawp time into the minute-by-minute schedules. “We’re allowed two quick looks out the window,” Gene Cernan reminded Harrison Schmitt as they prepared to descend to the moon’s surface during Apollo 17.
Lee stops the Humvee and consults the GPS. We’ve reached our first “way point.” It’s a geology pit stop: don spacesuits, climb a bluff, collect samples. Lee and Abercromby are standing outside the vehicle, fiddling with their communications headsets, which enable them to speak to each other and to “ground control,” back at the HMP base. Around the rear of the Humvee, Chase has laid out simulated suit components on two mats. If this were the actual rover, the suits would be hanging off a pair of suit ports cut into the vehicle’s rear panels. The astronauts would step into them from inside the rover, twist their torsos to unlock suit from port, and walk away. And then reverse the process when they return, leaving their suits dangling like shed exoskeletons. This way the suits don’t clutter the cramped interior, and no dust gets inside.
Dust is the lunar astronaut’s nemesis. With no water or wind to smooth them, the tiny, hard moon rock particles remain sharp. They scratched faceplates and camera lenses during Apollo, destroyed bearings, clogged equipment joints. Dusting on the moon is a fool’s errand. Unlike on the Earth, where the planet’s magnetic field wards off charged particles of solar wind, these particles bombard the moon’s surface and impart an electrostatic charge. Moon dust clings like dryer socks. Astronauts who stepped from the Lunar Module in gleaming white marshmallow suits returned a few hours later looking like miners. The Apollo 12 suits and long johns became so filthy that at one point, astronaut Jim Lovell told me, the crew “took off all their underwear and they were naked for half the way home.”
Another reason to keep moon dust outside the rover: With so little gravity, inhaled particles may settle more slowly and thus penetrate farther into the lungs, reaching the more vulnerable tissue deeper in. NASA has been funding so much research on dust and dust mitigation that an entire lunar dust simulant industry exists.* (Moon rocks and pebbles are classified as “national treasure” and can’t be sold, but no such prohibition applies to moon dust, real or simulated. Which explains why a dust-coated Apollo 15 mission patch sold for $300,000 at a 1999 Christie’s auction.)
Lee considered cutting holes in the back of the Humvee and trying to rig a pair of mimic suit ports for this week’s simulations. Weaver was aghast. “I told him, ‘You are not cuttin’ up the Humvee.’” The HMP mechanic is a high school student from Tennessee, barely shaving but possessed of a scraggy, hard-shelled sang-froid. Lee, who knows Weaver’s mother, saw him rebuilding a dirt bike motor and offered him the greatest summer job in the history of summer jobs.
Lee genuflects on one of the mats while Chase prepares to lower the simulated PLSS (portable life support system—that bulky white astronaut backpack) onto Lee’s torso. His arms are outstretched, as though in supplication, or delivery of a Broadway musical number. Chase’s employer, Hamilton Sundstrand, makes both real and simulated spacesuits, both of which require valets. (One of the less heroic aspects of a spacewalk: Someone will have to help you pull up your pants.)* As Chase and Lee grapple with the PLSS simulator, Weaver takes a pack of Camels from a pocket.
EVAs, to him, are more or less cigarette breaks. He’s leaning toward a career in flight, but as a bush pilot, not an astronaut.
Since there’s oxygen in Canada, you may be wondering what’s inside a simulated life support backpack. A fan, mostly, to keep the helmet faceplate from fogging. It doesn’t much matter what’s in it. The idea is to burden the wearers and restrict their movements and field of view in the same manner that an astronaut will be burdened and restricted. Then give them some tools and tasks and see what sorts of problems develop.
As on Apollo, tasks are written on a pad Velcroed to the cuff of the spacesuit. Outer space is list world: cuff checklists, lunar surface checklists, lists of mission rules and “get-ahead tasks.” Morning in orbit begins with a fax or email of the day’s schedule and tasks, updated with last-minute changes. Any deviation must be reported to Mission Control. Outside of the hour or two designated as “pre-sleep,” every waking hour is planned. It’s like a book tour.
Abercromby is flipping through his cuff checklist. He has laminated it, because it rains a lot on Devon Island and because he has a head for planning. I don’t know much about Abercromby, or NASA for that matter, but from what I’ve seen, I could imagine him running the place one day. He is taking these simulations very seriously. His 66-page Field Test Plan includes time lines, objectives, a four-page hazard analysis, an Off-Nominal Situation Resolution Tree and, for each simulated traverse, science priorities, targets of opportunity, get-ahead tasks, and mission rules. The document has been distributed to, but possibly not read by, everyone participating.
Abercromby steps into a set of the white Tyvek coveralls that are standing in for pressure suits. Ping Pong is biting one of Lee’s gloves and dancing around the men’s feet. “Does Ping Pong want to go EVA?” Lee is using his special, high-pitched Ping Pong voice. Abercromby interrupts them. “We should talk about get-ahead tasks and targets of opportunity.”
Weaver watches through smoke. “You look like a crew of painters.”
Once the helmets and life support simulators are on, Chase shoots some video. Abercromby looks mildly uncomfortable. Lee has no problem with the getup. Even a pretend spacesuit, I’m told but have some trouble believing, is a chick magnet. Lee, forty-five, is single and something of a heartthrob in the space community.
Rock hammer in hand, Lee heads up the slope of a hill. Abercromby follows with a sample bag. The teams’ tasks are modeled on Apollo-era EVAs—selecting and bagging rock and soil samples, photographing, and taking gravity meter and radiation readings.
Only one Apollo astronaut, Harrison Schmitt, was a geologist. The rest were pilots who had been given a crash course in lunar geology to help them know what to look for and how to read the land. The training included time in a NASA geology lab with Earth basalts and breccias, painted Styrofoam moon rock mock-ups, and, after Apollo 11, actual lunar samples. Field trips took them out to the Nevada Test Site, 65 miles northwest of Las Vegas, where the Atomic Energy Commission tested nuclear bombs in the fifties, leaving craters up and down the desert floor. Because the rocks were still radioactive, the astronauts couldn’t pick them up and examine them. No one seemed to care, as they were, recalls Jim Irwin in the astronaut commentary of the Apollo 15 Lunar Surface Journal, “anxious to get back into Las Vegas.”
One focus of today’s traverse is timing. How closely are the rovers able to stick to the time line? How often should they check in with ground control, and how do you update the plan on the fly, if one group falls behind? The teams have been asked to keep track of the start and stop times for each phase of the traverse, to see whether things are taking longer than predicted, and if so, what’s slowing them up. At some point, intern Jonathan Nelson will deliver a “productivity metrics” report that will make some NASA manager feel calmer about the $200,000 budget he or she authorized for Arctic analog projects this summer. For now, it means lots of conversations like this one:
NELSON: What do you want, suit time?LEE: No. Basically, when we started to suit up…NELSON: So you want suit time.LEE: That’s what suit time is?NELSON: There’s a difference between prep and suit.ABERCROMBY: So what was our boots-on-the-ground time?
Timing is critical to an astronaut wandering around on an extraterrestrial surface. Without knowing how long it takes to walk or drive a given distance on a certain kind of terrain, it’s hard to know how much oxygen or battery life one will need. Apollo astronauts had to conform to “walkback constraints.” These were, and are, first figured out by driving someone out on some lunar analog terrain, say, 3 miles from base, putting a suit simulator on him, marking the start time, and letting him walk back. Apollo astronauts were not allowed to drive farther from the safety of the Lunar Module than the distance they could walk without running out of oxygen, in case the rover broke down. (This is a rationale for having two rovers; if one malfunctions, the other can come pick up the stranded crew.)
Walkback constraints were a source of worry for Apollo mission planners and frustration for astronauts. Without trees or buildings to give a sense of scale, it was difficult to accurately estimate distances. For safety’s sake, estimates were conservative, sometimes maddeningly so. On the way back from an Apollo 15 EVA, astronaut Dave Scott spied an unusual black rock sitting out on its own. He knew that if he asked Mission Control for permission to go get it, they’d tell him to keep driving, as the EVA was already behind schedule. Since Mission Control could hear their conversations, Scott fabricated a seatbelt malfunction. The rock would become known as “the seatbelt basalt.”
SCOTT: Oh, there’s some vesicular basalt right there, boy. Oh, Man! Hey, how about…Let’s just hold on one second, we’ve got to have…IRWIN: Okay, we’re stopping.SCOTT: Let me get my seatbelt…. It keeps coming off.IRWIN [picking up on the ruse right away]: Why don’t you hand me your seatbelt?SCOTT: Just a minute…If I can find it. [pause] There it is. [pause] If you’ll hang on to it here for a second.IRWIN: Okay, I’ve got it. [long pause]
It’s late afternoon now. We’ve reached the end-of-the-day rendezvous point. Lee and Abercromby will overnight here, on primitive bunks in the back of the Humvee, while the rest of the team drives back to camp and then rejoins them in the morning. Bravo Party is nowhere in sight, so we wander over and take pictures of each other standing on the lip of a ravine. Later, I’ll look at these photographs and it will appear that I was visiting a strip mine. It’s hard to say why I find Devon Island beautiful. But there are these moments when you’re tromping along, head lowered against the wind, and your eye lands on a hump of moss with tiny red flowers like cupcake sprinkles, and you’re just walloped by the sight. Maybe it’s the unlikely heroics of something so delicate surviving in a place so stingy and hard. Maybe it’s just the surprise of color. At one point yesterday, on a hike through yet another grey and beige canyon, a bumblebee flew past. The yellow seemed like a hallucination, something colorized in a black and white photograph. “Whoa, buddy,” someone said. “Where’d you take a wrong turn?”
It’s starting to rain, so we head back to the Humvee. Lee and Abercromby are in high spirits, having completed day one of NASA’s very first pressurized roverlike traverse. “Just terrific,” Abercromby is saying. “There can’t be many places in the world where the terrain and the scale so closely approximate lunar—”
“Ground, this is Bravo Party.” It’s the radio. NASA geophysicist Brian Glass, the SPR-Bravo traverse leader, reads out his GPS coordinates and a weather update. Read is the wrong verb. It’s something between shout and spit. It’s raining hard where they are. Their visibility is down to 300 feet. Bravo Party isn’t in a Humvee. Their rover simulator is a Kawasaki Mule, a larger ATV with a short pickup bed. Their spark plugs got wet crossing streams that had appeared shallower in satellite photographs. One of the spare plugs was the wrong size. At one point, they were almost two hours behind.
Weaver flips his hood over his head. “Sounds like the other guys aren’t havin’ as much joy.”
MORNING AT HMP begins with the sound of tent zippers. The sleeping accommodations are thirty nylon tents, hunkered on a hill, breaking rank with the island’s color scheme. Everyone gets up around the same time, because every morning begins with a meeting. This morning’s is being held in the main office tent. Along with the NASA meeting mentality, an actual NASA phone system has been set up on Devon Island. Staff at NASA Ames, in California, can dial a four-digit extension and reach Lee, a couple hundred miles from the magnetic North Pole, on an in-house call. (HMP is one of those odd but surprisingly common Internet-age locales with VoIP coverage but no flush toilets.)*
An HMP webcam is set up on a tripod in one corner, enabling people all over the world to look on as Andrew Abercromby attempts to maintain order and civility at the posttraverse Lessons Learned Review. One of HMP’s ancillary research goals is the study of “human dynamics which result from extended contact in close quarters.” Hopefully someone other than myself is taking notes this morning.
“No one told us we were behind after the first EVA,” Glass is complaining. “According to the paper time line we were ten minutes early.” Something about Glass’s receding red hair and the cut of his mustache and beard make me think of Sir Walter Raleigh. It’s easy to picture him with an Elizabethan collar atop the polar fleece. Glass says ground control made them wait nearly two hours while they mapped a quicker route. “I…” He exhales. “I had the impression we were being jerked around just so Alpha Party could get back in time for dinner.”
Lee insists that Alpha Party had had no idea any of this was happening.
“Well, yes,” Glass says, “because…” He turns to Abercromby. “Pascal had his iridium phone set to Ignore.”
“It was on Vibrate!”
“Can we,” says Abercromby, “try to drive toward lessons learned?”
Glass has moved on to “the seemingly incessant” calls from ground control to check in on what they were doing. “Every time, I had to stop, get to a place with no wind noise and no motor noise, take off the helmet…”
Lesson learned: Explorers appreciate a little autonomy. The rigidly scheduled time lines that typify shorter planetary surface EVAs will have to loosen if NASA pushes ahead to two-week EVAs and trips to Mars. Autonomy is the topic of the moment among space psychologists. Astronauts often complain to flight surgeons about not being allowed to make their own schedules and decisions about their work. Like Glass, some find Mission Control’s micro-management frustrating and demoralizing. Space psychiatrist Nick Kanas, of the University of California, San Francisco, has studied the psychological effects of high and low autonomy on personnel in three different space simulations. The men and women Kanas studied were generally happier and more creative in the high-autonomy scenario. The exception was the guys in Mission Control, who “reported some confusion about their work role.”
The meeting shows no sign of abating. Weaver is in presleep mode. The HMP field guide, known for his laissez-faire shower regimen, is scratching his back on the doorframe like a molting grizzly. Glass isn’t quite done. “…We had no lunch other than candy bars. Alpha Party had taken multiple items that—”
“No way,” says Lee. “We had a total of two sandwiches.”
“Lessons learned,” Abercromby says flatly. “Order more bread.”
Mike the cook speaks up. “Some bread got stolen in Resolute.” (Flights to Devon Island leave from the Inuit hamlet of Resolute.) Mike had three days to singlehandedly plan meals and buy supplies for thirty-some people over a six-week field season. The NASA traverse planning office should probably hire Mike the cook. One of the problems with expedition planning today, versus forty years ago, is that NASA is so much larger. Too many cooks take forever to agree on how to make the broth. Or as Apollo mastermind Wernher von Braun is said to have commented on the moon landing, “If we’d been more people, we’d have failed.”
Gene Cernan, in the astronaut commentary for the Apollo 17 Lunar Surface Journal, bemoans the endless prepping and whatiffing that typifies today’s NASA. “I don’t know if we…have the mentality—I don’t want to say ‘guts’—to take the kind of risks we did when we [went to the moon] the first time…. And that’s a sad commentary.” After all, no matter how much you plan and how carefully you engineer things, there will always be problems. The safety manager of the eighth Apollo mission once famously pointed out: “Apollo 8 has 5,600,000 parts…. Even if all functioned with 99.9 percent reliability, we could expect 5,600 defects.”
On the other hand, as they say, failing to plan is planning to fail.
Years ago, I interviewed astronaut Chris Hadfield for an article about how crews train for spacewalks (EVAs wherein astronauts float outside the spacecraft, usually to make repairs or add new hardware). I asked him if he thought NASA overdid it with their protracted rehearsing and planning. Hadfield would spend 250 hours in the Neutral Buoyancy Laboratory practicing for a six-hour EVA. (The NBL is a huge indoor pool containing ISS mock-up pieces; floating in a spacesuit in water is a passable approximation of spacewalking.) “Yeah, there’s lots of options,” Hadfield said. “You could do nothing and hope for the best, or you could spend billions of dollars on each flight and try to nail down every last detail.” NASA, he says, aims for somewhere in the middle. “The prep is what matters,” he added. “That’s what we do for a living. We don’t fly in space for a living. We have meetings, plan, prepare, train. I’ve been an astronaut for six years, and I’ve been in space for eight days.”
Hadfield told me that the famous Apollo 13 incident—the explosion on the way to the moon and the solution Jim Lovell and his crewmates undertook—had actually been “simmed” by NASA at least once. Apparently everything Lovell did in space had been simmed on the ground. Including not taking a bath for two weeks.