8.4 Programming the Stepper Motor

In order to get the stepper motor to work the way we want it to, we need to import a library that makes it easy to incrementally rotate the motor’s shaft in either direction at the speed we want it to move. Fortunately, controlling a stepper motor is easy thanks to Adafruit’s AFMotor motor shield library.[83] As you do with most Arduino libraries, extract the downloaded zip file, rename the extracted folder (AFMotor), and place it in the Arduino libraries folder. For more details, refer to Appendix 1, Installing Arduino Libraries.

With the AFMotor library installed, launch the Arduino IDE. Let’s write a sketch that will test the stepper motor. The code will do the following:

  1. Load the AFMotor library.

  2. Create an AFMotor stepper motor object and set the stepper’s connection and steps per revolution (i.e., how fast the stepper motor’s shaft rotates).

  3. Move the shaft clockwise and counterclockwise using the stepper motor’s two coils. By the way, this action is known as double-coil activation, and it produces greater torque compared to using just a single coil at a time. We will need that extra torque to move the curtain string.

Here’s what the completed sketch should look like:

CurtainAutomation/StepperTest.pde
  ​#include <AFMotor.h>​
  ​​
  ​AF_Stepper motor(48, 2);​
  ​​
  void setup() {​
  ​ Serial.begin(9600);​
  ​ Serial.println("Starting stepper motor test...");​
  // Use setSpeed to alter speed of rotation
  ​ motor.setSpeed(20);​
  ​}​
  ​​
  void loop() {​
  // step() function
  ​ motor.step(100, FORWARD, DOUBLE);​
  ​ motor.step(100, BACKWARD, DOUBLE);​
  ​​
  ​}​

Note that this test code is essentially a subset of the sample code available from Ladyada’s motor shield web page.[84]

Save and upload the sketch to the Arduino. If all goes well, your stepper motor should spin clockwise and counterclockwise until you remove power or upload a new sketch. If the shaft isn’t moving, make sure your stepper motor wiring is properly connected. Also make sure that you are using a 12-volt power supply connected to the Arduino, since the motor needs that amount of voltage to move. If you’re having a hard time seeing which direction the shaft is rotating, affix a small piece of folded tape on the shaft. It should be easier to see the tape flag move back and forth as the shaft moves.

Now that your hardware is working, it’s time to add the temperature and light sensors to give the stepper motor a bit more relevance to its intended motion.

Programming Your Home
cover.xhtml
f_0000.html
f_0001.html
f_0002.html
f_0003.html
f_0004.html
f_0005.html
f_0006.html
f_0007.html
f_0008.html
f_0009.html
f_0010.html
f_0011.html
f_0012.html
f_0013.html
f_0014.html
f_0015.html
f_0016.html
f_0017.html
f_0018.html
f_0019.html
f_0020.html
f_0021.html
f_0022.html
f_0023.html
f_0024.html
f_0025.html
f_0026.html
f_0027.html
f_0028.html
f_0029.html
f_0030.html
f_0031.html
f_0032.html
f_0033.html
f_0034.html
f_0035.html
f_0036.html
f_0037.html
f_0038.html
f_0039.html
f_0040.html
f_0041.html
f_0042.html
f_0043.html
f_0044.html
f_0045.html
f_0046.html
f_0047.html
f_0048.html
f_0049.html
f_0050.html
f_0051.html
f_0052.html
f_0053.html
f_0054.html
f_0055.html
f_0056.html
f_0057.html
f_0058.html
f_0059.html
f_0060.html
f_0061.html
f_0062.html
f_0063.html
f_0064.html
f_0065.html
f_0066.html
f_0067.html
f_0068.html
f_0069.html
f_0070.html
f_0071.html
f_0072.html
f_0073.html
f_0074.html
f_0075.html
f_0076.html
f_0077.html
f_0078.html
f_0079.html
f_0080.html
f_0081.html
f_0082.html
f_0083.html
f_0084.html
f_0085.html
f_0086.html
f_0087.html
f_0088.html
f_0089.html
f_0090.html
f_0091.html
f_0092.html
f_0093.html
f_0094.html
f_0095.html
f_0096.html
f_0097.html
f_0098.html
f_0099.html
f_0100.html
f_0101.html
f_0102.html
f_0103.html
f_0104.html
f_0105.html
f_0106.html
f_0107.html
f_0108.html
f_0109.html
f_0110.html
f_0111.html
f_0112.html
f_0113.html
f_0114.html
f_0115.html
f_0116.html
f_0117.html
f_0118.html
f_0119.html
f_0120.html
f_0121.html
f_0122.html
f_0123.html
f_0124.html
f_0125.html