1.7 Writing, Wiring, and Testing

Unfortunately, no good software emulator exists yet for the Arduino; fortunately, programs for this platform are usually small and specific enough such that the compile-run-debug cycles are tolerable. Good coding and testing techniques go a long way toward ensuring a high-quality outcome. The same goes for constructing and wiring up the physical electrical connections.

While nearly all of the projects in this book can be constructed without solder, permanent installations require good soldering techniques to ensure a conductive pathway. It’s best to verify (usually with the help of a breadboard) that the connections work as expected before making them permanent with solder.

Use good code-testing techniques. Whether for microcontroller code for the Arduino or server-side code for your Ruby or Python scripts, Test-Driven Development (TDD) is a good practice to adopt. There are a number of good testing frameworks and books available on the subject. Read Ian Dees’s article, “Testing Arduino Code,” in the April 2011 edition of PragPub magazine,[11] as well as Continuous Testing: with Ruby, Rails, and JavaScript [RC11].

Run unit tests like py.test when writing Python-powered scripts. When coding in Ruby and creating Rails-based web front ends, consider using Rspec (for more details on using Rspec, read The RSpec Book [CADH09]). Use the Android testing framework for your Android applications.[12] Even when working on small applications, using proven testing methodologies will help keep you sane while further elevating the quality in your code.

Know how to use a multimeter. Like a software debugger, a multimeter can come in quite handy when trying to figure out what’s happening inside your project—for example, where a short might be stepping on your project. Besides detecting problems, a multimeter is also useful for measuring electrical output. For example, you can also use it to determine if a solar battery pack can deliver enough uninterrupted energy to power a microcontroller-operated servo.

If you’re not familiar with how a multimeter operates, just type “voltmeter tutorial video” in your favorite search engine. There are plenty online to choose from.

Programming Your Home
cover.xhtml
f_0000.html
f_0001.html
f_0002.html
f_0003.html
f_0004.html
f_0005.html
f_0006.html
f_0007.html
f_0008.html
f_0009.html
f_0010.html
f_0011.html
f_0012.html
f_0013.html
f_0014.html
f_0015.html
f_0016.html
f_0017.html
f_0018.html
f_0019.html
f_0020.html
f_0021.html
f_0022.html
f_0023.html
f_0024.html
f_0025.html
f_0026.html
f_0027.html
f_0028.html
f_0029.html
f_0030.html
f_0031.html
f_0032.html
f_0033.html
f_0034.html
f_0035.html
f_0036.html
f_0037.html
f_0038.html
f_0039.html
f_0040.html
f_0041.html
f_0042.html
f_0043.html
f_0044.html
f_0045.html
f_0046.html
f_0047.html
f_0048.html
f_0049.html
f_0050.html
f_0051.html
f_0052.html
f_0053.html
f_0054.html
f_0055.html
f_0056.html
f_0057.html
f_0058.html
f_0059.html
f_0060.html
f_0061.html
f_0062.html
f_0063.html
f_0064.html
f_0065.html
f_0066.html
f_0067.html
f_0068.html
f_0069.html
f_0070.html
f_0071.html
f_0072.html
f_0073.html
f_0074.html
f_0075.html
f_0076.html
f_0077.html
f_0078.html
f_0079.html
f_0080.html
f_0081.html
f_0082.html
f_0083.html
f_0084.html
f_0085.html
f_0086.html
f_0087.html
f_0088.html
f_0089.html
f_0090.html
f_0091.html
f_0092.html
f_0093.html
f_0094.html
f_0095.html
f_0096.html
f_0097.html
f_0098.html
f_0099.html
f_0100.html
f_0101.html
f_0102.html
f_0103.html
f_0104.html
f_0105.html
f_0106.html
f_0107.html
f_0108.html
f_0109.html
f_0110.html
f_0111.html
f_0112.html
f_0113.html
f_0114.html
f_0115.html
f_0116.html
f_0117.html
f_0118.html
f_0119.html
f_0120.html
f_0121.html
f_0122.html
f_0123.html
f_0124.html
f_0125.html