© Springer International Publishing AG 2017
Kent D. LeeFoundations of Programming LanguagesUndergraduate Topics in Computer Sciencehttps://doi.org/10.1007/978-3-319-70790-7_1

1. Introduction

Kent D. Lee 
(1)
Luther College, Decorah, IA, USA
 
 
Kent D. Lee
This text on Programming Languages is intended to introduce you to new ways of thinking about programming. Typically, computer science students start out learning to program in an imperative model of programming where variables are created and updated as a program executes. There are other ways to program. As you learn to program in these new paradigms you will begin to understand that there are different ways of thinking about problem solving. Each paradigm is useful in some contexts. This book is not meant to be a survey of lots of different languages. Rather, its purpose is to introduce you to the three styles of programming languages by using them to implement a non-trivial programming language. These three styles of programming are:
  • Imperative/Object-Oriented Programming with languages like Java, C++, Python, and other languages you may have used before.
  • Functional Programming with languages like Standard ML, Haskell, Lisp, Scheme, and others.
  • Logic Programming with Prolog.
The book provides an in-depth look at programming in assembly language, Java, Standard ML, and Prolog. However, the programming language concepts covered in this text apply to all languages in use today. The goal of the text is to help you understand how to use the paradigms and models of computation these languages represent to solve problems. The text elaborates on when these languages may be appropriate for a problem by showing you how they can be used to implement a programming language. Many of the problems solved while implementing a programming language are similar to other problems in computer science. The text elaborates on techniques for problem solving that you may be able to apply in the future. You might be surprised by what you can do and how quickly a program can come together given the right choice of language.
To begin you should know something about the history of computing, particularly as it applies to the models of computation that have been used in implementing many of the programming languages we use today. All of what we know in Computer Science is built on the shoulders of those who came before us. To understand where we are, we really should know something about where we came from in terms of Computer Science. Many great people have been involved in the development of programming languages and to learn even a little about who these people are is really fascinating and worthy of an entire book in itself.
/epubstore/L/K-D-Lee/Foundations-Of-Programming-Languages/OEBPS/A330638_2_En_1_Fig1_HTML.jpg
Fig. 1.1
Sophus Lie [21]

1.1 Historical Perspective

Much of what we attribute to Computer Science actually came from Mathematics. Many mathematicians are programmers that have written their programs, or proofs in the words of Mathematics, using mathematical notation. In the mid 1800s abstract algebra and geometry were hot topics of research among mathematicians. In the early 1800s Niels Henrik Abel, a Norwegian mathematician, was interested in solving a problem called the quintic equation. Eventually he developed a new branch of mathematics called Group Theory with which he was able to prove there was no general algebraic solution to the quintic equation. Considering the proof of this required a new branch of mathematics, much of Abel’s work involved developing the mathematical notation or language to describe his work. Unfortunately, Abel died of tuberculosis at twenty six years old.
Sophus Lie (pronounced Lee), pictured in Fig. 1.1, was another Norwegian mathematician who lived from 1842–1899 [20]. He began where Abel’s research ended and explored the connection of Abstract Algebra and Group Theory with Geometry. From this work he developed a set of group theories, eventually named Lie Groups. From this discovery he found ways of solving Ordinary Differential Equations by exploiting properties of symmetry within the equations [8]. One Lie group, the $$E8$$ group was too complicated to map in Lie’s time. In fact, it wasn’t until 2007 that the structure of the $$E8$$ group could be mapped because the solution produced sixty times more data than the human genome project [1].
While the techniques Lie and Abel discovered were hard for people to learn and use at the time, today computer programs capable of symbolic manipulation use Lie’s techniques to solve these and other equally complicated problems. And, the solutions of these problems are very relevant in the world today. For example, the work of Sophus Lie is used in the design of aircraft.
As mathematicians’ problem solving techniques became more sophisticated and the problems they were solving became more complex, they were interested in finding automated ways of solving these problems. Charles Babbage (1791–1871) saw the need for a computer to do calculations that were too error-prone for humans to perform. He designed a difference engine to compute mathematical tables when he found that human computers weren’t very accurate [27]. However, his computer was mechanical and couldn’t be built using engineering techniques known at that time. In fact it wasn’t completed until 1990, but it worked just as he said it would over a hundred years earlier.
Charles Babbage’s difference engine was an early attempt at automating a solution to a problem, but others would follow of course. Alan Turing was a British mathematician and one of the first computer scientists. He lived from 1912–1954. In 1936 he wrote a paper entitled, “On Computable Numbers, with an Application to the Entscheidungsproblem” [23]. The Entscheidungsproblem, or decision problem, had been proposed a decade earlier by a German mathematician named David Hilbert. This problem asks: Can an algorithm be defined that decides if a statement given in first order logic can be proved from a set of axioms and known truth values? The problem was later generalized to the following question: Can we come up with a general set of steps that given any algorithm and its data, will decide if it terminates? In Alan Turing’s paper, he devised an abstract machine called the Turing Machine. This Turing Machine was very general and simple. It consisted of a set of states and a tape. The set of states were decided on by a programmer. The machine starts in the start state as decided by the programmer. From that state it could read a symbol from a tape. Based on the symbol it could write a symbol to the tape and move to the left or right, while transitioning to another state. As the Turing machine ran, the action that it took was dictated by the current state and the symbol on the tape. The programmer got to decide how many states were a part of the machine, what each state should do, and how to move from one state to another. In Turing’s paper he proved that such a machine could be used to solve any computable function and that the decision problem was not solvable by this machine. The more general statement of this problem was named the Halting Problem. This was a very important result in the field of theoretical Computer Science.
In 1939 John Atanasoff, at Iowa State University, designed what is arguably the first computer, the ABC or Atanasoff-Berry Computer [28]. Clifford Berry was one of his graduate students. The computer had no central processing unit, but it did perform logical and other mathematical operations. Eckert and Mauchly, at the University of Pennsylvania, were interested in building a computer during the second world war. They were funded by the Department of Defense to build a machine to calculate trajectory tables for launching shells from ships. The computer, called ENIAC for Electronic Numerical Integrator and Computer, was unveiled in 1946, just after the war had ended. ENIAC was difficult to program since the program was written by plugging cables into a switch, similar to an old telephone switchboard.
Around that same time a new computer, called EDVAC, was being designed. In 1945 John von Neumann proposed storing the computer programs on EDVAC in memory along with the program data [26]. Alan Turing closely followed John von Neumann’s paper by publishing a paper of his own in 1946 describing a more complete design for stored-program computers [24]. To this day the computers we build and use are stored-program computers. The architecture is called the von Neumann architecture because of John von Neumann’s and Alan Turing’s contributions. While Turing didn’t get the architecture named after him, he is famous in Computer Science for other reasons like the Turing machine and the Halting problem.
/epubstore/L/K-D-Lee/Foundations-Of-Programming-Languages/OEBPS/A330638_2_En_1_Fig2_HTML.jpg
Fig. 1.2
John Backus [3]
In the early days of Computer Science, many programmers were interested in writing tools that made it easier to program computers. Much of the programming was based on the concept of a stored-program computer and many early programming languages were extensions of this model of computation. In the stored-program model the program and data are stored in memory. The program manipulates data based on some input. It then produces output.
Around 1958, Algol was created and the second revision of this language, called Algol 60, was the first modern, structured, imperative programming language. While the language was designed by a committee, a large part of the success of the project was due to the contributions of John Backus pictured in Fig. 1.2. He described the structure of the Algol language using a mathematical notation that would later be called Backus-Naur Format or BNF. Very little has changed with the underlying computer architecture over the years. Of course, there have been many changes in the size, speed, and cost of computers! In addition, the languages we use have become even more structured over the years. But, the principles that Algol 60 introduced are still in use today.
/epubstore/L/K-D-Lee/Foundations-Of-Programming-Languages/OEBPS/A330638_2_En_1_Fig3_HTML.jpg
Fig. 1.3
John McCarthy [14]
Recalling that most early computer scientists were mathematicians, it shouldn’t be too surprising to learn that there were others that approached the problem of programming differently. Much of the initial interest in computers was spurred by the invention of the stored-program computer and many of the early languages reflected this excitement. The imperative style was closely tied to the architecture of a stored program computer. Data was read from an input device and the program acted on that data by updating memory as the program executed. There was another approach developing at the same time. Back in 1936, Alonzo Church, a U.S. mathematician who lived from 1903–1995, was also interested in the decision problem proposed by David Hilbert. To try to solve the problem he devised a language called the lambda calculus, usually written as the $$\lambda $$-calculus. Using his very simple language he was able to describe computation as symbol manipulation. Alan Turing was a doctoral student of Church and while they independently came up with two ways to prove that the decision problem was not solvable, they later proved their two models of computation, Turing machines and the $$\lambda $$-calculus, were equivalent. Their work eventually led to a very important result called the Church-Turing Thesis. Informally, the thesis states that all computable problems can be solved by a Turing Machine or the $$\lambda $$-calculus. The two models are equivalent in power.
Ideas from the $$\lambda $$-calculus led to the development of Lisp by John McCarthy, pictured in Fig. 1.3. The $$\lambda $$-calculus and Lisp were not designed based on the principle of the stored-program computer. In contrast to Algol 60, the focus of these languages was on functions and what could be computed using functions. Lisp was developed around 1958, the same time that Algol 60 was being developed.
Logic is important both in Computer Science and Mathematics. Logicians were also interested in solving problems in the early days of Computer Science. Many problems in logic are expressed in the languages of propositional or predicate logic. Of course, the development of logic goes all the way back to ancient Greece. Some logicians of the 20th century were interested in understanding natural language and they were looking for a way to use computers to solve at least some of the problems related to processing natural language statements. The desire to use computers in solving problems from logic led to the development of Prolog, a powerful programming language based on predicate logic.
Practice 1.1
Find the answers to the following questions.
  1. 1.
    What are the origins of the three major computational models that early computer scientists developed?
     
  2. 2.
    Who were Alan Turing and Alonzo Church and what were some of their contributions to Computer Science?
     
  3. 3.
    What idea did both John von Neumann and Alan Turing contribute to?
     
  4. 4.
    What notation did John Backus develop and what was one of its first uses?
     
  5. 5.
    What year did Alan Turing first propose the Turing machine and why?
     
  6. 6.
    What year did Alonzo Church first propose the $$\lambda $$-calculus and why?
     
  7. 7.
    Why are Eckert and Mauchly famous?
     
  8. 8.
    Why are the history of Mathematics and Computer Science so closely tied together?
     
You can check your answer(s) in Section 1.8.1.

1.2 Models of Computation

While there is some controversy about who originally came up with the concept of a stored program computer, John von Neumann is generally given credit for the idea of storing a program as a string of 0’s and 1’s in memory along with the data used by the program. Von Neumann’s architecture had very little structure to it. It consisted of several registers and memory. The Program Counter (PC) register kept track of the next instruction to execute. There were other registers that could hold a value or point to other values stored in memory. This model of computation was useful when programs were small. However, without additional structure, anything but a small program would quickly get hard to manage. This was what was driving the need for better and newer programming languages. Programmers needed tools that let them organize their code so they could focus on problem solving instead of the details of the hardware.

1.2.1 The Imperative Model

As programs grew in size it was necessary to provide the means for applying additional structure to them. In the early days a function was often called a sub-routine. Functions, procedures, and sub-routines were introduced by languages like Algol 60 so that programs could be decomposed into simpler sub-programs, providing a way for programmers to organize their code. Terms like top-down or bottom-up design were used to describe this process of subdividing programs into simpler sub-programs. This process of subdividing programs was often called structured programming, referring to the decomposition of programs into simpler, more manageable pieces. Most modern languages provide the means to decompose problems into simpler subproblems. We often refer to this structured approach as the imperative model of programming.
A330638_2_En_1_Fig4_HTML.gif
Fig. 1.4
Imperative model
To implement functions and function calls in the von Neumann architecture, it was necessary to apply some organization to the data of a program. In the imperative model, memory is divided into regions which hold the program and the data. The data area is further subdivided into the static or global data area, the run-time stack, and the heap as pictured in Fig. 1.4.
In the late 1970s and 1980s people like Niklaus Wirth and Bjarne Stroustrup were interested in developing languages that supported an additional level of organization called Object-Oriented Programming, often abbreviated OOP. Object-oriented programming still uses the imperative model of programming. The addition of a means to describe classes of objects gives programmers another way of organizing their code into functions that are related to a particular type of object.
When a program executes it uses a special register called the stack pointer (SP) to point to the top activation record on the run-time stack. The run-time stack contains one activation record for each function or procedure invocation that is currently unfinished in the program. The top activation record corresponds to the current function invocation. When a function call is made an activation record is pushed onto the run-time stack. When a function returns, the activation record is popped by decrementing the stack pointer to point to the previous activation record.
An activation record contains information about its associated function. The local variables of the function are stored there. The program counter’s value before the function call was made is stored there. This is often called the return address. Other state information may also be stored there depending on the language and the details of the underlying von Neumann architecture. For instance, parameters passed to the function may also be stored there.
Static or global data refers to data and functions that are accessible globally in the program. Global data and functions are visible throughout the program. Where global data is stored depends on the implementation of the compiler or interpreter. It might be part of the program code in some instances. In any case, this area is where constants, global variables, and possibly built-in globally accessible functions are stored.
The heap is an area for dynamic memory allocation. The word dynamic means that it happens while the program is running. All data that is created at run-time is located in the heap. The data in the heap has no names associated with the values stored there. Instead, named variables called pointers or references point to the data in the heap. In addition, data in the heap may contain pointers that point to other data, which is also usually in the heap.
Like the original von Neumann architecture, the primary goal of the imperative model is to get data as input, transform it via updates to memory, and then produce output based on this imperatively changed data. The imperative model of computation parallels the underlying von Neumann architecture and is used by many modern languages. Some variation of this model is used by languages like Algol 60, C++, C, Java, VB.net, Python, and many other languages.
Practice 1.2
Find the answers to the following questions.
  1. 1.
    What are the three divisions of data memory called?
     
  2. 2.
    When does an item in the heap get created?
     
  3. 3.
    What goes in an activation record?
     
  4. 4.
    When is an activation record created?
     
  5. 5.
    When is an activation record deleted?
     
  6. 6.
    What is the primary goal of imperative, object-oriented programming?
     
You can check your answer(s) in Section 1.8.2.

1.2.2 The Functional Model

In the functional model the goal of a program is slightly different. This slight change in the way the model works has a big influence on how you program. In the functional model of computation the focus is on function calls. Functions and parameter passing are the primary means of accomplishing data transformation.
Data is generally not changed in the functional model. Instead, new values are constructed from old values. A pure functional model wouldn’t allow any updates to existing values. However, most functional languages allow limited updates to memory in the imperative style.
The conceptual view presented in Fig. 1.4 is similar to the view in the functional world. However, the difference between program and data is eliminated. A function is data like any other data element. Integers and functions are both first-class citizens of the functional world.
The static data area is still present, but takes on a minor role in the functional model. The run-time stack becomes more important because most work is accomplished by calling functions. Functional languages are much more careful about how they allow programmers to access the heap and as a result, you really aren’t aware of the heap when programming in a functional language. Data is certainly dynamically allocated, but once data is created on the heap it is not modified in a pure functional model. Impure models might allow some modification of storage but this is the influence of imperative languages creeping into the functional model as a way to deal with performance issues. The result is that you spend less time thinking about the underlying architecture when programming in a functional language.
Lisp, Scheme, Scala, Clojure, Elixir, Haskell, Caml, and Standard ML, which is covered in this text, are all examples of functional languages. Functional languages may be pure, which means they do not support variable updates like the imperative model. Scheme is a pure functional language. Most functional languages are not pure. Standard ML and Lisp are examples of impure functional languages. Scala is a recent functional language that also supports object-oriented programming.
Practice 1.3
Answer the following questions.
  1. 1.
    What are some examples of functional languages?
     
  2. 2.
    What is the primary difference between the functional and imperative models?
     
  3. 3.
    Immutable data is data that cannot be changed once created. The presence of immutable data simplifies the conceptual model of programming. Does the imperative or functional model emphasize immutable data?
     
You can check your answer(s) in Section 1.8.3.

1.2.3 The Logic Model

The logic model of computation, pictured in Fig. 1.5, is quite different from either the imperative or functional model. In the logic model the programmer doesn’t actually write a program at all. Instead, the programmer provides a database of facts or rules. From this database, a single program tries to answer questions with a yes or no answer. In the case of Prolog, the program acts in a predictable manner allowing the programmer to provide the facts in an order that determines how the program will work. The actual implementation of this conceptual view is accomplished by a virtual machine, a technique for implementing languages that is covered later in this text.
A330638_2_En_1_Fig5_HTML.gif
Fig. 1.5
Logic model of computation
There is still the concept of a heap in Prolog. One can assert new rules and retract rules as the program executes. To dynamically add rules or retract them there must be an underlying heap. In fact, the run-time stack is there too. However, the run-time stack and heap are so hidden in this view of the world that it is debatable whether they should appear in the conceptual model at all.
Practice 1.4
Answer these questions on what you just read.
  1. 1.
    How many programs can you write in a logic programming language like Prolog?
     
  2. 2.
    What does the programmer do when writing in Prolog?
     
You can check your answer(s) in Section 1.8.4.

1.3 The Origins of a Few Programming Languages

This book explores language implementation using several small languages and exercises that illustrate each of these models of computation. In addition, exercises within the text will require implementation in four different languages: assembly language, Java (or alternatively C++), Standard ML, and Prolog. But where did these languages come from and why are we interested in learning how to use them?
/epubstore/L/K-D-Lee/Foundations-Of-Programming-Languages/OEBPS/A330638_2_En_1_Fig6_HTML.jpg
Fig. 1.6
Bjarne Stroustrup [18]

1.3.1 A Brief History of C and C++

The Unix operating system was conceived of, designed, and written around 1972. Ken Thompson was working on the design of Unix with Dennis Ritchie. It was their project that encouraged Ritchie to create the C language. C was more structured than the assembly language most operating systems were written in at the time and it was portable and could be compiled to efficient machine code. Thompson and Ritchie wanted an operating system that was portable, small, and well organized.
While C was efficient, there were other languages that had either been developed or were being developed that encouraged a more structured approach to programming. For several years there had been ideas floating around about how to write code in object-oriented form. Simula, created by Ole-Johan Dahl and Kristen Nygaard around 1967, was an early example of a language that supported Object-Oriented design. Modula-2, created by Niklaus Wirth around 1978, was also taking advantage of these ideas. Smalltalk, an interpreted language, was object-oriented and was also developed in the mid 1970s and released in 1980.
In 1980 Bjarne Stroustrup, pictured in Fig. 1.6, began working on the design of C++ while working at Bell Labs. He envisioned C++ as a language that would allow C programmers to keep their old code while new code could be written using these Object-Oriented concepts. In 1983 he named this new language C++, as in the next increment of C, and with much anticipation, in 1985 the language was released. About the same time Dr. Stroustrup released a book called The C++ Programming Language [19], which described the language. The language is still evolving. For instance, templates, an important part of C++ were first described by Stroustrup in 1988 [17] and it wasn’t until 1998 that it was standardized as ANSI C++. Today an ANSI committee oversees the continued development of C++. The latest C++ standard was released in 2014 as of this writing. The previous standard was released in 2011. C++ is a mature language, but is still growing and evolving. The 2017 standard is currently in the works with comments presently being solicited by the standards committee.

1.3.2 A Brief History of Java

C++ is a very powerful language, but also demands that programmers be very careful when writing code. The biggest problem with C++ programs are memory leaks. When objects are created on the heap in C++, they remain on the heap until they are freed. If a programmer forgets to free an object, then that space cannot be re-used while the program is running. That space is gone until the program is stopped, even if no code has a pointer to that object anymore. This is a memory leak. And, for long-running C++ programs it is the number one problem. Destructors are a feature of C++ that help programmers prevent memory leaks. Depending on the structure of a class in your program, it may need a destructor to take care of cleaning up instances of itself (i.e. objects of the class) when they are freed.
C++ programs can create objects in the run-time stack, on the heap, or within other objects. This is another powerful feature of C++. But, with this power over the creation of objects comes more responsibility for the programmer. This control over object creation leads to the need for extra code to decide how copies of objects are made. In C++ every class may contain a copy constructor so the programmer can control how copies of objects are made.
In 1991 a team called the Green Team, was working for a company named Sun Microsystems. This group of software engineers wanted to design a programming language and run-time system that could be used in the next generation of personal devices. The group was led by a man named James Gosling. To support their vision, they designed the Java Virtual Machine (i.e. JVM), a program that would interpret byte code files. The JVM was designed as the run-time system for the Java programming language. Java programs, when compiled, are translated into bytecode files that run on the JVM.
The year 1995 brought the birth of the world wide web and with it one of the first web browsers, Netscape Navigator, which later became Mozilla Firefox. In 1995 it was announced that Netscape would include Java technology within the browser. This led to some of the initial interest in the language, but the language has grown way beyond web browsers. In fact, Java is not really a web browser technology anymore. It is used in many web backends, where Java programs wait for connections from web browsers, but it doesn’t run programs within web browsers much these days. Another language, Javascript, is now the primary language of web browsers. Javascript is similar to Java in name, but not its technology. Javascript was licensed as a name from Sun Microsystems in its early days because of the popularity of Java [22].
The original intention of Java was to serve as a means for running software for personal devices. Java has become very important in that respect. It now is the basis for the Android operating system that runs on many phones and other personal devices like tablets. So, in a sense, the original goal of the Green Team has been realized, just fifteen or so years later.
When the original Green Team was designing Java they wanted to take the best of C++ while leaving behind some of its complexity. In Java objects can only be created in one location, on the heap. Sticking to one and only one memory model for objects simplifies many aspects of Java. Objects are never copied by the language. So, copy constructors are unnecessary in Java. When an object is passed to a function, a reference to an object is passed without making a copy of the object. When one object wants to contain another object, it keeps a reference to that object. Java objects are never stored inside other objects. Simplifying the memory model for objects means that in Java programs we don’t have to worry about copying objects.
Objects can still be copied in Java, but making copies of objects is the responsibility of the programmer. The Java language does not make copies. Programmers make copies by calling a special method called clone.
Java also includes garbage collection. This means that the Java Virtual Machine takes care of deciding when the space that an object resides in can be reclaimed. It can be reclaimed when no other objects or code have a reference to it anymore. This means that programmers don’t have to write destructors. The JVM manages this for them.
So, while C++ and Java share a lot of syntax, there are many differences as well. Java has a simpler memory model. Garbage collection removes the fear of memory leaks in Java programs. The Java Virtual Machine also provides other advantages to writing Java programs. This does not make C++ a bad language by any means. It’s just that Java and C++ have different goals. The JVM and Java manage a lot of the complexity of writing object-oriented programs, freeing the programmer from these duties. C++ on the other hand, gives you the power to manage all the details of a program, right down to the hardware interface. Neither is better than the other, they just serve different purposes while the two languages also share a lot of the same syntax.
/epubstore/L/K-D-Lee/Foundations-Of-Programming-Languages/OEBPS/A330638_2_En_1_Fig7_HTML.jpg
Fig. 1.7
Guido van Rossum [25]

1.3.3 A Brief History of Python

Python was designed and implemented by Guido van Rossum, pictured in Fig. 1.7. He started Python as a hobby project during the winter months of 1989. A more complete history of this language is available on the web at http://​python-history.​blogspot.​com. Python is another object-oriented language like C++ and Java. Unlike C++, Python is an interpreted language. Mr. van Rossum designed Python’s interpreter as a virtual machine, like the Java Virtual Machine (i.e. JVM). But Python’s virtual machine is not accessible separately, unlike the JVM. The Python virtual machine is an internal implementation detail of the Python interpreter. Virtual machines have been around for some time including an operating system for IBM mainframe computers, called VM. Using a virtual machine when implementing a programming language can make the language and its programs more portable across platforms. Python runs on many different platforms like Apple’s Mac OS X, Linux, and Microsoft Windows. Virtual machines can also provide services that make language implementation easier.
Programmers world-wide have embraced Python and have developed many libraries for Python and written many programs. Python has gained popularity among developers because of its portability and the ability to provide libraries to others. Guido van Rossum states in his history of Python, “A large complex system should have multiple levels of extensibility. This maximizes the opportunities for users, sophisticated or not, to help themselves.” Extensibility refers to the ability to define libraries of classes to solve problems from many different application areas. Python is used in internet programming, server scripting, computer graphics, visualization, Mathematics, Computer Science education, and many, many other application areas.
Mr. van Rossum continues, saying “In many ways, the design philosophy I used when creating Python is probably one of the main reasons for its ultimate success. Rather than striving for perfection, early adopters found that Python worked “well enough” for their purposes. As the user-base grew, suggestions for improvement were gradually incorporated into the language.” Growing the user-base has been key to the success of Python. As the number of programmers that know Python has increased so has interest in improving the language. Python now has two major versions, Python 2 and Python 3. Python 3 is not backward compatible with Python 2. This break in compatibility gave the Python developers an opportunity to make improvements in the language. Chapters 3 and 4 cover some of the implementation details of the Python programming language.

1.3.4 A Brief History of Standard ML

Standard ML originated in 1986, but was the follow-on of ML which originated in 1973 [16]. Like many other languages, ML was implemented for a specific purpose. The ML stands for Meta Language. Meta means above or about. So a metalanguage is a language about language. In other words, a language used to describe a language. ML was originally designed for a theorem proving system. The theorem prover was called LCF, which stands for Logic for Computable Functions. The LCF theorem prover was developed to check proofs constructed in a particular type of logic first proposed by Dana Scott in 1969 and now called Scott Logic. Robin Milner, pictured in Fig. 1.8, was the principal designer of the LCF system. Milner designed the first version of LCF while at Stanford University. In 1973, Milner moved to Edinburgh University and hired Lockwood Morris and Malcolm Newey, followed by Michael Gordon and Christopher Wadsworth, as research associates to help him build a new and better version called Edinburgh LCF [9].
/epubstore/L/K-D-Lee/Foundations-Of-Programming-Languages/OEBPS/A330638_2_En_1_Fig8_HTML.jpg
Fig. 1.8
Robin Milner [15]
For the Edinburgh version of LCF, Dr. Milner and his associates created the ML programming language to allow proof commands in the new LCF system to be extended and customized. ML was just one part of the LCF system. However, it quickly became clear that ML could be useful as a general purpose programming language. In 1990 Milner, together with Mads Tofte and Robert Harper, published the first complete formal definition of the language; joined by David MacQueen, they revised this standard to produce the Standard ML that exists today [16].
ML was influenced by Lisp, Algol, and the Pascal programming languages. In fact, ML was originally implemented in Lisp. There are now two main versions of ML: Moscow ML and Standard ML. Today, ML’s main use is in academia in the research of programming languages. But, it has been used successfully in several other types of applications including the implementation of the TCP/IP protocol stack [4] and a web server as part of the Fox Project. A goal of the Fox Project was the development of system software using advanced programming languages [10].
ML is a very good language to use in learning to implement other languages. It includes tools for automatically generating parts of a language implementation including components called a scanner and a parser which are introduced in Chap. 6. These tools, along with the polymorphic strong type checking provided by Standard ML, make implementing a compiler or interpreter a much easier task. Much of the work of implementing a program in Standard ML is spent in making sure all the types in the program are correct. This strong type checking often means that once a program is properly typed it will run the first time. This is quite a statement to make, but nonetheless it is often true.
Important Standard ML features include:
  • ML is higher-order supporting functions as first-class values. This means functions may be passed as parameters to functions and returned as values from functions.
  • Strong type checking (discussed later in this chapter) means it is pretty infrequent that you need to debug your code. What a great thing!
  • Pattern-matching is used in the specification of functions in ML. Pattern-matching is convenient for writing recursive functions.
  • The exception handling system implemented by Standard ML has been proven type safe, meaning that the type system encompasses all possible paths of execution in an ML program.

1.3.5 A Brief History of Prolog

Prolog was developed in 1972 by Alain Colmerauer, pictured in Fig. 1.9, with Philippe Roussel. Colmerauer and Roussel and their research group had been working on natural language processing for the French language and were studying logic and automated theorem proving [7] to answer simple questions in French. Their research led them to invite Robert Kowalski, pictured in Fig. 1.10, who was working in the area of logic programming and had devised an algorithm called SL-Resolution, to work with them in the summer of 1971 [11, 29]. Colmerauer and Kowalski, while working together in 1971, discovered a way formal grammars could be written as clauses in predicate logic. Colmerauer soon devised a way that logic predicates could be used to express grammars that would allow automated theorem provers to parse natural language sentences efficiently. This is covered in some detail in Chap. 7.
/epubstore/L/K-D-Lee/Foundations-Of-Programming-Languages/OEBPS/A330638_2_En_1_Fig9_HTML.jpg
Fig. 1.9
Alain Colmerauer [6]
/epubstore/L/K-D-Lee/Foundations-Of-Programming-Languages/OEBPS/A330638_2_En_1_Fig10_HTML.jpg
Fig. 1.10
Robert Kowalski [12]
In the summer of 1972, Kowalski and Colmerauer worked together again and Kowalski was able to describe the procedural interpretation of what are known as Horn Clauses. Much of the debate at the time revolved around whether logic programming should focus on procedural representations or declarative representations. The work of Kowalski showed how logic programs could have a dual meaning, both procedural and declarative.
Colmerauer and Roussel used this idea of logic programs being both declarative and procedural to devise Prolog in the summer and fall of 1972. The first large Prolog program, which implemented a question and answering system in the French language, was written in 1972 as well.
Later, the Prolog language interpreter was rewritten at Edinburgh to compile programs into DEC-10 machine code. This led to an abstract intermediate form that is now known as the Warren Abstract Machine or WAM. WAM is a low-level intermediate representation that is well-suited for representing Prolog programs. The WAM virtual machine can be (and has been) implemented on a wide variety of hardware. This means that Prolog implementations exist for most computing platforms.
Practice 1.5
Answer the following questions.
  1. 1.
    Who invented C++? C? Standard ML? Prolog? Python? Java?
     
  2. 2.
    What do Standard ML and Prolog’s histories have in common?
     
  3. 3.
    What do Prolog and Python have in common?
     
  4. 4.
    What language or languages is Standard ML based on?
     
You can check your answer(s) in Section 1.8.5.

1.4 Language Implementation

There are three ways that languages can be implemented.
  • A language can be interpreted.
  • A language can be compiled to a machine language.
  • A language can be implemented by some combination of the first two methods.
A330638_2_En_1_Fig11_HTML.gif
Fig. 1.11
Language implementation
Computers are only capable of executing machine language. Machine language is the language of the Central Processing Unit (CPU) and is very simple. For instance, typical instructions are fetch this value into the CPU, store this value into memory from the CPU, add these two values together, and compare these two values and if they are equal, jump here next. The goal of any programming language implementation is to translate a source program into this simpler machine language so it can be executed by the CPU. The overall process is pictured in Fig. 1.11.
All language implementations translate a source program to some intermediate representation before translating the intermediate representation to machine language. Exactly how these two translations are packaged varies significantly from one programming language to the next, but luckily most language implementations follow one of a few methodologies. The following sections will present some case studies of different languages so you can see how this translation is accomplished and packaged.

1.4.1 Compilation

The most direct method of translating a program to machine language is called compilation. The process is shown in Fig. 1.12. A compiler is a program that internally is composed of several parts. The parser reads a source program and translates it into an intermediate form called an abstract syntax tree (AST). An AST is a tree-like data structure that internally represents the source program. We’ll read about abstract syntax trees in later chapters. The code generator then traverses the AST and produces another intermediate form called an assembly language program. This program is not machine language, but it is much closer. Finally, an assembler and linker translate an assembly language program to machine language making the program ready to execute.
A330638_2_En_1_Fig12_HTML.gif
Fig. 1.12
The compilation process
This whole process is encapsulated by a tool called a compiler. In most instances, the assembler and linker are separate from the compiler, but normally the compiler runs the assembler and linker automatically when a program is compiled so as programmers we tend to think of a compiler compiling our programs and don’t necessarily think about the assembly and link phases.
Programming in a compiled language is a three-step process.
  • First, you write a source program.
  • Then you compile the source program, producing an executable program.
  • Then you run the executable program.
When you are done, you have a source program and an executable program that represent the same computation, one in the source language, the other in machine language. If you make further changes to the source program, the source program and the machine language program are not in sync. After making changes to the source program you must remember to recompile before running the executable program again.
Machine language is specific to a CPU architecture and operating system. Compiling a source program on Linux means it will run on most Linux machines with a similar CPU. However, you cannot take a Linux executable and put it on a Microsoft Windows machine and expect it to run, even if the two computers have the same CPU. The Linux and Windows operating systems each have their own format for executable machine language programs. In addition, compiled programs use operating system services for printing, reading input, and doing other Input/Output (I/O) operations. These services are invoked differently between operating systems. Languages like C++ hide these implementation details from you in the code generator, but the end result is that a program compiled for one operating system will not work on another operating system without being recompiled.
C, C++, Pascal, Fortran, COBOL and many others are typically compiled languages. On the Linux operating system the C compiler is called gcc and the C++ compiler is called g++. The g in both names reflects the fact that both compilers come out of the GNU project and the Free Software Foundation. Linux, gcc, and g++ are freely available to anyone who wants to download them. The best way to get these tools is to download a Linux distribution and install it on a computer. The gcc and g++ compilers come standard with Linux.
There are implementations of C and C++ for many other platforms. The web site http://​gcc.​gnu.​org contains links to source code and to prebuilt binaries for the g++ compiler. You can also download C++ compilers from Apple and Microsoft. For Mac OS X computers you can get C++ by downloading the XCode Developer Tools. You can also install g++ and gcc for Mac OS X computers using a tool called brew. If you run Microsoft Windows you can install Visual C++ Express from Microsoft. It is free for educational use.

1.4.2 Interpretation

An interpreter is a program that is written in some other language and compiled into machine language. The interpreter itself is the machine language program. The interpreter itself is written to read source programs from the interpreted language and interpret them. For instance, Python is an interpreted language. The Python interpreter is written in C and is compiled for a particular platform like Linux, Mac OS X, or Microsoft Windows. To run a Python program, you must download and install the Python interpreter that goes with your operating system and CPU.
When you run an interpreted source program, as depicted in Fig. 1.13, you are actually running the interpreter. Your program is not running because your program is never translated to machine language. The interpreter is the machine language program that executes all the programs you write in the interpreted language. The source program you write controls the behavior of the interpreter program.
A330638_2_En_1_Fig13_HTML.gif
Fig. 1.13
The interpretation process
Programming in an interpreted language is a two step process.
  • First you write a source program.
  • Then you execute the source program by running the interpreter.
Each time your program is executed it is translated into an AST by a part of the interpreter called the parser. There may be an additional step that translates the AST to some lower-level representation, often called bytecode. In an interpreter, this lower-level representation is still internal to the interpreter program. Then a part of the interpreter, often called a virtual machine, executes the byte code instructions.
Not every interpreter translates the AST to bytecode. Sometimes the interpreter directly interprets the AST but it is often convenient to translate the source program’s AST to some simpler representation before executing it.
Eliminating the compile step has a few implications.
  • Since you have one less step in development you may be encouraged to run your code more frequently during development. This is a generally a good thing and can shorten the development cycle.
  • Secondly, because you don’t have an executable version of your code, you don’t have to manage the two versions. You only have a source code program to keep track of.
  • Finally, because the source code is not platform dependent, you can usually easily move your program between platforms. The interpreter insulates your program from platform dependencies.
Of course, source programs for compiled languages are generally platform independent too. But, they must be recompiled to move the executable program from one platform to another. The interpreter itself isn’t platform independent. There must be a version of an interpreter for each platform/language combination. So there is a Python interpreter for Linux, another for Microsoft Windows, and yet another for Mac OS X. Thankfully, because the Python interpreter is written in C the same Python interpreter program can be compiled (with some small differences) for each platform.
There are many interpreted languages available including Python, Ruby, Standard ML, Unix scripting languages like Bash and Csh, Prolog, and Lisp. The portability of interpreted languages has made them very popular among programmers, especially when writing code that needs to run across multiple platforms.
One huge problem that has driven research into interpreted languages is that of heap memory management. Recall that the heap is the place where memory is dynamically allocated. As mentioned earlier in the chapter, C and C++ programs are notorious for having memory leaks. Every time a C++ programmer reserves some space on the heap he/she must remember to free that space. If they don’t free the space when they are done with it the space will never be available again while the program continues to execute. The heap is a big space, but if a program runs long enough and continues to allocate and not free space, eventually the heap will fill up and the program will terminate abnormally. In addition, even if the program doesn’t terminate abnormally, the performance of the system will degrade as more and more time is spent managing the large heap space.
Most, if not all, interpreted languages don’t require programmers to free space on the heap. Instead, there is a special task or thread that runs periodically as part of the interpreter to check the heap for space that can be freed. This task is called the garbage collector. Programmers can allocate space on the heap but don’t have to be worried about freeing that space. For a garbage collector to work correctly, space on the heap has to be allocated and accessed in the right way. Many interpreted languages are designed to insure that a garbage collector will work correctly.
The disadvantage of an interpreted language is in speed of execution. Interpreted programs typically run slower than compiled programs. In a compiled program, parsing and code generation happen once when the program is compiled. When running an interpreted program, parsing and code generation happen each time the program is executed. In addition, if an application has real-time dependencies then having the garbage collector running at more or less random intervals may not be desirable. As you’ll read in the next section some steps have been taken to reduce the difference in execution time between compiled and interpreted languages.

1.4.3 Virtual Machines

The advantages of interpretation over compilation are pretty significant. It turns out that one of the biggest advantages is the portability of programs. It’s nice to know when you invest the time in writing a program that it will run the same on Linux, Microsoft Windows, Mac OS X, or some other operating system. This portability issue has driven a lot of research into making interpreted programs run as fast as compiled languages.
A330638_2_En_1_Fig14_HTML.gif
Fig. 1.14
Virtual machine implementation
As discussed earlier in this chapter, the concept of a virtual machine has been around quite a while. A virtual machine is a program that provides insulation from the actual hardware and operating system of a machine while supplying a consistent implementation of a set of low-level instructions, often called bytecode. Figure 1.14 shows how a virtual machine sits on top of the operating system/CPU to act as this insulator.
There is no one specification for bytecode instructions. They are specific to the virtual machine being defined. Python has a virtual machine buried within the interpreter. Prolog is another interpreter that uses a virtual machine as part of its implementation. Some languages, like Java have taken this idea a step further. Java has a virtual machine that executes bytecode instructions as does Python. The creators of Java separated the virtual machine from the compiler. Instead of storing the bytecode instructions internally as in an interpreter, the Java compiler, called javac, compiles a Java source code program to a bytecode file. This file is not machine language so it cannot be executed directly on the hardware. It is a Java bytecode file which is interpreted by the Java virtual machine, called java in the Java set of tools. Java bytecode files all end with a .class extension. You may have noticed these files at some point after compiling a Java program.
Programs written using a hybrid language like Java are compiled. However, the compiled bytecode program is interpreted. Source programs in the language are not interpreted directly. By adding this intermediate step the interpreter can be smaller and faster than traditional interpreters. Very little parsing needs to happen to read the program and executing the program is straightforward because each bytecode instruction usually has a simple implementation.
Languages that fall into this virtual machine category include Java, ML, Python, C#, Visual Basic .NET, JScript, and other .NET platform languages. You might notice that Standard ML and Python were included as examples of interpreted languages. Both ML and Python include interactive interpreters as well as the ability to compile and run low-level bytecode programs. Python bytecode files are named with a .pyc extension. Standard ML compiled files are named with a -platform as the last part of the compiled file name. In the case of Python and Standard ML the virtual machine is not a separate program. Both interpreters are written to recognize a bytecode file and execute it just like a source program.
Java and the .NET programming environments do not include interactive interpreters. The only way to execute programs with these platforms is to compile the program and then run the compiled program using the virtual machine. Programs written for the .NET platform run under Microsoft Windows and in some cases Linux. Microsoft submitted some of the .NET specifications to the ISO to allow third party software companies to develop support for .NET on other platforms. In theory all .NET programs are portable like Java, but so far implementations of the .NET framework are not as generally available as Java. The Java platform has been implemented and released on all major platforms. In fact, in November 2006 Sun, the company that created Java, announced they were releasing the Java Virtual Machine and related software under the GNU Public License to encourage further development of the language and related tools. Since then the rights to Java have now been purchased by Oracle where it continues to be supported.
Java and .NET language implementations maintain backwards compatibility of their virtual machines. This means that a program compiled for an earlier version of Java or .NET will continue to run on newer implementations of the language’s virtual machine. In contrast, Python’s virtual machine is regarded as an internal design issue and does not maintain backwards compatibility. A .pyc file compiled for one version of Python will not run on a newer version of Python. This distinction makes Python more of an interpreted language, while Java and .NET languages are truly virtual machine implementations.
Maintaining backwards compatibility of the virtual machine means that programmers can distribute application for Java and .NET implementations without releasing their source code. .NET and Java applications can be distributed while maintaining privacy of the source code. Since intellectual property is an important asset of companies, the ability to distribute programs in binary form is important. The development of virtual machines made memory management and program portability much easier in languages like Java, Standard ML, and the various .NET languages while also providing a means for programmers to distribute programs in binary format so source code could be kept private.

1.5 Types and Type Checking

Every programming language defines operations that can be used to transform data. Data transformation is the fundamental operation that is performed by all programming languages. Some programming languages mutate data to new values. Other languages transform data by building new values from old values. However the transformation takes place, these data transformation operations are defined for certain types of data. Not every transformation operation makes sense for every type of value. For instance, addition is an operation that makes sense for numbers, but does not make any sense for customers. How would you add two customers together and what would that mean?
Since programming languages define data transformation operations, they similarly define types to specify which operations make sense on which types of data. Types in programming languages include integers, booleans, real numbers (i.e. sometimes called floating point numbers), strings, lists, tuples, and user-defined types like customers. Transformation operations are defined operators on these values. The plus sign (e.g. +) often defines addition. String concatenation might also be denoted by the plus sign. Or it might be some other symbol.
One of the jobs of a programming language implementation is to determine which operation is meant when, for instance, the plus sign is written in a program. Does it mean the addition of two numbers, string concatenation, or is it an error because you can’t add two customers together? Determining if the plus sign makes sense in the context of its operands (i.e. the two things being added together) is the job of a programming language implementation. More generally, the programming language implementation is responsible for checking that the operations performed on its data types are defined and the programming language is responsible for invoking the correct operation.
There are two different times that this type checking might occur. Some programming languages defer all type checking until the last possible second when the program is actually executing. When the next operation occurs, a programming language implementation may terminate a program and report that the next operation to be executed is not defined. This is called a dynamically typed programming language.
Python is a dynamically typed programming language. You don’t find out that an operation is undefined until the operation is about to be executed. No earlier warning is given. When the code is executed, if you try to add two customers together, you find out that this has not been defined.
Other programming languages report any operation that is not defined before the program begins execution. In this case the programming language is statically typed. A statically typed language goes through a step during before execution where type checking is performed to see if the operations are defined for the given types of operands. This type checking step is performed in languages like Java and C++. These languages are statically typed.
An important facet of Standard ML is the strong type checking provided by the language. The type inference system, commonly called Hindley-Milner type inference, statically checks the types of all expressions and operations in the language. In addition, the type checking system is polymorphic, meaning that it handles types that may contain type variables. The polymorphic type checker is sound. It will never say a program is typed correctly when it is not. Interestingly, the type checker has also been proven complete, which means that all correctly typed programs will indeed pass the type checker. No correctly typed program will be rejected by the type checker. We expect soundness out of type checkers but completeness is much harder to prove and it has been proven for Standard ML.
There are trade-offs between statically and dynamically typed languages. Typically there is more overhead to programming with a statically typed language. Types in C++ and Java must be declared so that static type checking can be performed. But this is not always the case. Standard ML infers the types of most values in the language without requiring the types of its values to be declared.
Dynamically typed languages typically require less overhead in declaring values. In Python you don’t declare the value of any object, except through the creation of that object. Writing
A330638_2_En_1_Figa_HTML.gif
results in x referring to an integer value. Then printing $$x + x$$ will result in 12 being printed because $$+$$ is determined to be a valid operation on integers at run-time, as $$x+x$$ is computed.
The problem with dynamically typed languages comes from the lateness of determining if the operation is defined on the objects. If the operation is only determined to be valid right before it is executed, then every single line of a program must be tested to determine if the program is correct or not. While static typing tells you whether operations are defined or not before the program executes, dynamically typed languages don’t help you with that. They only tell you that an operation is not defined if you actually try to execute that line of code.
So, which is better, dynamically or statically typed languages? It depends on the complexity of the program you are writing and its size. Static typing is certainly desirable if all other things are equal. But static typing typically does increase the work of a programmer up front. On the other hand, static typing is likely to decrease the amount of time you spend testing as evidenced by the Fox Project [10] at Carnegie Mellon.

1.6 Chapter Summary

The history of languages is fascinating and a lot more detail is available than was covered in this chapter. There are many great resources on the web where you can get more information. Use Google or Wikipedia and search for “History of your_favorite_language” as a place to begin. However, be careful. You can’t believe everything you read on the web and that includes Wikipedia. While the web is a great source, you should always research your topic enough to independently verify the information you find there.
While learning new languages and studying programming language implementation it becomes important to understand models of computation. A compiler translates a high-level programming language into a lower level computation. These low-level computations are usually expressed in terms of machine language but not always. More important than the actual low-level language is the model of computation. Some models are based on register machines. Some models are based on stack machines. Still other models may be based on something entirely different. Chapters 3 and 4 explore stack-based virtual machines in much more detail.
The next chapter provides the foundations for understanding how the syntax of a language is formally defined by a grammar. Then chapter three introduces a Python Virtual Machine implementation called JCoCo. JCoCo is an interpreter of Python bytecode instructions. Chapter three introduces assembly language programming using JCoCo, providing some insight into how programming languages are implemented.
Subsequent chapters in the book will again look at language implementation to better understand the languages you are learning, their strengths and weaknesses. While learning these languages you will also be implementing a compiler for a high level functional language called Small which is a robust subset of Standard ML. This will give you even more insight into language implementation and knowledge of how to use these languages to solve problems.
Finally, in the last two chapters of this text, you will learn about type checking and type inference using Prolog, a language that is well-suited to logic problems like type inference. Learning how to use Prolog and implement a type checker is a great way to cap off a text on programming languages and language implementation.
A great way to summarize the rest of this text is to see it moving from very prescriptive approaches to programming to very descriptive approaches to programming. The word prescriptive means that you dwell on details, thinking very carefully about the details of what you are writing. For instance, in a prescriptive approach you might ask yourself, how do you set things up to invoke a particular type of instruction? In contrast, descriptive programming relies on programmers describing relationships between things. Functional programming languages, to some extent, and logic programming languages employ this descriptive approach to programming. Read on to begin the journey from prescriptive to descriptive programming!

1.7 Review Questions

  1. 1.
    What are the three ways of thinking about programming, often called programming paradigms?
     
  2. 2.
    Name at least one language for each of the three methods of programming described in the previous question.
     
  3. 3.
    Name one person who had a great deal to do with the development of the imperative programming model. Name another who contributed to the functional model. Finally, name a person who was responsible for the development of the logic model of programming.
     
  4. 4.
    What are the primary characteristics of each of the imperative, functional, and logic models?
     
  5. 5.
    Who are recognized as the founders of each of the languages this text covers: Java, C++, Python, Standard ML, and Prolog?
     
  6. 6.
    Name a language, other than Python, C++, or Java, that is imperative object-oriented in nature.
     
  7. 7.
    Name a language besides Standard ML, that is a functional programming language.
     
  8. 8.
    What other logic programming languages are there other than Prolog? You might have to get creative on this one.
     
  9. 9.
    Why is compiling a program preferred over interpreting a program?
     
  10. 10.
    Why is interpreting a program preferred over compiling a program?
     
  11. 11.
    What benefits do virtual machine languages have over interpreted languages?
     
  12. 12.
    What is a bytecode program? Name two languages that use bytecode in their implementation.
     
  13. 13.
    Why are types important in a programming language?
     
  14. 14.
    What does it mean for a programming language to be dynamically typed?
     
  15. 15.
    What does it mean for a programming language to be statically typed?
     

1.8 Solutions to Practice Problems

These are solutions to the practice problems. You should only consult these answers after you have tried each of them for yourself first. Practice problems are meant to help reinforce the material you have just read so make use of them.

1.8.1 Solution to Practice Problem 1.1

  1. 1.
    The origins of the three models are the Turing Machine, the $$\lambda $$-calculus, and propositional and predicate logic.
     
  2. 2.
    Alan Turing as a PhD student of Alonzo Church. Alan Turing developed the Turing Machine and Alonzo Church developed the $$\lambda $$-calculus to answer prove there were somethings that are not computable. They later proved the two approaches were equivalent in their power to express computation.
     
  3. 3.
    Both von Neumann and Turing contributed to the idea of a stored-program computer.
     
  4. 4.
    Backus developed BNF notation which was used in the development of Algol 60.
     
  5. 5.
    1936 was a big year for Computer Science.
     
  6. 6.
    So was 1946. That was the year ENIAC was unveiled. Eckert and Mauchly designed and built ENIAC.
     
  7. 7.
    The problems in Mathematics were growing complex enough that many mathematicians were developing models and languages for expressing their algorithms. This was one of the driving factors in the development of computers and Computer Science as a discipline.
     

1.8.2 Solution to Practice Problem 1.2

  1. 1.
    The run-time stack, global memory, and the heap are the three divisions of data memory.
     
  2. 2.
    Data on the heap is created at run-time.
     
  3. 3.
    An activation record holds information like local variables, the program counter, the stack pointer, and other state information necessary for a function invocation.
     
  4. 4.
    An activation record is created each time a function is called.
     
  5. 5.
    An activation record is deleted when a function returns.
     
  6. 6.
    The primary goal of imperative, object-oriented programming is to update memory by updating variables and/or objects as the program executes. The primary operation is memory updates.
     

1.8.3 Solution to Practice Problem 1.3

  1. 1.
    Functional languages include Standard ML, Lisp, Haskell, and Scheme.
     
  2. 2.
    In the imperative model the primary operation revolves around updating memory (the assignment statement). In the functional model the primary operation is function application.
     
  3. 3.
    The functional model emphasizes immutable data. However, some imperative languages have some immutable data as well. For instance, Java strings are immutable.
     

1.8.4 Solution to Practice Problem 1.4

  1. 1.
    You never write a program in Prolog. You write a database of rules in Prolog that tell the single Prolog program (depth first search) how to proceed.
     
  2. 2.
    The programmer provides a database of facts and predicates that tell Prolog about a problem. In Prolog the programmer describes the problem instead of programming the solution.
     

1.8.5 Solution to Practice Problem 1.5

  1. 1.
    C++ was invented by Bjourne Stroustrup. C was created by Dennis Ritchie. Standard ML was primarily designed by Robin Milner. Prolog was designed by Alain Colmerauer and Philippe Roussel with the assistance of Robert Kowalski. Python was created by Guido van Rossum. Java was the work of the Green team and James Gosling.
     
  2. 2.
    Standard ML and Prolog were both designed as languages for automated theorem proving first. Then they became general purpose programming languages later.
     
  3. 3.
    Both Python and Prolog run on virtual machine implementations. Python’s virtual machine is internal to the interpreter. Prolog’s virtual machine is called WAM (Warren Abstract Machine).
     
  4. 4.
    Standard ML is influenced by Lisp, Pascal, and Algol.