ÁTOMOS
El lenguaje de la Química empieza por los elementos. Los elementos son las sustancias que no pueden descomponerse (por los métodos ordinarios, desarrollados por los químicos del siglo XIX) en sustancias más simples. Actualmente, se conocen en total 103 elementos. Algunos de ellos sólo han sido producidos en laboratorio y, de no ser por la intervención del hombre, que se sepa, no existen en la Tierra. Otros existen, pero son muy escasos. Otros, aunque bastante corrientes, no tienen importancia para los tejidos vivos.
En realidad, para el propósito de este libro, nos basta referimos a seis elementos, concretamente:
Carbono
Hidrógeno
Oxígeno
Nitrógeno
Azufre
Fósforo
Todos son muy corrientes, y cuatro de ellos se encuentran con facilidad. El carbón, por ejemplo, es carbono casi puro, al igual que el hollín y el grafito de los lápices. También el diamante es una forma especial de carbono.
El noventa y nueve por ciento del aire que respiramos es una mezcla de oxígeno y nitrógeno en proporción de 1:4, mientras que el azufre, se presenta bajo la forma de un sólido amarillo chillón. El hidrógeno es un gas ligero, inflamable, que se utiliza para hinchar los globos. El fósforo es un sólido de color rojizo.
Todas las sustancias están formadas por minúsculos átomos. En el siglo XX, la Ciencia ha demostrado que los átomos, aunque pequeñísimos, son unos sistemas extraordinariamente complejos de partículas todavía más pequeñas. Sin embargo, nosotros no vamos a ocupamos de la estructura interna del átomo, y basta decir que se trata de un objeto muy menudito.
Cada elemento se compone de uno o más átomos que son distintos de los de todos los demás elementos. Existen, por lo tanto, 103 clases diferentes de átomos conocidas, una por cada elemento. Puesto que trataremos sólo de seis elementos, no tenemos que preocupamos más que de seis átomos: 1) el átomo de carbono; 2) el átomo de hidrógeno; 3) el átomo de oxígeno; 4) el átomo de nitrógeno; 5) el átomo de azufre y 6) el átomo de fósforo.
Puesto que vamos a referimos a ellos con frecuencia, será conveniente disponer de un sistema abreviado para mencionarlos. Los químicos, por acuerdo internacional, utilizan abreviaturas y, concretamente, estos seis elementos se mencionan por su inicial.
De manera que el átomo de carbono es C; el de hidrógeno, H; el de oxígeno, O; el de nitrógeno, N; el de azufre, S (sulphur) y el de fósforo, P (phosphorus).
Por lo tanto, empezamos con un golpe de suerte. En el lenguaje corriente, tenemos que utilizar 26 letras diferentes, expresada cada una en dos formas: mayúscula y minúscula. Luego, tenemos nueve dígitos para formar numerales y diversos signos para puntuación y otros fines. (Mi máquina de escribir está equipada para producir 82 símbolos diferentes que, en realidad, a veces no me bastan). En el lenguaje químico, por el contrario, empezamos con sólo seis símbolos.
Normalmente, en la Tierra no existen átomos aislados. Casi siempre, cada uno de ellos está asociado con uno o más átomos. Cuando la asociación involucra átomos de una misma clase, tenemos los elementos de los que hablaba al principio. A veces, la asociación involucra átomos de dos o más variedades, lo cual nos da un compuesto.
Cualquier grupo de átomos (iguales o distintos) que forme una unión que no se disgregue espontáneamente sino que se mantenga por lo menos el tiempo necesario para ser estudiada, recibe el nombre de molécula, derivado de una palabra latina que significa «pequeña cantidad».
Si los átomos son las letras del lenguaje químico, las moléculas son las palabras. Pero, a fin de unir las letras para formar palabras, necesitamos conocer las reglas de la ortografía química. Cuando tratamos con letras de la lengua española, sabemos que existen ciertas restricciones para la formación de palabras. Si escribimos una «q», la letra siguiente tiene que ser forzosamente una «u». Si vemos una «rr» sabemos que no puede tratarse de un comienzo de palabra y, si nos tropezamos con una combinación de letras como «zwbf», podemos estar seguros de que no corresponde a una palabra española.
También la ortografía química tiene reglas, pero no debe sorprendemos que sean algo distintas de las que rigen la ortografía de la lengua española. Para empezar, el átomo de oxígeno (O) y el átomo de azufre (S) tienen cada uno dos «puntos de unión con otros átomos, como las letras que quedan en el centro de una palabra, que tienen otras letras delante y detrás. El átomo de hidrógeno (H) tiene un solo punto de unión, como las letras que están al principio o al final de una palabra.
El átomo de nitrógeno (N) tiene tres puntos de unión y el de carbono (C), nada menos que cuatro. Aquí se pierde ya toda similitud con la ordenación de las letras en las palabras.
(El átomo de fósforo es un caso aparte, al que me referiré más adelante, cuando sea necesario[4]
Podemos marcar los puntos de unión de cada átomo con pequeñas líneas llamadas enlaces que se agregan al símbolo de los elementos. Así, las reglas de la ortografía química pueden esbozarse tal como se indica en la figura 1.
MOLÉCULAS
Es fácil construir moléculas simples de los átomos, utilizando el sistema de enlaces indicado en la figura 1. Lo primero que podríamos intentar es poner átomos de hidrógeno en cada enlace de los otros átomos, como se indica en la figura 2.
Los resultados son las fórmulas estructurales de sustancias reales bien conocidas. Del agua no hace falta hablar. El metano es un gas inflamable componente principal del «gas natural» que se usa para guisar y para la calefacción. El amoníaco es un gas de olor asfixiante. (El amoníaco que se vende en las droguerías no es la sustancia sino una solución del gas en agua). El sulfuro de hidrógeno es un gas pestilente, con olor a huevo podrido que suele encontrarse en los laboratorios de química escolar o emana de aguas estancadas.
Los químicos están tan familiarizados con las fórmulas estructurales de estas moléculas simples que generalmente no se molestan en escribirlas con los guiones de unión y se limitan a indicar las diferentes clases de átomos. Si la molécula contiene más de uno de un tipo determinado, escriben el número. Así por ejemplo, metano se escribe CH4, amoníaco NH3, agua H2O y sulfuro de hidrógeno, B2S. Cuando expresamos de este modo las moléculas utilizamos lo que se llama fórmulas empíricas. Para las moléculas pequeñas bastan las fórmulas empíricas simples.
A veces, los átomos están unidos por dos enlaces (doble enlace) o, incluso, por tres (triple enlace), tal como indican los ejemplos de la figura 3.
Cuando dos átomos de oxígeno están unidos por ambos enlaces de cada uno, resulta una molécula formada por átomos de una clase. Una sustancia compuesta de estas moléculas es un elemento. El oxígeno de la atmósfera no está compuesto por átomos individuales, sino por moléculas de dos átomos cada una. Por lo tanto, el oxígeno de la atmósfera se denomina oxígeno molecular. De igual modo, el nitrógeno de la atmósfera está compuesto por moléculas de dos átomos, en las que los átomos están unidos por los tres puntos de enlace propios de los átomos de nitrógeno. También el hidrógeno gaseoso está formado por moléculas de dos átomos que, desde luego, están unidos por un solo enlace, puesto que el átomo de hidrógeno no tiene más que uno.
También pueden ligarse mediante más de un enlace los átomos de distintos tipos, como en el caso del dióxido de carbono o del cianuro de hidrógeno. De todos modos, la existencia de enlaces dobles o triples no altera las reglas de la unión. Si cuentan los enlaces correspondientes a cada átomo de cualquiera de las moléculas de la figura 3 observarán que los átomos de oxígeno y azufre tienen siempre dos enlaces, los de nitrógeno, tres, el átomo de carbono, cuatro y el de hidrógeno, uno.
Cuando se escriben fórmulas empíricas, se hace caso omiso de los enlaces dobles y triples. Sólo se cuentan los átomos. Por lo tanto, el oxígeno molecular es 02, el nitrógeno molecular es N2, el dióxido de carbono es C02, el cianuro de hidrógeno es HCN, etc.
CADENAS DE CARBONO
Las moléculas cuyas fórmulas he enunciado hasta ahora son muy simples. Recurriendo de nuevo a la comparación con las palabras, podríamos decir que estas fórmulas son «palabras de una sílaba».
Si en los tejidos vivos existen moléculas más complicadas ello se debe a las singulares propiedades del átomo de carbono que se encuentra presente en todo tejido vivo. Los átomos de carbono tienen la peculiaridad de unirse formando largas cadenas estables.
Dado que el átomo de carbono tiene cuatro enlaces, estas cadenas pueden ser ramificadas. La molécula de la figura 4 representa un ejemplo de ello.
Se conoce a esta molécula por el nombre de isooctano. Contiene ocho átomos de carbono dispuestos en cadena ramificada. Los enlaces de los átomos de carbono que no están conectados a otros átomos de carbono lo están a átomos de hidrógeno; si los cuentan observarán que hay ocho átomos de carbono y dieciocho átomos de hidrógeno. Dado que su molécula contiene únicamente átomos de carbono y de hidrógeno, el isooctano forma parte de una clase de compuestos llamados hidrocarburos. La gasolina es una mezcla de distintos hidrocarburos en cuya composición entra una importante proporción de isooctano.
La fórmula empírica del isooctano es C8H18, pero, una vez entramos en el mundo de las moléculas que contienen carbono, dejan de tener utilidad las fórmulas empíricas. Por ejemplo, se puede disponer ocho átomos de carbono en línea recta, como se indica en la figura 5.
Esto representa la molécula de octano normal, cuyas propiedades son ligeramente diferentes de las del isooctano. Esta diferencia de propiedades significa que el isooctano y el octano normal son realmente dos compuestos distintos, a pesar de lo cual ambos tienen la fórmula empírica C4H18.
(Y, como puede observarse, en ambos cada átomo de carbono tiene cuatro enlaces y cada átomo de hidrógeno, uno).
En otras palabras, lo que distingue a una molécula de otra no es simplemente la clase de átomos que la componen ni su número sino la disposición de los distintos átomos. Por ello, al tratar de las complejas sustancias de los tejidos vivos, tenemos que atenemos a las fórmulas estructurales ya que, de lo contrario, estaríamos perdidos.
A medida que las fórmulas estructurales se alargan y complican, resulta conveniente poder referirse a partes específicas de la molécula, combinaciones atómicas particulares que aparecen frecuentemente en la molécula. Utilizando la analogía de las palabras, este proceso es como partir una palabra larga en sílabas para facilitar su pronunciación.
Veamos, pues, la combinación de átomos expuesta en la figura 6.
Compuesto de un átomo de carbono con hidrógeno en tres de sus enlaces. El cuarto, que en la figura aparece libre, puede unirse a casi cualquier tipo de átomo. Si se uniera a un átomo de hidrógeno, el resultado sería metano (como puede verse en la figura 2). Por ello, la combinación de un átomo de carbono con tres átomos de hidrógeno se llama grupo metilo. En la fórmula del isooctano (fig. 4), se ven cinco grupos metílicos, cada uno de los cuales está unido a un átomo de carbono.
Para ahorrar espacio, el grupo de metilo puede enunciarse al modo de las fórmulas empíricas, CH3-. Obsérvese, sin embargo, el guión que representa el enlace no ocupado. (El grupo metilo no es molécula. En las moléculas de las que se trata en este libro todos los enlaces de los distintos átomos están ocupados. Por lo tanto, el grupo de metilo es simplemente fragmento de una molécula; por así decirlo, una «sílaba» de la «palabra»).
El grupo metilo puede estar unido a otros átomos además de los de hidrógeno y carbono. Con frecuencia, está unido a átomos de oxígeno, nitrógeno o azufre, como en los ejemplos que indico en la figura 7.
Cada una de estas moléculas es lo que podríamos llamar «de dos sílabas». En cada caso, el grupo metilo es una sílabas; lo que resta es la segunda sílaba.
La combinación oxígeno-hidrógeno en el alcohol metílico puede enunciarse -OH. El nombre de este grupo es una versión abreviada de los nombres de los dos átomos que lo componen. Es el grupo hidroxilo.
La combinación de nitrógeno y dos átomos de hidrógeno existentes en la amina metílica puede enunciarse -NH2. Un átomo más de hidrógeno nos dada amoníaco, y de este compuesto se deriva el nombre del grupo de las aminas. La combinación azufre-hidrógeno del mercaptan metílico -SH es el grupo thiol. El prefijo «thi» se deriva de la palabra griega que significa azufre.
A veces, un grupo atómico común tiene dos enlaces que no se utilizan. Un átomo de carbono y un átomo de oxígeno pueden estar unidos por un enlace doble y el átomo de carbono, tener todavía dos enlaces sin ocupar. Este caso puede representarse así: =CO. Este es el grupo carbonilo y, si observan la figura 3, hallarán un grupo carbonilo en la fórmula del formaldehído.
También puede darse el caso de que dos átomos de sulfuro estén unidos por un solo enlace. Cada uno tendrá entonces un enlace libre, o sea, dos en total. Este grupo -SS-, es el grupo bisulfuro.
Uno de los compuestos orgánicos conocidos por el hombre desde más antiguo en una forma relativamente pura es el ácido acético, nombre que se deriva de la palabra griega que designa el vinagre. En realidad, el vinagre es una solución débil de este ácido. En la figura 8 se indica la fórmula del ácido acético.
Como puede observarse, el ácido acético es una molécula de «tres sílabas». Contiene un grupo metilo unido a un grupo carbonilo que, a su vez, está unido a un grupo hidroxilo. La combinación carbonilo-hidroxilo es muy frecuente en los compuestos, por lo que suele considerarse como una «sílaba» en sí misma. La frase «carbonilo-hidroxilo» se contrae a las partes indicadas en cursiva y el grupo recibe el nombre de carboxilo. Dado que la presencia en la molécula de un grupo carboxilo suele dar a aquélla propiedades de ácido, también suele llamársele grupo de ácido carboxílico.
Para abreviar, el grupo carboxilo suele enunciarse -COOH. En realidad, ésta no es una indicación satisfactoria, ya que da a entender que los dos átomos de oxígeno están unidos entre si y no lo están. Yo preferiría enunciarlo -(CO)OH o -CO (OH), pero estoy seguro de que no he de conseguir modificar una costumbre secular de los químicos.
Si sustituimos la parte de hidroxilo del grupo carboxilo por un grupo de aminas el resultado será -CONH2. Esto es un grupo amida. Existen muchos grupos adicionales con los que ha de tratar el químico al estudiar los compuestos orgánicos, pero nosotros podremos arreglamos con los ocho mencionados y que detallo a continuación:
CARBONO EN ANILLOS
Todavía no hemos terminado. Hay aún otro refinamiento a tener en consideración.
Los átomos de carbono tienen tendencia a formar anillos. Estos anillos forman unas combinaciones extraordinariamente estables; en especial cuando están compuestos por cinco o seis átomos, y de modo particular cuando los enlaces dobles se alternan con los sencillos. La figura 9 índica un ejemplo.
La molécula que se muestra es la del benceno. Tiene en el núcleo un anillo de seis átomos de carbono, cada uno de los cuales está conectado al átomo de carbono contiguo por un enlace simple y a otro por un enlace doble. Cada átomo de carbono tiene, además, un cuarto enlace que lo conecta a un átomo de hidrógeno.
El anillo de seis átomos de carbono con enlaces dobles y simples alternos se llama anillo de benceno. Es tan estable que se encuentra en muchos miles de compuestos.
Los químicos, al escribir sus fórmulas, han tenido que utilizar este anillo con tanta frecuencia que, inevitablemente, han buscado la forma de abreviar su enunciado y la solución aplicada con más frecuencia es la de la representación geométrica. El anillo de benceno se representa como un simple hexágono, con indicación de los enlaces simples y dobles, como aparece en la figura 10.
Para reconvertir esta versión geométrica del anillo de benceno en la molécula de benceno de forma que aparezcan todos sus átomos, basta colocar una C en cada uno de los ángulos del hexágono y recordar que todos los enlaces restantes están unidos a átomos de hidrógeno. Ello resulta tan familiar a los químicos que, con una simple ojeada, éstos pueden interpretar los más complicados sistemas anulares.
Pero ¿qué ocurre si los enlaces restantes están unidos a átomos que no son de hidrógeno? En este caso, se indican los átomos o grupos de átomos conectados. Doy unos ejemplos en la figura 11, en la que el tolueno lleva agregado un grupo de metilo al anillo de benceno, el fenol, un grupo hidroxilo y la anilina, un grupo amina.
Para simplificar, casi siempre los grupos agregados se enuncian como fórmulas empíricas. Más adelante, introduciré una mayor simplificación.
Hay anillos atómicos que no están formados únicamente por átomos de carbono, sino que pueden intervenir otros átomos, generalmente, nitrógeno u oxígeno. En este caso, hay que especificar en la figura geométrica el átomo que no es carbono. Sólo así se puede estar seguro de que en un ángulo de la figura en el que no se especifica la clase de átomo, existe un átomo de carbono. A modo de ejemplo, en la figura 12 se enuncian dos compuestos, en las formas completa y geométrica.
En estos dos compuestos, furano y pirrol, el anillo consta sólo de cinco átomos, por lo que su representación geométrica es un pentágono.
Desde luego, los anillos hexagonales también pueden contener átomos que no sean de carbono, y más de uno. En la figura 13 se dan algunos ejemplos. El imidazol es un anillo de cinco miembros con dos átomos de nitrógeno y la pirimidina, un anillo de seis miembros con dos átomos de nitrógeno.
También es posible que los átomos de carbono (con o sin otros átomos que no sean de carbono) adopten combinaciones de anillos. Por ejemplo, un anillo de benceno y un anillo de pirrol pueden combinarse formando indol, mientras que un anillo de pirimidina y un anillo de imidazol pueden combinarse y formar purina, tal como se indica en la figura 14.
Éstas no son en modo alguno las únicas combinaciones posibles que se encuentran en los compuestos orgánicos. En realidad, algunos químicos han confeccionado catálogos de regular tamaño con las listas de los distintos anillos y combinaciones de anillos que pueden encontrarse, con los nombres respectivos.
A nosotros, sin embargo, nos bastarán los siete anillos y combinaciones indicados y que reproduzco a continuación, sólo en forma geométrica, en la figura 15.
Los ocho grupos y siete anillos enumerados en este capítulo comprenden todas las «sílabas» básicas que necesitamos para servimos del lenguaje químico. (Sobre la marcha, añadiré uno o dos elementos adicionales).
Tal vez ello les parezca excesivamente simple. ¿Es posible explicar la extensa variedad y complejidad de la proteína con un «silabario» tan limitado?
Aunque parezca extraño, así es, como veremos en seguida.