296 Ibid., 55 c. Si aumentando el número de lados de los polígonos regulares se pueden obtener éstos en una secuencia infinita, el número de sólidos regulares en el espacio tridimensional es pequeño: sólo cinco. Partiendo de esta premisa, Michele Emmer ha analizado la doble historia artística y científica de los poliedros, destacando los recientes trabajos de investigación sobre la morfología de los sólidos en el espacio, a través de ordenador, realizados por científicos. Emmer destaca también al artista Lucio Saffaro, quien se ha dedicado a la construcción de nuevas clases de poliedros que luego ha realizado en su obra pictórica. Cf. M. Emmer: «I solidi platonici» en La perfezione visibile. Matematica e Arte, Roma-Nápoles, Edizioni Theoria, 1991, pp. 69-98. Asimismo, Emmer ha realizado el film Platonic Solids, de la serie «Art and Mathematics», 16 mm., 27 m. (Roma, Film 7 International, 1979). Sobre las investigaciones de Saffaro, véanse además sus artículos «On Some New Platonic Forms» en el número especial «Visual Mathematics» (ed. M. Emmer) de Leonardo, vol. 25, ns. 3-4 (1992), pp. 289-190; «Dai cinque poliedri all’infinito» en E. Marconi, ed.: Annuario EST, Milán, Mondadori, 1976, pp. 473-484; «Anticipazioni e mutamenti nel pensiero geometrico» en M. Emmer, ed.: L’occhio di Horus: Itinerario nell’immaginario matematico, Roma, Instituto della Enciclopedia Italiana, 1989, pp. 105-116.<<