Лев Григорьевич Власов
Дмитрий Николаевич Трифонов
Занимательно о химии
Вместо предисловия
Дошла до нас старая как мир легенда… Один восточный владыка, просвещенный и мудрый, пожелал узнать все о народах, населяющих землю.
Позвал он приближенных и объявил им:
— Повелеваю написать мне историю всех народов. И рассказать в ней, как жили они раньше, как живут теперь. Чем они занимаются, какие войны вели и ведут. Какие ремесла и искусства расцветают в разных странах.
И дал на это пять лет сроку.
Молча поклонились приближенные. Со всего царства были собраны мудрейшие из мудрецов, и им объявили желание владыки.
Говорят, неслыханного расцвета достигло в ту пору изготовление пергамента…
Миновало пять лет, и явились приближенные во дворец.
— Твое желание, о владыка, исполнено! Выгляни в окно, и ты увидишь то, чего хотел…
Изумленный правитель протер глаза. Перед дворцом выстроился караван верблюдов. Такой длинный, что конец его терялся где-то за горизонтом. И на каждом верблюде по два громадных тюка. А в каждом тюке бережно упаковано по десять толстенных томов в прекрасных сафьяновых переплетах.
— Что это? — удивился правитель.
— Это всемирная история, — ответили приближенные. — По твоему повелению мудрейшие из мудрых писали ее не покладая рук в течение пяти лет!
— Вы смеетесь надо мной! — рассердился владыка. — Да ведь я до конца своей жизни не успею прочесть и десятой доли того, что они написали! Нет, пусть напишут мне краткую историю. Но чтобы в ней было рассказано обо всех главных событиях!
И дал на это год сроку.
Минуло назначенное время, и снова показался у стен дворца караван. И было в нем всего десять верблюдов, и по два тюка на каждом верблюде, и по десять фолиантов в каждом тюке.
Еще больше разгневался владыка.
— Пусть напишут мне самое-самое главное, что было в истории всех народов во все времена. Сколько времени нужно на это?
Тогда выступил вперед мудрейший из мудрецов и проговорил:
— Завтра, о владыка, ты получишь то, что желаешь!
— Завтра? — удивился правитель. — Хорошо. Но если обманешь, не сносить тебе головы!
…Едва солнце взошло на лазурном небе и уснувшие на ночь цветы снова раскрылись во всем своем великолепии, как владыка потребовал к себе мудреца.
Мудрец вошел, неся в руках маленький ларец из сандалового дерева.
— Ты найдешь в нем, владыка, самое главное, что было в истории всех народов во все времена, — произнес мудрец, сгибаясь в низком поклоне.
Правитель открыл крышку ларца. На бархатной подушке лежал маленький клочок пергамента. Там была написана всего лишь одна фраза: «Они рождались, жили и умирали».
Вот какая старинная легенда дошла до нас. Мы невольно вспомнили ее, когда нам, авторам, предложили написать занимательную книжку о химии. И при этом добавили, что в бумаге (то бишь в объеме книги) нас ограничивают. Значит, надо писать о главном. А что самое главное в химии?
«Химия — это наука о веществах и их превращениях».
Ну как здесь не вспомнить клочок пергамента на дне сандалового ларца?
Подумали мы, почесали затылки и решили. Все в химии главное. Одно, может, более главное, другое — менее. И опять же смотря для кого. Химик-неорганик, к примеру, считает, что пуп земли — неорганическая химия. Химик-органик придерживается мнения диаметрально противоположного. Нет на сей счет успокоительного единства взглядов.
Само понятие «цивилизация» состоит из многих «слагаемых». И одним из самых главных среди них является химия.
Она позволяет человеку добывать металлы из руд и минералов. Не было бы химии, не было бы и современной металлургии.
Она извлекает из минерального, животного и растительного сырья вещества, одно другого чудесней и удивительней.
Она не только копирует природу, подражает ей, а и — с каждым годом все более — начинает превосходить ее. Рождаются тысячи и десятки тысяч веществ, природе неизвестных. Со свойствами очень полезными и важными для практики, для жизни человека.
Перечень добрых дел, которые творит химия, поистине неисчерпаем.
Ведь все проявления жизни сопровождаются огромным множеством химических процессов. Познать суть жизнедеятельности без химии, без знания ее закономерностей невозможно.
В эволюции человека химия сказала свое веское слово.
Химия кормит нас, одевает, обувает, наконец, предоставляет блага, без которых немыслимо современное цивилизованное общество.
Первые ракеты вырвались в околоземное пространство. Горючее для их двигателей, прочные и жаростойкие материалы для их конструкций дала химия.
Если бы кому-нибудь пришло в голову написать о всей химии во всем ее многообразии и великолепии, то под угрозой оказались бы бумажные ресурсы даже высокоразвитого государства. К счастью, такая идея еще никого не осенила. А вот перед нами встала задачка подобного рода.
Но мы нашли выход из положения. Мы решили писать понемногу о многом. Понемногу о разном. Это, конечно, в какой-то мере дело вкуса. Другие, вероятно, рассказали бы о другом, третьи — о третьем. Но ведь книжку-то пришлось писать нам. А потому не сетуйте на нас, если вдруг не прочтете в ней о том, о чем вам, именно вам, хотелось узнать.
Обитатели Большого дома
Периодическая система с птичьего полета
Беглый взгляд, первое представление обычно мало что дают. Иногда оставляют наблюдателя равнодушным, иногда удивляют. Иногда заставляют воскликнуть, подобно некоему анекдотическому персонажу, увидевшему в зоопарке жирафа, — «не может быть!».
Но и предварительное знакомство с предметом или явлением, так сказать взгляд с птичьего полета, нередко бывает полезным.
Периодическую систему элементов Дмитрия Ивановича Менделеева никак не назовешь предметом или явлением. Она своеобразное зеркало, которое отражает содержание одного из величайших законов природы — периодического закона. Кодекса правил, которому подчиняется поведение ста с лишним элементов, встречающихся на Земле и полученных человеком искусственно. Своего рода распорядка, царящего в Большом доме химических элементов…
Первый взгляд на него схватывает многое. Поначалу рождается удивление. Словно среди типовых крупноблочных строений вы увидели здание причудливой и вместе с тем изящной архитектуры.
Чем же нас удивляет таблица Менделеева? Прежде всего тем, что ее периоды, ее этажи, спланированы очень неравномерно.
В первом этаже, первом периоде таблицы Менделеева, клеток всего две. Во втором и третьем — по восемь. Четвертый и пятый устроены прямо-таки по гостиничному типу: восемнадцать комнат на каждом. На шестом и седьмом комнатушек и того больше — по тридцать две. Встречали вы когда-нибудь подобное строение?
Но именно в таком виде предстает перед нами Большой дом химических элементов — периодическая система.
Причуда архитектора? Ничуть! Любое здание строится в соответствии с законами физики. Иначе оно развалится от легкого дуновения ветерка.
Столь же строгими физическими законами подкреплен и архитектурный замысел периодической системы. Они говорят: в каждом периоде таблицы Менделеева должно содержаться совершенно определенное число элементов. Например, в первом — два. Ни больше и ни меньше.
Так утверждают физики, и химики с ними полностью согласны.
Были иные времена. Физики ничего не утверждали, дела периодического закона их еще не начали волновать. Зато химиков, которые чуть не каждый год открывали новые элементы, весьма заботило, куда этих новичков поселить. И бывали здесь случаи неприятные, когда на одну-единственную клетку в таблице выстраивалась целая очередь претендентов.
Среди ученых встречались скептики, и в немалом количестве. Они вполне серьезно утверждали: здание таблицы Менделеева построено на песке. Например, немецкий химик Бунзен. Тот, что со своим другом Кирхгофом изобрел спектральный анализ. Но к периодическому закону Бунзен проявил удивительную научную близорукость. «С таким же успехом можно искать закономерности в цифрах биржевых бюллетеней!» — как-то в сердцах обронил он.
Еще до Менделеева делались попытки навести порядок среди хаоса шести с лишним десятков химических элементов. Но они были неудачными. Пожалуй, ближе всех к истине оказался англичанин Ньюлендс. Он провозгласил «закон октав». Как в музыке каждая восьмая нота повторяет первую, так и у Ньюлендса, расположившего элементы в ряд по величине атомных весов, свойства каждого восьмого были похожи на свойства первого. А вот реакция на открытие Ньюлендса: «Не пробовали ли вы располагать элементы в алфавитном порядке? Может, и в этом случае обнаружилась бы какая-нибудь закономерность?»
Что мог ответить бедняга Ньюлендс своему язвительному оппоненту?
На первых порах таблице Менделеева не везло. «Архитектура» периодической системы подвергалась яростным нападкам. Ибо многое в ней оставалось неясным и требовало объяснения. Легче было открыть пяток-другой новых элементов, чем найти им законное пристанище в таблице.
Только на первом этаже дело обстояло, казалось бы, благополучно: тут нечего было опасаться неожиданного наплыва квартирантов. Сейчас здесь обитают водород и гелий. Заряд ядра водородного атома равен +1, гелиевого +2. Ясно, что между ними нет и не может быть других элементов. Ведь в природе неизвестны ядра или другие частицы, заряды которых выражались бы дробными числами.
(Правда, в последние годы физики-теоретики упорно обсуждают вопрос о существовании кварков. Так называют первичные элементарные частицы, из которых могут быть построены все прочие, вплоть до протонов и нейтронов — строительного материала атомных ядер. Так вот: у кварков предполагаются дробные электрические заряды: +1/3 и –1/3. Если кварки действительно существуют, то картина «материального устройства» мира может предстать перед нами в новом обличье.)
Как астрономы оказали химикам медвежью услугу
«Никогда мне в голову не приходило, что периодическая система должна начинаться именно с водорода».
Чьи это слова? Да уж скорее всего они принадлежат кому-то из несметного легиона исследователей или просто любителей, кто ставил своей задачей создать новую, собственную периодическую систему. Перестроить ее на иной манер. Право же, всевозможных «периодических» систем появлялось на свет не меньше, чем проектов пресловутого перпетуум-мобиле — вечного двигателя.
Так вот, взятая в кавычки фраза написана самим Дмитрием Ивановичем Менделеевым. В его знаменитом учебнике «Основы химии», по которому учились десятки тысяч людей.
Почему же заблуждался автор периодического закона?
В его время такое заблуждение имело под собой все основания. Ведь элементы-то располагались в таблице в согласии с увеличением их атомных весов. Атомный вес водорода — 1,008, гелия — 4,003. А стало быть, почему не допустить существования элементов с атомными весами 1,5; 2; 3 и так далее? Или элементов легче водорода, чьи атомные веса меньше единицы?
Менделеев и многие другие химики вполне это допускали. И их поддерживали астрономы — представители науки, от химии весьма далекой. Поддерживали, правда, невольно. Это они впервые показали, что новые элементы можно открывать не только в лабораториях, анализируя земные минералы.
Англичанин Локьер и француз Жансен наблюдали в 1868 году полное солнечное затмение. Ослепительный блеск солнечной короны они пропустили через призму спектроскопа. И в сложном частоколе спектральных линий обнаружили такие, которые не могли принадлежать ни одному из элементов, известных на Земле. Так был открыт гелий, что по-гречески означает «солнечный». И только двадцать семь лет спустя английский физик и химик Крукс обнаружил гелий земной.
Пример этот оказался весьма заразительным. Астрономы направили трубы телескопов на далекие звезды и туманности. Результаты открытий скрупулезно публиковались в астрономических ежегодниках, а кое-какие перекочевали и на страницы химических журналов. Те, где речь шла о якобы открытых в безбрежных космических просторах новых элементах. Им давали звучные названия — короний и небулий, арконий и протофтор. Кроме названий, химики ничего о них не знали. Но, памятуя удачное завершение гелиевой эпопеи, спешили поместить небесных незнакомцев в периодическую систему. Перед водородом или в промежуток между водородом и гелием. В надежде, что новые Круксы когда-нибудь докажут земное существование корония и его не менее таинственных собратьев.
Но когда за периодическую систему взялись физики, они развеяли эти мечты. Атомный вес оказался ненадежной опорой для периодического закона. На смену пришел заряд ядра, порядковый номер элемента.
При переходе от элемента к элементу в периодической системе этот заряд увеличивается на единицу.
Прошло время, и более точные астрономические приборы развеяли миф о загадочных небулиях. Они оказались атомами давно известных элементов. Атомами, потерявшими часть своих электронов, а потому дающими непривычные спектры. «Визитные карточки» небесных незнакомцев оказались фальшивыми.
Двуликий элемент
Быть может, на школьном уроке по химии вы сами были свидетелями такого диалога.
Учитель:
— В какой группе периодической системы стоит водород?
Ученик:
— В первой. И вот почему: атом водорода имеет на своей единственной электронной оболочке всего один электрон. Так же, как другие элементы первой группы, щелочные металлы литий, натрий, калий, рубидий, цезий, франций. Как и они, водород в химических соединениях проявляет положительную валентность, равную единице. Водород, наконец, может вытеснять некоторые металлы из их солей.
Правда? Нет, полуправда…
Химия — наука точная. Она не любит недомолвок. Пример водорода в этом четко убеждает.
Что общего у водорода со щелочными металлами? Только положительная валентность, равная единице. Только одинаковое устройство внешней электронной оболочки. А в остальном — ничего похожего. Водород — газ, водород — неметалл. Водород образует молекулу из двух атомов. Все же прочие элементы первой группы — классические металлы, самые энергичные в химических реакциях. Размахивая своим единственным электроном, водород лишь пытается рядиться под щелочные металлы. А по сути своей он им чужак.
Большой дом устроен так, что в каждом пролете друг над другом обитают родственные элементы. Они-то и составляют группы и подгруппы в периодической системе. Это закон для жильцов Большого дома. Попав в первую группу, водород этот закон невольно нарушает.
Куда же податься бедняге водороду? Но ведь в периодической системе целых девять групп, девять пролетов в Большом доме. И только в так называемой нулевой облюбовал себе квартиру гелий — сосед водорода по первому этажу. В остальных места свободны. Смотрите, сколько возможностей для перепланировки первого этажа, чтобы найти водороду истинное «место под солнцем»!
Быть может, поселить его во второй группе у щелочноземельных металлов во главе с бериллием? Нет, они-то уж совсем не питают к водороду никаких родственных чувств. Третья, четвертая, пятая, шестая также открещиваются от него. Седьмая? Стоп! Стоящие в ней галогены — фтор, хлор, бром и так далее — готовы протянуть водороду руку дружбы.
…Встречаются двое детей.
— Тебе сколько лет?
— Столько-то.
— И мне столько-то.
— А у меня есть велосипед!
— А у меня тоже!
— У тебя папа кто?
— Шофер!
— Ух ты, и у меня тоже!
— Давай дружить?
— Давай!
— Ты неметалл? — спрашивает фтор у водорода.
— Неметалл!
— Ты газ?
— Точно.
— Мы тоже, — говорит фтор, кивая на хлор.
— А у меня молекула состоит из двух атомов! — сообщает водород.
— Скажи-ка! — удивленно произносит фтор. — Прямо как у нас.
— А можешь ли ты проявлять отрицательную валентность, принимать добавочные электроны? Мы страшно любим это делать!
— Конечно! С теми же самыми щелочными металлами, которые меня недолюбливают, я образую водородные соединения — гидриды. И там моя валентность — минус единица.
— Ну что ж! Пристраивайся к нам! Будем дружить!
Поселяется водород в седьмой группе. Надолго ли? Познакомившись как следует со своим новым родственником, кто-нибудь из галогенов разочарованно замечает:
— А у тебя, брат, того… На внешней оболочке электронов-то маловато. Всего один… Как в первой группе. Шел бы ты лучше к щелочным металлам…
Вот ведь какая беда с водородом: мест много, а поселиться — прочно, надежно, с полным правом — негде. Так и просится на бумагу «химическая» пословица: «водород, водород — элемент наоборот: от щелочных металлов отстал и к галогенам не пристал».
Но почему? Где причина удивительной двуличности водорода? Почему водород ведет себя так необычно?
Характерные свойства всякого химического элемента проявляются тогда, когда он вступает в соединение с другими. При этом он отдает или приобретает электроны. Они либо уходят с внешней электронной оболочки, либо входят в нее. Когда элемент теряет все электроны с наружной оболочки, то предыдущие сохраняются обычно неизменными. У всех элементов, кроме водорода. Стоит ему расстаться со своим единственным электроном, как остается голое атомное ядро. Остается протон. Он-то и представляет собой ядро водородного атома (впрочем, не всегда протон, но до этой важной тонкости мы с вами еще доберемся). А это значит, что химия водорода как бы является единственной в своем роде химией элементарной частицы — протона. В случае водорода протон активно влияет на ход реакций, в которые вступает этот элемент.
Вот где разгадка столь непоследовательного поведения водорода.
Самый первый, самый удивительный…
Открыл водород знаменитый английский физик сэр Генри Кавендиш. Самый богатый из ученых и самый ученый из богачей, как сказал о нем современник. Мы бы добавили: самый педантичный из ученых. Рассказывают, что, когда Кавендиш брал книгу из собственной библиотеки, он расписывался в формуляре. Самый сосредоточенный из ученых, всецело поглощенный наукой, он слыл нелюдимом. Но эти качества и позволили ему обнаружить новый газ — водород. Поверьте, это было нелегкой задачей!
Открытие свершилось в 1766 году, а в 1783 году французский профессор Шарль запустил первый воздушный шар, наполненный водородом.
И для химиков водород оказался ценнейшей находкой. Он помог, наконец, понять, как построены кислоты и основания — эти важнейшие классы химических соединений. Он стал незаменимым лабораторным реактивом — осаждал металлы из растворов солей, восстанавливал металлические окислы. Хотите парадокс? Будь водород открыт не в 1766 году, а, скажем, на полстолетия позже (право же, такое могло случиться), развитие химии, и теоретической и практической, задержалось бы надолго.
Когда химики достаточно освоили водород, а практики стали использовать его для получения важных веществ, этот газ привлек внимание физиков. И те узнали массу сведений, которые сделали науку богаче во много раз.
Хотите в этом убедиться? Водород становится твердым при температуре более низкой, чем любые другие жидкости или газы (кроме гелия), при минус 259,1 градуса по Цельсию, — раз. Атом водорода позволил датскому физику Нильсу Бору разработать теорию распределения электронов вокруг атомного ядра, без чего нельзя было бы понять физического смысла периодического закона, — два. А эти факты создали почву для других величайших открытий.
Затем физики передали эстафету своим близким родственникам по профессии — астрофизикам. Они изучают состав и строение звезд. И астрофизики пришли к выводу, что водород во вселенной — это элемент номер один. Он главная составная часть Солнца, звезд, туманностей и основной «наполнитель» межзвездного пространства. Водорода в космосе больше, чем всех остальных химических элементов, вместе взятых. Не то что на Земле, где его менее одного процента.
Именно от водорода ведут ученые длинную цепочку превращений атомных ядер. Цепочку, которая привела к образованию всех химических элементов, всех атомов до единого. Наше Солнце, все звезды светят потому, что в них происходят термоядерные реакции превращения водорода в гелий и выделяется огромное количество энергии. Видный химик на Земле, водород — выдающийся химик в космосе.
А вот еще одно удивительное свойство: атом водорода испускает радиоизлучение с длиной волны в 21 сантиметр. Это так называемая мировая константа, общая для всей вселенной. И ученые подумывают о том, нельзя ли организовать радиосвязь на водородной волне с другими обитаемыми мирами. Если там живут разумные существа, они должны иметь представление об этой величине: 21 сантиметр…
Сколько на земле водородов?
Получить Нобелевскую премию — высшая награда для ученого. Ученых в мире великое множество, но лишь немногим более ста удостоились этой чести. За самые выдающиеся из выдающихся открытий.
В почетный список попали в 1932 году Мэрфи, Юри и Брикведе.
Раньше думали, что на Земле существует только один водород. С атомным весом единица. Мэрфи и его коллеги обнаружили вдвое более тяжелого собрата водорода. Изотоп с атомным весом 2.
Изотопами называются такие разновидности атомов, у которых одинаковый заряд, но разные атомные веса. Или по-другому: в ядрах атомов изотопов содержится равное число протонов, но разное — нейтронов. Все химические элементы имеют изотопы: некоторые существуют в природе, некоторые получены искусственно с помощью ядерных реакций.
Изотоп водорода, ядро которого — голый протон, называется протий, и обозначают его так: 1Н. И это единственный пример атомного ядра, вообще не содержащего нейтронов (вот еще одна уникальная особенность водорода!).
Добавляем мы к этому протону-одиночке нейтрон, и перед нами ядро тяжелого изотопа водорода — дейтерия (2H, или D). Протия в природе не в пример больше, чем дейтерия, — свыше 99 процентов.
Но оказывается, существует и третья разновидность водорода (имеющая два нейтрона в ядре) — тритий (3Н, или Т). Он непрерывно рождается в атмосфере под действием космических лучей. Рождается, чтобы сравнительно быстро исчезнуть. Он радиоактивен и, распадаясь, превращается в изотоп гелия (гелий-3). Трития крайне мало: во всей земной атмосфере лишь 6 граммов. На 10 кубических сантиметров воздуха приходится один атом трития. А совсем недавно ученым удалось искусственно получить еще более тяжелые изотопы водорода — 4Н и 5Н. Они-то уж совсем неустойчивы.
То, что у водорода есть изотопы, не выделяет его среди химических элементов. Выделяет другое: изотопы водорода довольно заметно разнятся по свойствам, прежде всего по физическим. Изотопы других элементов почти совершенно неразличимы.
У каждой разновидности водорода свое лицо. И, вступая в химические реакции, они ведут себя по-разному. Протий, например, активнее дейтерия. Изучая поведение изотопов водорода, ученые открыли совершенно новую область науки — химию изотопов. Ведь привычная нам химия имеет дело с элементами в целом, с совокупностью изотопов. А химия изотопов занимается отдельными изотопами. Она помогает исследователям постигать самые тонкие детали различных химических процессов.
Химия = физика + математика!
Что бы вы сказали про строителей, которые сперва построили здание, а уж когда подвели под крышу, дали проектировщикам задание: рассчитать, правильно ли все построено?
Это скорее эпизод из сказки о государстве, где все делалось наоборот…
Но именно такая судьба постигла периодическую систему элементов. Большой дом сначала был возведен, химические элементы расселены каждый в своей квартире. Химики взяли таблицу Менделеева на вооружение. А почему свойства элементов периодически повторяются, этого они долгое время обосновать не могли.
Объяснение дали физики. Они рассчитали конструкцию здания менделеевской системы на прочность. И выяснилась удивительная вещь: оно построено совершенно правильно. В соответствии со всеми законами «химической механики». Так что остается преклоняться перед поистине гениальной интуицией Менделеева, интуицией и глубочайшим знанием химии.
Физики начали с того, что решили подробно разобраться в строении атома.
Его сердце — ядро. Вокруг крутятся электроны. Их столько, сколько положительных зарядов в ядре. Скажем, у водорода — один, у калия — девятнадцать, у урана — девяносто два… Как кружатся? Хаотически, подобно рою ночных бабочек, вьющихся вокруг лампочки? Или в каком-то определенном порядке?
Чтобы это выяснить, ученым пришлось призвать на помощь новые физические теории и разработать новые математические методы. И вот что оказалось: электроны движутся вокруг ядра по определенным оболочкам, подобно планетам вокруг Солнца.
— Сколько электронов помещается на каждой оболочке? Сколько угодно или же ограниченное число? — спрашивали химики.
— Строго ограниченное! — отвечали физики. — Все электронные оболочки обладают конечной емкостью.
У физиков свои символы — обозначения электронных оболочек. Латинские буквы — K, L, M, N, O, P, Q. Так называют оболочки в порядке их удаления от ядра.
Физика вкупе с математикой подробно расписала, сколько электронов содержится в каждой из них.
В К-оболочке может быть 2 электрона, никак не больше. Первый из них появляется в атоме водорода, второй в атоме гелия. Потому-то первый период менделеевской таблицы состоит всего из двух элементов.
Значительно больше, а именно 8 электронов, способна вместить L-оболочка. Первый принадлежащий ей электрон мы обнаруживаем у атома лития, а последний — в атоме неона. Элементы от лития до неона образуют второй период системы Дмитрия Ивановича Менделеева.
А сколько электронов в следующих оболочках? В М-оболочке — 18, в N — 32, в О — 50, в Р — 72 и так далее.
Если два элемента имеют одинаково устроенные внешние электронные оболочки, то и свойства этих элементов подобны. Скажем, литий и натрий содержат на внешней оболочке по одному электрону. Поэтому они помещаются в одну и ту же группу периодической системы, в первую. Видите: номер группы равен числу валентных электронов у атомов входящих в нее элементов.
И вот вывод: одинаковое строение внешних электронных оболочек периодически повторяется. Потому периодически повторяются и свойства химических элементов.
Еще немного математики
Логика существует во всем. Даже в самом непонятном явлении есть своя логика. Поначалу она не всегда заметна. Тогда появляется несоответствие. Для любой теории, любой гипотезы несоответствие — дело неприятное. Оно либо выявит ошибочность теории, либо заставит крепко задуматься. И часто бывает, что раздумья помогают проникнуть глубже в суть непонятного.
Вот один из примеров подобного несоответствия. Только в первых двух периодах менделеевской таблицы соблюдается равенство: элементов в каждом из этих периодов ровно столько, сколько максимально содержит электронов соответствующая внешняя электронная оболочка. Так, у атомов элементов первого периода — водорода и гелия — заполняется К-оболочка. В ней не может быть больше двух электронов, и потому в первом периоде всего два элемента. В атомах элементов второго периода — от лития до неона — полностью формируется восьмиэлектронная оболочка, и потому второй период содержит восемь электронов.
Дальше картина усложняется.
Посчитайте, сколько элементов в следующих периодах. В третьем — 8, в четвертом — 18, в пятом — 18, в шестом — 32, в седьмом (пока что не завершенном) тоже должно быть 32. А в соответствующих оболочках? Здесь совсем другие цифры: 18, 32, 50, 72…
Не поспешили ли мы с выводом, что физики не обнаружили никаких изъянов в здании периодической системы, взявшись объяснить его устройство? Хорошо, если бы у обитателей каждого этажа Большого дома происходило заполнение определенной электронной оболочки и начиналось бы оно у щелочного металла, а кончалось у инертного газа. Емкость периода равнялась бы емкости электронной оболочки…
Увы, об этом мы вынуждены говорить в сослагательном наклонении: если бы да кабы… На деле баланс не сходится. Третий период менделеевской таблицы вмещает меньше обитателей, чем электронов в третьей оболочке, М-оболочке. И так далее.
Грустное несоответствие… Но в нем, в этом несоответствии, и заключается разгадка глубинной сущности периодической системы.
Смотрите: третий период завершился у аргона, но третья М-оболочка в его атоме еще не достроена. Ведь она должна содержать 18 электронов, а пока что тут всего 8. За аргоном следует калий. Это уже элемент четвертого периода, первый обитатель четвертого этажа, но, вместо того чтобы поместить очередной электрон в третью оболочку, атом калия предпочитает перекинуть его в четвертую, N-оболочку. Здесь нет никаких случайностей, а опять лишь строгая закономерность, установленная физиками. Просто не могут существовать атомы, у которых на внешней оболочке более 8 электронов. Сочетание 8 внешних электронов — устройство весьма прочное.
У кальция, ближайшего соседа калия, очередному электрону также «выгоднее» разместиться на внешней оболочке. При этом атом кальция будет обладать наименьшим запасом энергии, чем при любой другой комбинации распределения электронов. Но уже у скандия, следующего за кальцием, стремление продолжить застройку наружной оболочки атома исчезает. Его электрон «ныряет» в предыдущую, не достроенную ранее М-оболочку. А поскольку в ней осталось десять вакантных мест (ведь мы уже знаем, что максимальная емкость М-оболочки составляет 18 электронов), то на протяжении ряда из десяти элементов от скандия до цинка атомы постепенно достраивают М-оболочку. У цинка, наконец, все электроны М-оболочки в сборе. А далее начинает принимать электроны снова N-оболочка. Оказывается, на ней 8 электронов, и перед нами инертный газ криптон. У рубидия повторяется история уже знакомая: пятая оболочка появляется ранее, чём завершилась четвертая.
Такое ступенчатое заполнение электронных оболочек — «норма поведения» для обитателей таблицы Менделеева начиная с четвертого периода. Это основа железного распорядка Большого дома химических элементов.
Поэтому-то в нем выделяются главные и побочные подсекции. Те элементы, где заполняются внешние электронные оболочки, входят в состав главных подгрупп. У которых достраиваются предыдущие, принадлежат к побочным.
Но четвертая, N-оболочка строится не сразу. Напротив, ее заполнение растягивается на целых три этажа Большого дома. Первый относящийся к ней электрон появляется у калия, который обитает в квартире номер 19. А 32-й электрон вмещается в нее только у лютеция, представителя шестого периода таблицы. Его порядковый номер 71.
Как видите, несоответствие обернулось для нас положительной стороной. Пытаясь его объяснить, мы вместе с физиками глубже разобрались в строении периодической системы.
Как химики встретились с неожиданным
Есть у английского писателя Герберта Уэллса великолепный фантастический роман «Война миров». О нашествии на Землю посланцев Марса.
Вспомните: погиб последний марсианин, земная жизнь начала входить в обычную колею, и оправившиеся от потрясений ученые кинулись исследовать немногое, что осталось от неожиданных пришельцев соседней планеты. В том числе и таинственную черную пыль, служившую марсианам для истребления земной жизни.
После нескольких неудачных экспериментов, кончавшихся страшными взрывами, выяснили: злополучное вещество представляет собой соединение инертного газа аргона с каким-то неизвестным еще на Земле элементом.
Однако когда великий фантаст дописывал последние строки своего произведения, химики были абсолютно уверены, что аргон ни с чем и ни при каких условиях соединяться не может. Множество реальных опытов убедило их в этом.
Аргон назвали инертным газом. По-гречески «инертный» значит «бездеятельный». Аргон входит в состав целой плеяды химических ленивцев, которую составляют гелий, неон, криптон, ксенон, радон.
В периодической системе они образуют так называемую нулевую группу. Потому что валентность этих элементов равна нулю. Ни отдавать, ни принимать электроны атомы инертных газов не способны.
Как только не пытались воздействовать на них химики! И нагревали до температур, при которых самые тугоплавкие металлы становились бурлящей огненной жидкостью; и охлаждали до такого состояния, что инертные газы превращались в лед; и пропускали через них сильнейшие электрические разряды; и подвергали действию самых яростных химических реагентов. Тщетно!
Там, где другие элементы давно бы спасовали, вступили в химические соединения, инертные газы оставались бесстрастными. «Не тратьте понапрасну силы, — словно говорили они исследователям, — мы вовсе не желаем вступать в реакции. Мы выше этого!» И за свое высокомерие заслужили от химиков еще один титул: «благородные газы». Но, право же, в нем чувствуется оттенок иронии…
Крукс, который обнаружил в земных минералах гелий, мог гордиться: он подарил миру новый, реально существующий химический элемент. Химический?! Сэр Вильям Крукс дорого бы отдал за то, чтобы заставить гелий вести себя подобно другим обитателям таблицы Менделеева — соединяться с водородом, с кислородом, с серой. Чтобы почтенные профессора могли рассказывать со своих кафедр об окислах и солях гелия…
Но гелий, первый в группе инертных газов, не оправдал надежд. В самом конце прошлого столетия соотечественники Крукса Рамзай и Рэлей открыли неон и аргон, криптон и ксенон. Затем список химических лодырей завершил радон. Все они были элементами со своими атомными весами. Но, честное слово, рука не поднималась написать рядом со словами, скажем, «элемент аргон» слово «химический».
И ученые выселили высокомерное семейство благородных газов на окраину таблицы Менделеева, пристроили к ней новую секцию, нулевую группу. А в учебниках химии записали: есть среди химических элементов такие, что ни при каких условиях не способны вступать в соединения.
Ученые были огорчены: шесть элементов отнюдь не по их воле выпадали из сферы деятельности химической науки.
Разгадка, которая не принесла утешения
В растерянности на первых порах оказался и сам Дмитрий Иванович Менделеев. Поначалу он даже высказал «спасительную» мысль. Нет, аргон вовсе не новый элемент. Это очень своеобразное соединение азота, молекула которого состоит из трех атомов, N3. Подобно тому как наряду с кислородной молекулой O2 известна молекула озона O3.
Факты в конце концов убедили Менделеева в ошибке, и он признал правоту Рамзая. Все учебники мира называют теперь английского ученого первооткрывателем плеяды благородных газов. И никто не пытается это оспаривать.
…Двадцать лет томился в застенках Шлиссельбургской крепости народоволец Николай Морозов. В годы Советской власти он стал ученым с мировым именем. Крепкие стены каменного мешка не раздавили в нем воли к научному творчеству. Он постоянно и упорно работал, и рождались у него идеи и гипотезы одна другой смелее и оригинальнее. В крепости Морозов завершил исследование, посвященное периодической системе. И в нем он предсказал существование элементов, которые должны быть химически неактивными.
Когда Морозов вышел на свободу, инертные газы были уже открыты и нашли свое место в таблице элементов…
Рассказывают, что незадолго до смерти Менделеева его посетил Морозов и два наших великих соотечественника долго говорили о периодическом законе. Увы, содержание беседы неизвестно и, видимо, навсегда останется загадкой.
Немного не дожил Менделеев до раскрытия тайны инертности благородных газов. А тайна эта заключалась в следующем.
Физики, которые так часто приходили и приходят на помощь химикам, установили: внешняя оболочка, содержащая 8 электронов, чрезвычайно устойчива. Она своеобразный идеал прочности электронной оболочки. И следовательно, ей нет никакого резона терять или, наоборот, набирать себе лишние электроны.
Вот где основа «благородства» инертных газов: 8 электронов на внешней оболочке. Или 2 — в случае атома гелия. Двухэлектронная оболочка его не уступает в прочности восьмиэлектронной у других химических ленивцев.
И другое стало ясно химикам: пристройка к таблице Менделеева нулевой группы — не вынужденная мера. Без нее периодическая система выглядела бы зданием недостроенным. Ведь каждый ее период заканчивается инертным газом. Дальше начинается заполнение следующей электронной оболочки, вырастает очередной этаж Большого дома.
Видите, все объяснилось довольно просто. Благородные газы, несмотря на сей аристократический титул, обнаружили способность к практической деятельности: гелием стали заполнять воздушные шары и дирижабли, он начал помогать водолазам в борьбе с кессонной болезнью; аргоновые и неоновые рекламы расцветили ночные улицы городов.
Но, может, «все-таки она вертится!»? Может, физики чего-то недодумали, чего-то недорассчитали, а химики не использовали весь арсенал средств, заставляющих вещества реагировать друг с другом?
В поисках «сумасшедшей» идеи, или как инертные газы перестали быть инертными
— Две параллельные прямые никогда не пересекутся! — утверждала геометрия устами величайшего математика древности Эвклида.
— Нет, должны пересечься! — заявил в середине прошлого столетия русский ученый Николай Лобачевский.
И родилась новая геометрия — неэвклидова.
— Бред и фантазия! — так реагировали на нее на первых порах многие сильные научного мира сего.
Но без геометрии Лобачевского не было бы ни теории относительности, ни смелых представлений о том, каким законам подчиняется устройство вселенной.
Перу Алексея Толстого принадлежит роман «Гиперболоид инженера Гарина».
— Превосходная фантастика, — заявили о нем литературоведы всего мира.
— Фантазия, которая никогда не сможет стать реальностью! — вторили им ученые.
Лишь каких-то пятнадцать лет не дожил Толстой до момента, когда из кристалла рубина вырвался световой луч невиданной яркости и мощи и слово «лазер» вошло в лексикон отнюдь не одних только специалистов.
…Химики-энтузиасты упрямо верили в возможность покорить неслыханное упорство инертных газов. Если мы возьмем на себя труд полистать уже начавшие желтеть страницы научных журналов двадцатых, тридцатых, сороковых годов, нам попадется немало любопытных статей и заметок. Они подтвердят: химики не отказались от мечты вовлечь инертные газы в сферу своей деятельности.
С этих страниц смотрят на нас необычные формулы. Они повествуют об удивительных веществах, соединениях гелия со ртутью, палладием, платиной, другими металлами. Одно лишь плохо: это не те химические соединения, которые хотелось бы получить. Двухэлектронная оболочка гелия в них остается незыблемой, а существуют они только при очень низкой температуре. В царстве абсолютного нуля…
Дальше листаем химические журналы — еще новость: советский химик Никитин приготовил куда менее сказочные соединения ксенона и радона с водой, фенолом и некоторыми другими органическими жидкостями: Xe · 6Н2O, Rn · 6Н2О. Они устойчивы в обычных условиях, их нетрудно получить, но…
Но по-прежнему химическая связь здесь ни при чем. Атомы ксенона и радона свято блюдут совершенство своих внешних оболочек: 8 электронов было, 8 осталось. Больше пятидесяти лет прошло со времени открытия инертных газов, а «воз и ныне там».
…Завершится двадцатое столетие — самое бурное, самое памятное из всех прошедших веков человеческой истории. И ученые подведут итог тому, каких высот в этом столетии достигла научная мысль. В нескончаемом перечне выдающихся открытий на видном месте окажется «Получение химических соединений инертных газов». А какой-нибудь восторженный комментатор добавит: одно из самых сенсационных открытий.
Сенсация? Полно! Скорее романтическая история. Или даже история о том, как просто иногда может решиться проблема, которая десятилетиями мучила многих ученых своей неразрешимостью…
В наши дни химия напоминает могучее дерево с огромной, все разрастающейся кроной. Одному человеку уже не под силу изучать целую ветку. Чаще всего исследователь затрачивает годы, чтобы подробно ознакомиться с маленькой веточкой, с почкой, с чуть заметным ростком. Из тысяч таких исследований складывается знание о той или иной ветви.
«Веточкой», которую изучал канадский химик Нейл Бартлетт, было соединение, на языке химии именуемое гексафторид платины, PtF6. Не случайно ученый уделял много внимания этому веществу. Соединения фтора с тяжелыми металлами — очень интересные вещества, очень нужные для науки и для практики. Например, для разделения изотопов урана — урана-235 и урана-238 — для нужд ядерной энергетики. Отделить один изотоп от другого — дело весьма сложное, но с помощью гексафторида урана UF6 их удается рассортировать. Кроме того, фтористые соединения тяжелых металлов — очень активные химические вещества.
Бартлетт подействовал на PtF6 кислородом и получил крайне любопытное соединение. Кислород в нем содержался в виде положительно заряженной молекулы O2. Молекулы, потерявшей один электрон. Что здесь удивительного? То, что оторвать электрон от кислородной молекулы чрезвычайно трудно. Нужно затратить много энергии. Шестифтористая платина оказалась способной отобрать электрон у кислородной молекулы.
Чтобы удалить электрон с внешней оболочки атомов инертных газов, также требуется весьма много энергии. Тут есть закономерность: чем тяжелее инертный газ, тем энергия меньше. И оказалось: заставить атом ксенона распрощаться с одним электроном все-таки проще, чем оторвать его от молекулы кислорода.
А значит… Вот где начинается самое интересное! Бартлетт решил заставить шестифтористую платину выступить в роли похитителя электрона у ксенонового атома. И достиг успеха — в 1962 году родилось первое в мире химическое соединение инертного газа. Выглядит оно так: XePtF6. И в достаточной степени устойчивое. Не то что какие-нибудь экзотические соединения гелия с платиной или ртутью.
Это едва заметное зернышко сразу дало побег. Побег, который стал расти со скоростью бамбука, — новое направление химии, химию инертных газов. Еще вчера многие серьезные ученые были скептиками; сегодня они держат в руках более тридцати настоящих химических соединений инертных газов. Главным образом фторидов ксенона, криптона и радона.
А стало быть, миф о незыблемости внешней электронной оболочки благородных газов рухнул!
Как построены молекулы различных соединений инертных газов? Ученые только-только начинают в этом разбираться. Выходит, что атомы могут располагать гораздо большим запасом валентных сил, чем считалось раньше.
На признании особой прочности, незыблемости восьмиэлектронной оболочки строились прежде представления о валентности. А теперь ученым приходится задуматься: так ли уж все ясно в этих теориях? Может, вам доведется вместе с ними обнаружить новые закономерности…
Новое несоответствие? Как с ним справиться?
…Рассказывают также: пришел в научно-исследовательский институт задумчивый человек с солидной папкой в руках. Разложил перед учеными свои бумаги. И тоном, не терпящим возражений, сказал:
— В таблице Менделеева должно быть лишь семь групп элементов — ни более и ни менее!
— Как так? — удивились видавшие виды ученые.
— А очень просто! Ведь в числе «семь» сокрыт великий смысл! Семь цветов радуги, семь нот в музыкальной гамме…
Ученые поняли, что имеют дело с не совсем нормальным человеком. И попытались обратить притязания новоявленного перестройщика менделеевской таблицы в шутку.
— Не забудьте, что в человеческой голове имеется семь отверстий! — улыбнулся один.
— И про семь пядей во лбу тоже! — произнес другой.
…Такой случай произошел как-то в одном из московских институтов.
Подобных случаев в истории периодической системы было видимо-невидимо. Перекроить ее пытались многократно. Иногда это имело определенный смысл. Но чаще всего оказывалось стремлением иных авторов соригинальничать.
В 1969 году великое открытие Менделеева празднует столетний юбилей. И надо же было так сложиться обстоятельствам, что накануне этой выдающейся даты даже серьезные химики начали задумываться: в периодической системе придется кое-что перестроить…
Были времена, когда у ученых язык не поворачивался назвать элементы нулевой группы химическими. Теперь иное дело. Элементы нулевой группы как-то неудобно стало именовать, инертными. Что ни месяц в химических журналах появляется несколько статей по химии инерт… виноваты, элементов нулевой группы. Из разных стран приходят сведения о синтезе новых химических соединений криптона, ксенона, радона… Двух-, четырех-, шестивалентный ксенон, четырехвалентный криптон — эти термины, столь сумасшедшие какое-то десятилетие назад, стали теперь обиходными.
— Над таблицей Менделеева навис кошмар фторидов ксенона! — ужаснулся один видный ученый.
Пусть сказано громко, однако развеять «кошмар» необходимо. Уже теперь… Но как?
Вот что предлагают ученые: понятие «нулевая группа» сдать в архив истории науки. А все некогда инертные газы поместить в восьмую. Благо у них на внешней оболочке 8 электронов…
Позвольте! Ведь восьмая группа уже существует, ее «встроил» в таблицу не кто иной, как сам Менделеев. Девять элементов в ней: железо, кобальт, никель, рутений, родий, палладий, осмий, иридий, платина.
С ней что прикажете делать?
Иными словами, химики лицом к лицу столкнулись с новым несоответствием. Привычные контуры менделеевской таблицы вот-вот должны измениться.
«Всегда что-то мешает» — гласит латинская пословица. Этой перемене контуров мешает «старая» восьмая группа. Куда ее переместить?
«Всесъедающий»
Так назвал его выдающийся советский ученый Александр Евгеньевич Ферсман. Ибо нет на свете элемента более яростного, нет в природе вещества химически более активного, чем герой настоящего очерка. И вообще вы не встретите его в природе в свободном виде, только лишь в форме соединений.
Его имя фтор. В переводе с греческого «разрушающий». Вот второй, не менее энергичный термин, характеризующий главную особенность этого представителя седьмой группы таблицы Менделеева.
Кто-то сказал однажды: «Путь к свободному фтору вел через человеческие трагедии…» Это не красивая фраза. Сто четыре элемента обнаружили люди В поисках новых простых веществ исследователи преодолели множество трудностей, пережили массу разочарований, становились жертвами курьезных ошибок. Погоня за следами неизвестных элементов отнимала у ученых много сил.
Фтор, элемент фтор в свободном виде, отнимал жизни.
Велик скорбный перечень борцов, пострадавших при попытках получить свободный фтор. Член Ирландской академии наук Нокс, французский химик Никлес, бельгийский исследователь Лайет — вот жертвы «всесъедающего». А сколько ученых получили серьезные травмы? Среди них выдающиеся химики французы Гей-Люссак и Тенар, англичанин Гем фри Дэви… Несомненно, существовали и безвестные исследователи, которым фтор отомстил за дерзкую попытку выделить его из соединений.
Когда Анри Муассан 26 июня 1886 года докладывал Парижской академии наук, что ему удалось, наконец, получить свободный фтор, один глаз ученого был закрыт черной повязкой…
Француз Муассан первым узнал, что представляет собой элемент фтор в свободном виде. И что греха таить, многие химики попросту боялись работать с этим элементом.
Ученые двадцатого столетия нашли способы обуздать ярость фтора, отыскали пути поставить его на службу человеческой практике. Химия этого элемента стала теперь большой самостоятельной областью неорганической химии.
Грозный «джинн из бутылки» был укрощен. И труды многочисленных борцов за свободный фтор окупались сторицей.
Во многих образцах современных холодильников рабочей охлаждающей жидкостью является фреон. Химики называют это вещество сложнее: дифтордихлорметан. Фтор — непременная его составная часть.
«Разрушающий», оказывается, способен образовывать соединения, которые фактически ничто не может сокрушить. Они не горят и не гниют, не растворяются ни в щелочах, ни в кислотах, свободный фтор бессилен их разрушить, они почти не чувствительны к арктическому холоду и мало реагируют на внезапную резкую смену температур. Одни из них — жидкости, другие — твердые вещества. Общее их имя фторуглероды, соединения, выдумать которые оказалось не под силу самой природе. Их получил человек. Очень полезным оказался союз углерода с фтором. Фторуглероды применяют как охлаждающие жидкости в моторах, для пропитки специальных тканей, как смазочные масла с очень продолжительным сроком действия, в качестве изоляционных материалов, как вещества для конструирования различных аппаратов химической промышленности.
Когда ученые искали пути к овладению энергией ядра, им понадобилось разделить изотопы урана: уран-235 и уран-238. И такую сложнейшую задачу исследователям удалось, об этом уже говорилось, разрешить с помощью интересного соединения — шестифтористого урана.
Именно фтор помог химикам доказать, что инертные газы вовсе уж не такие химические ленивцы, как считалось десятилетиями. Первое появившееся на свет соединение инертного газа ксенона было его соединение со фтором.
Таковы успехи трудовой деятельности фтора.
«Философский камень» Геннинга Брандта
Жил да был в средние века в немецком городе Гамбурге купец Геннинг Брандт. Мы не знаем, сколь изобретателен был он в своих торговых операциях, однако с уверенностью можем сказать, что о химии имел самые примитивные представления.
Но и он не устоял перед соблазном попытаться сразу стать богачом. Дело было за малым: найти пресловутый «философский камень», который, по верованиям алхимиков, и булыжник мог превратить в золото.
…Шли годы. Все реже вспоминали торговые люди имя Брандта, и когда вспоминали, грустно покачивали головами. А он тем временем растворял, перемешивал, просеивал, прокаливал разные минералы и снадобья, и его руки были покрыты незаживающими ожогами от кислот и щелочей.
В один прекрасный вечер бывшему купцу улыбнулась фортуна. На дне реторты осело какое-то вещество, белое как снег. Оно быстро сгорало, образуя густой удушливый дым. И самое любопытное — светилось в темноте. Холодный свет был настолько ярок, что позволял читать старинные алхимические трактаты (они теперь заменяли Брандту деловые бумаги и расписки).
…Так, случайно, открыли новый химический элемент фосфор. В переводе с греческого это слово означает «несущий свет», «светоносец».
Многие светящиеся составы основной своей частью имеют фосфор. Помните знаменитую баскервилльскую собаку, за которой так долго охотился Шерлок Холмс? Ее пасть была намазана фосфором.
Никакой другой представитель менделеевской таблицы не обладает столь своеобразной особенностью.
Ценных и важных качеств у фосфора хоть отбавляй.
Немецкий химик Молешотт некогда сказал: «Без фосфора нет мысли». И это действительно так, потому что в мозговых тканях содержится много сложных фосфорных соединений.
Но без фосфора нет и самой жизни. Без него не могли бы протекать дыхательные процессы, мышцы не могли бы запасать энергию. Наконец, фосфор — один из важнейших строительных «кирпичиков» любого живого организма. В самом деле, основная составляющая часть костей — фосфорнокислый кальций.
Ну скажите, чем не «философский камень», позволяющий превращать неживое в живое?
И наконец, почему фосфор светится?
Над кусочком белого фосфора — облако фосфорных паров. Они окисляются, и при этом выделяется большая энергия. Она возбуждает атомы фосфора, а благодаря этому и возникает свечение.
Запах свежести, или пример того, как количество переходит в качество
Легко дышится после грозы. Прозрачный воздух словно напоен свежестью.
Это не только поэтический образ. При грозовых разрядах образуется в атмосфере газ озон. Он-то и делает воздух чище.
Озон — тот же кислород. Только молекула кислорода содержит два атома элемента, а в молекуле озона их три. О2 и О3 — казалось бы, атомом кислорода меньше, атомом больше, какая разница?
Разница огромная: озон и кислород совершенно непохожие вещества.
Без кислорода нет жизни. Напротив, озон в больших концентрациях способен убить все живое. Он, после фтора, сильнейший окислитель. Соединяясь с органическими веществами, озон моментально разрушает их. Все металлы, кроме золота и платины, под действием озона быстро превращаются в окислы.
Он двулик! Убийца живого, озон в то же время во многом способствует существованию жизни на Земле.
Этот парадокс легко объяснить. Солнечное излучение неоднородно. В его состав входят так называемые ультрафиолетовые лучи. Если бы все они достигали земной поверхности, жизнь на ней стала бы невозможной. Ибо эти лучи, несущие огромную энергию, смертоносны для живых организмов.
К счастью, до поверхности Земли добирается лишь малая доля солнечного ультрафиолета. Большая же часть теряет свою силу в атмосфере на высоте 20–30 километров. На этом рубеже в воздушном одеяле планеты содержится много озона. Он-то и поглощает ультрафиолетовые лучи. (Кстати, одна из современных теорий происхождения жизни на Земле приурочивает появление первых организмов ко времени формирования озонового слоя в атмосфере.)
Но людям необходим озон и на Земле. И в больших количествах.
Им — и в первую очередь химикам — крайне нужны тысячи и тысячи тонн озона.
Изумительную окислительную способность озона с удовольствием взяла бы на вооружение химическая промышленность.
Озону поклонились бы и нефтяники. Нефть многих месторождений содержит серу. Сернистые нефти доставляют много хлопот, хотя бы тем, что быстро разрушают аппаратуру, например котельные топки на электростанциях. С помощью озона было бы легко обессеривать такие нефти. А за счет этой серы производство серной кислоты удалось бы удвоить, если не утроить.
Мы пьем хлорированную водопроводную воду. Она безвредна, но ее вкус — это отнюдь не вкус родниковой воды. В питьевой воде, обработанной озоном, погибнут все болезнетворные микробы. И не будет досадного привкуса.
Озон может обновлять старые автомобильные шины, отбеливать ткани, целлюлозу, пряжу. Он многое может. И потому ученые и инженеры работают над созданием мощных промышленных озонаторов.
Вот он какой, озон! O3 ничуть не менее важен, чем O2.
Философская мысль давно сформулировала принцип диалектики: переход количества в качество. Пример кислорода и озона — один из самых ярких примеров проявления диалектики в химии.
Ученым известна еще и молекула из четырех атомов кислорода, O4. Правда, этот «квартет» крайне неустойчив и о его свойствах еще почти ничего не знают.
Проще простого, удивительнее удивительного…
Шла до войны на экранах кинотеатров веселая комедия «Волга-Волга». И был в ней неунывающий водовоз, который распевал, подстегивая ленивых лошадей:
Потому что без воды —
И ни туды и ни сюды…
Зрители улыбались, песенка даже вошла в поговорку.
А если хотите, в этой непритязательной напевке скрыт, как говорят философы, глубочайший подтекст.
Ибо вода для жизни — это вещество номер один. H2O. Атом кислорода плюс два атома водорода. Едва ли не первая химическая формула, которую узнает каждый. Попробуем себе представить, какой вид имела бы наша планета, исчезни с нее внезапно вода.
…Мрачные зияющие «глазницы» морских и океанских впадин, покрытых толстым слоем солей, некогда растворенных в воде. Пересохшие русла рек, навек замолкнувшие родники. Горные породы, рассыпавшиеся в прах: ведь в их состав входило большое количество воды. Ни кустика, ни цветочка, ни единого живого существа на мертвой Земле. И над ней безоблачное небо жуткого, необычного цвета.
Казалось бы, простейшее соединение, а без воды никакая жизнь — ни разумная, ни неразумная — невозможна.
Давайте разберемся — почему?
Прежде всего вода самое что ни на есть удивительное химическое соединение на свете.
Когда Цельсий изобрел свой термометр, он положил в основу устройства две величины, или две константы: температуру кипения воды и температуру ее замерзания. Первую посчитал равной 100 градусам, вторую — нулю. И разделил промежуток между этими крайними точками на 100 частей. Так появился на свет первый прибор для измерения температуры.
Но что бы подумал Цельсий, если бы знал: на деле-то вода должна замерзать отнюдь не при нуле градусов, а кипеть не при ста?
Современные ученые установили: вода в этом случае выступает в роли великого обманщика. Она самое аномальное соединение на земном шаре.
Вот что говорят ученые: вода должна закипать при температуре на 180 градусов более низкой. При минус 80 градусах. Во всяком случае, закипать при подобной антарктической температуре предписывают ей правила распорядка, царящие в периодической системе.
Свойства элементов, входящих в ту или иную группу периодической системы, изменяются довольно закономерно, когда мы переходим от легких элементов к тяжелым. Скажем, температуры кипения. Свойства соединений меняются тоже не бог весть как. Они зависят от положения элементов, из которых построены молекулы, в таблице Менделеева. В том числе и свойства водородных соединений, гидридов элементов, входящих в одну и ту же группу.
Воду можно назвать гидридом кислорода. Кислород — член шестой группы. Здесь располагаются сера, селен, теллур, полоний. Молекулы их гидридов устроены одинаково с молекулой воды: H2S, H2Se, H2Te, H2Рo. Для каждого из них известны температуры кипения, они довольно правильно изменяются при переходе от серы к ее более тяжелым собратьям. И вот что оказывается: температура кипения воды из этого ряда весьма резко выпадает. Она гораздо выше, чем ей положено. Вода словно не желает считаться с правилами поведения, что установлены для таблицы Менделеева. На 180 градусов откладывает она процесс своего перехода в парообразное состояние. И это первая удивительная аномалия воды.
Вторая связана с ее замерзанием. Статут периодической системы предписывает: вода должна затвердевать при температуре 100 градусов ниже нуля. Вода это требование жестоко нарушает и превращается в лед при нуле градусов.
И вот к какому любопытному выводу приводит это своеволие воды: на Земле ее жидкое и твердое состояние является ненормальным. «По штату» ей следовало бы пребывать лишь в виде пара. Вообразите себе мир, где свойства воды подчинялись бы строгим закономерностям периодической системы. Для фантастов этот уникальный факт — весьма благодатная почва для написания увлекательных романов и повестей. Для нас же с вами, как и для ученых, лишнее подтверждение, что менделеевская таблица куда более сложное сооружение, чем может показаться на первый взгляд. И характеры ее обитателей очень уж напоминают характеры живых людей, их просто нельзя ограничить определенными рамками. У нашей воды характер своевольный…
Но почему?
Потому, что молекулы воды устроены особенным образом и благодаря этому обладают необычайно сильной способностью притягиваться друг к другу. Тщетно мы стали бы искать в стакане воды молекулы-одиночки. Они образуют группы, которые ученые называют ассоциациями. И формулу воды правильнее было бы записать (H2O)n, где n — обозначает число молекул в ассоциации.
Разрываются эти ассоциативные связи между молекулами воды с очень большим трудом. Потому она и плавится и кипит при гораздо более высоких температурах, чем следовало бы ожидать.
«Лед неокрепший на речке студеной…»
В 1913 году печальное известие облетело весь мир. Погиб, столкнувшись с айсбергом, гигантский океанский лайнер «Титаник». По-разному объясняли эксперты причины катастрофы. Сошлись на том, что в тумане капитан не разглядел огромную плавающую ледяную гору и, налетев на нее, корабль окончил свое земное существование.
Если мы посмотрим на это прискорбное событие глазами химика, то придем к весьма неожиданному выводу: «Титаник» пал жертвой еще одной аномалии воды.
Устрашающие ледяные глыбы — айсберги плавают, подобно пробке, на поверхности воды. Глыбы в десятки тысяч тонн.
И все потому, что лед легче воды.
Попробуйте расплавить любой металл и в расплав бросить кусок того же металла: он моментально утонет. В твердом состоянии любое вещество имеет большую плотность, чем в жидком. Лед и вода — удивительное исключение из этого правила. Не будь этого исключения, все водоемы средних широт быстро промерзли бы до дна: все живое бы тут погибло.
Вспомните некрасовские стихи:
Лед неокрепший на речке студеной,
Словно как тающий сахар лежит…
Стукнут сильные морозы, лед окрепнет. Потянется по реке зимняя дорога. Но под толстым слоем льда, как и прежде, будет струиться вода. Река не промерзнет до дна.
Лед, твердое состояние воды, — вещество исключительно своеобразное. Существует несколько видов льдов. В природе известен один, тот, что плавится при нуле градусов. Ученые в лабораториях, применяя высокие давления, получили еще шесть ледяных разновидностей. Самый сказочный из них (лед VII), найденный при давлении больше 21 700 атмосфер, можно было бы назвать раскаленным льдом. Он плавится при температуре 192 градуса выше нуля, при давлении в 32 тысячи атмосфер.
Казалось, что может быть обыденнее картины таяния льда. Но какие удивительные вещи при этом происходят!
Любое твердое вещество после плавления начинает расширяться. Вода же, получающаяся при таянии льда, ведет себя совсем иначе: она сжимается и лишь затем, если температура продолжает повышаться, начинает расширяться. Это происходит опять-таки из-за сильной способности молекул воды взаимно притягиваться. При четырех градусах выше нуля такая способность проявляется особенно резко. А потому при этой температуре вода обладает наибольшей плотностью; потому наши реки, пруды и озера даже при самых жестоких холодах не промерзают до дна.
Вы радуетесь приходу весны, восхищаетесь прекрасными деньками золотой осени. Радостная весенняя капель и багряный убор лесов…
Опять же аномальное свойство воды!
Чтобы растаял лед, нужно много тепла. Несравненно больше, чем для плавления любого другого вещества, взятого в таком же количестве.
Когда вода замерзает, это тепло снова выделяется. Лед и снег, отдавая тепло обратно, подогревают землю и воздух. Они смягчают резкий переход к суровой зиме и позволяют осени воцариться на несколько недель. Весной же таяние льда задерживает наступление знойных дней.
Сколько вод на земле?
Три изотопа водорода нашли в природе ученые. И каждый из них может вступать в соединение с кислородом. Стало быть, можно говорить о трех сортах воды — протиевой, дейтериевой и тритиевой: H2O, D2O и T2O.
Но могут быть и «смешанные» воды, когда в состав молекул входит, скажем, атом протия и атом дейтерия или атом дейтерия и атом трития. Тогда список вод увеличивается. HDO, HTO и DTO.
Но и кислород, входящий в состав воды, также представляет собой смесь трех изотопов: кислород-16, кислород-17 и кислород-18. Самый распространенный из них — первый.
Если мы учтем эти разновидности кислорода, количество возможных вод увеличится еще на 12. Черпнув кружку воды из озера или реки, вы, наверное, и не подозреваете, что имеете дело с восемнадцатью различными сортами воды.
Так что вода, откуда бы мы ее ни взяли, представляет собой смесь различных молекул. От самой легкой — H2O16 до самой тяжелой — T2O18. Химики могут приготовить каждую из восемнадцати вод в чистом виде.
Изотопы водорода заметно различаются по своим свойствам. А как ведут себя разные сорта вод? Они тоже кое в чем непохожи друг на друга. Например, отличны их плотности, температуры замерзания и кипения.
И в то же время содержание различных вод в природе всегда и всюду разное.
Например, в воде, налитой из водопроводного крана, тяжелой дейтериевой воды D2O содержится 150 граммов на тонну. А в тихоокеанской заметно больше: около 165 граммов. В тонне льда кавказских ледников тяжелой воды на 7 граммов больше, чем в кубическом метре речной воды. Словом, по своему изотопному составу вода повсеместно различается. Так происходит потому, что в природе непрерывно протекает грандиозный процесс изотопного обмена. Разные изотопы водорода или кислорода в различных условиях непрерывно замещают друг друга.
Нет ли какого-либо другого природного соединения, у которого насчитывалось бы столь же большое количество разновидностей? Нет.
Конечно, мы имеем дело главным образом с протиевой водой. Но и прочие воды никак нельзя сбрасывать со счетов. Кое-какие из них находят широкое применение в практике. Особенно тяжелая вода D2O. Ее используют в ядерных реакторах для замедления нейтронов, вызывающих деление урана. Кроме того, ученые пользуются разными сортами воды в исследованиях по химии изотопов.
Восемнадцать сортов — и не больше? Оказывается, разновидности вод могут быть куда более многочисленными. Ведь, кроме природных изотопов кислорода, существуют и радиоактивные, искусственно приготовленные: кислород-14, кислород-15, кислород-19 и кислород-20. А недавно увеличилось количество новых водородов: мы уже говорили о 4Н и 5Н.
Стоит принять во внимание искусственные изотопы водорода и кислорода, как в перечне всевозможных вод окажется более сотни наименований. Впрочем, вы сами можете легко подсчитать точное их количество…
Вода «живая», животворная, вездесущая…
Через бесчисленное множество сказок разных народов красной нитью прошла легенда о «живой» воде. Она исцеляла раны и оживляла мертвых. Давала трусу смелость и стократно увеличивала силы храброго.
И не случайно приписывал человек воде столь магические свойства. То, что мы с вами живем на Земле, что вокруг нас зеленые леса и цветущие поля, что летом мы катаемся на лодках и бегаем по лужам под дождем, а зимой участвуем в лыжных и конькобежных соревнованиях, — все это дело рук воды. Точнее — способности ее молекул притягиваться друг к другу, образуя ассоциации. Это одно из условий возникновения и развития жизни на нашей планете.
История Земли — это прежде всего история воды. Она беспрерывно меняла и меняет облик нашей планеты.
Вода — величайший в мире химик. Без ее участия не обходится ни один природный процесс: будь то образование новой горной породы, нового минерала или сложнейшая биохимическая реакция, протекающая в организме растения или животного.
Химикам в лабораториях нечего было бы делать без воды. Ведь изучая свойства веществ, их превращения, получая новые соединения, они только в редких случаях обходятся без воды. Вода — один из самых лучших растворителей, которые только известны. А чтобы заставить многие вещества вступить в реакцию, их прежде всего надо перевести в раствор.
Что происходит с веществом, когда оно растворяется? Силы, которые действуют на его поверхности между молекулами и атомами, в воде ослабевают в сотни раз. Молекулы и атомы вещества начинают отрываться от поверхности и переходить в воду. Кусок сахара в стакане чаю распадается на отдельные молекулы. Поваренная соль — на заряженные частицы, ионы натрия и хлора. Так уж устроена молекула воды, что обладает очень сильной способностью оттягивать к себе атомы и молекулы растворяющегося тела. Гораздо более сильной, чем многие другие растворители.
Нет на Земле породы, которая могла бы противостоять разрушающему действию воды. Даже граниты хоть и медленно, но неотвратимо поддаются ее действию. Растворенные ею примеси уносятся в моря и океаны. Вот почему эти гигантские водоемы соленые. А ведь сотни миллионов лет назад вода в них была пресной…
Сосулькины секреты
Малыши так и тянутся к сосулькам. Ведь они очень красивы, блестящие ледяные стерженьки.
Из детской ручонки сосулька моментально перекочевывает в рот. Неужели вкусно? Но ребенок не на шутку огорчится, если его лишить этого удовольствия.
Забавная ребячья прихоть? Нет, дело куда серьезнее.
В одной лаборатории поили цыплят. Одной группе наливали в блюдечко обычную воду, другой — талую, с плавающими льдинками.
Опыт — проще и не придумаешь. Результаты же его удивительны. Обычную воду цыплята пили спокойно и чинно. Около блюдечка с талой происходила форменная драка. Талую воду цыплята поглощали с жадностью, словно это было что-то необыкновенно вкусное.
Через полтора месяца подопытных цыплят взвесили. Те, что пили талую воду, были гораздо тяжелее, больше прибавили в весе, чем цыплята, в чей рацион входила вода обычная.
Словом, талая вода обладает чудесными свойствами. Она чрезвычайно полезна живым организмам. Почему?
Поначалу думали так: в талой воде больше дейтерия. А тяжелая вода в небольших концентрациях благотворно влияет на развитие живых организмов. Но в таком объяснении была лишь доля истины…
Теперь ищут разгадку в другом, в самом процессе таяния.
Лед имеет кристаллическую структуру. Однако и вода — это в общем жидкий кристалл. Ее молекулы расположены не в беспорядке, а образуют строгий ажурный каркас. Построенный, правда, иначе, чем у льда.
При таянии льда его структура сохраняется долго. Талая вода по внешнему виду — жидкость, а молекулы в ней все еще расположены «по-ледяному». Благодаря этому химическая активность талой воды как бы возрастает. Она с большой легкостью принимает участие во множестве биохимических процессов. Попадая в организм, она легче, нежели обычная, соединяется с разными веществами.
Ученые считают, что структура воды в организме очень похожа на структуру льда. Обычная вода, попав в организм, должна перестраиваться. Для талой этого не требуется. Организму не приходится затрачивать лишней энергии.
Роль талой воды в жизни, видимо, очень велика.
Кое-что из области языкознания, или «две большие разницы»
Без слов нет речи, без букв нет слов. Изучение любого языка мы начинаем с алфавита. В каждом алфавите — две категории букв: гласные и согласные. Не будь тех или иных — звучная человеческая речь рассыпалась бы… Правда, в каком-то научно-фантастическом романе жители неведомой планеты изъяснялись звуками, состоящими сплошь из согласных букв. Но чего не придумают фантасты!
Природа говорит с нами на языке химических соединений. А любое из них — своеобразное сочетание химических «букв». Тех элементов, которые существуют на Земле. Количество таких «слов» превышает три миллиона. «Букв» же в химическом «алфавите» всего около сотни.
Есть в этом «алфавите» «буквы» гласные и согласные. Все химические элементы издавна подразделяются на две группы: неметаллы и металлы.
Неметаллов значительно меньше, чем металлов. Соотношение между ними выражается прямо-таки баскетбольным счетом — 21 : 83… Совсем как в человеческой речи: гласных звуков куда меньше, нежели согласных.
Сочетание одних лишь гласных звуков в человеческой речи редко выражает что-либо членораздельное: чаще всего оно сродни бессмысленному завыванию.
В химическом языке объединения только «гласных» (неметаллов) встречаются сплошь да рядом. И все живое на Земле обязано своим существованием именно соединениям неметаллов друг с другом.
Ученые недаром называют четыре главных неметалла — углерод, азот, кислород и водород — органогенами. То есть дающими начало органической жизни. Если добавить сюда еще фосфор и серу, этими шестью «кирпичиками» практически и ограничивается весь набор материалов, которые природа использует для строительства белков и углеводов, жиров и витаминов, — словом, всех химических соединений жизни.
Два неметалла — кислород и кремний (две «гласных» химического «алфавита»), объединяясь, дают вещество, которое на языке химии записывается SiO2, двуокись кремния. Она-то и представляет собой основу основ земной тверди, своеобразный цемент, не дающий горным породам и минералам рассыпаться в прах.
Закончить список «гласных» химического «алфавита» не представляет труда: в него включаются еще галогены, редкие газы нулевой группы (гелий и его собратья) да три не очень широко известных элемента: бор, селен и теллур.
Однако если бы мы сказали, что все живое на Земле построено лишь из неметаллов, то впали бы в ошибку.
В человеческом организме ученые обнаружили более 70 различных химических элементов: все неметаллы и множество металлов — начиная от железа и кончая радиоактивными элементами, в том числе ураном.
Языковеды давно обсуждают вопрос, почему в человеческой речи согласные звуки преобладают над гласными.
Химики выясняют: с какой такой стати существуют в периодической системе «две большие разницы» — неметаллы и металлы. В эти два отряда попадают порой элементы, совершенно чуждые друг другу. И все-таки в чем-то похожие.
Почему «две большие разницы»?
Некий шутник как-то заметил, что людей отличают от животных прежде всего два замечательных качества: чувство юмора и чувство исторического опыта. Человек может посмеяться над собственной неудачей и не попадет впросак там, где уже попал однажды. Мы бы упомянули еще одно качество: задавать себе вопрос «почему» и пытаться дать на него ответ.
И этим самым словечком «почему» мы сейчас воспользуемся.
Почему, например, неметаллы не разбросаны по разным этажам и секциям Большого дома, а сгруппировались в определенном месте; металлы — это металлы, и неметаллы — это неметаллы, и какая между ними разница. Начнем с последнего «почему».
Когда два элемента (нам сейчас безразлично каких) вступают друг с другом в химическое взаимодействие, наружные электронные оболочки их атомов перестраиваются. Атом одного элемента электроны отдает, другого — принимает.
Так вот в этом важнейшем законе химии и кроется различие между металлами и неметаллами.
Неметаллы способны к действиям противоположным: как правило, они могут приобретать электроны, но способны их и отдавать. Они достаточно гибки в своем поведении и в зависимости от обстоятельств могут менять свой облик. Выгоднее им принять электроны — неметаллы предстанут в виде отрицательных ионов. В противном случае на свет появляются ионы положительные. Только фтор и кислород практически не знают компромиссов — они берут электроны и никогда не отдают их.
Металлы же не в пример менее «дипломатичны», более постоянны в своих стремлениях. Девиз, которому они следуют неукоснительно: отдавать, и только отдавать электроны. Становиться положительно заряженными ионами. Приобретать лишние электроны — совсем не их стихия. Такова железная норма поведения металлических элементов.
Вот основная разница между металлами и неметаллами.
Впрочем, дотошные химики и в этом строжайшем правиле отыскали исключения. Есть и в обществе металлов непостоянные характеры. Два (пока!), всего два металла обнаружили «неметаллическую» особенность. Астат и рений (они обитают в 85-й и 75-й клетках таблицы Менделеева) известны в виде отрицательно одновалентных ионов. Этот факт словно бросает маленькую тень на удивительно целеустремленную семью металлов…
Ну, а какие вообще атомы легче отдают электроны и какие легче принимают? Атомам, у которых на внешней оболочке мало электронов, сподручнее их отдавать, а тем, у кого много, выгоднее приобретать, чтобы поскорее там оказалось 8 электронов. Щелочные металлы держат снаружи один-единственный электрон. Расстаться с ним для этих металлов — пустое дело. А расстались, глядишь, обнажилась устойчивая электронная оболочка ближайшего инертного газа. Потому-то щелочные металлы — самые химически активные среди всех известных металлов. И «самый-самый» среди них — франций (клетка номер 87). Ведь чем тяжелее элемент в группе, тем больше размеры его атома и тем слабее ядро удерживает единственный наружный электрон.
В царстве неметаллов наиболее яростен фтор. У него во «внешних сферах» семь электронов. Восьмого как раз не хватает для идиллии. И он с жадностью отнимает его почти у любого элемента периодической системы, ничто не может устоять перед бешеным натиском фтора.
Другие неметаллы принимают электроны кто легче, кто труднее. И понятно теперь, почему группируются они главным образом в верхнем правом углу таблицы: ведь у них снаружи много электронов, а такая картина может быть только у атомов, стоящих ближе к концу периодов.
Еще два «почему»
Металлов так много, а неметаллов так мало на Земле? Металлы гораздо больше похожи друг на друга, чем неметаллы? В самом деле, трудно спутать по внешнему виду, скажем, серу и фосфор или йод и углерод. Но даже опытный глаз не всегда сразу определяет, какой металл перед нами: ниобий или тантал, калий или натрий, молибден или вольфрам.
…От перемены мест слагаемых сумма не меняется. Это едва ли не самый «железный» принцип арифметики. Для химии, когда она начинает копаться в устройстве электронных оболочек атомов, этот принцип подходит далеко не всегда…
Все идет гладко, пока мы имеем дело с элементами второго и третьего периодов менделеевской таблицы.
У каждого элемента этих периодов новые электроны входят во внешнюю оболочку атомов. Приплюсовался очередной электрон — глядишь, и свойства элемента совсем другие, нежели у его предшественника. Кремний не похож на алюминий, сера на фосфор. Металлические свойства быстро сменяются неметаллическими, потому что чем больше у атома электронов во внешней оболочке, тем неохотнее он с ними расстается.
Но вот четвертый период. Калий, кальций — металлы первого сорта. Ожидаем: вот-вот за ними должны появиться неметаллы.
Не тут-то было! Нам придется разочароваться. Ибо, начиная со скандия, очередные электроны идут не во внешнюю оболочку, а в предыдущую. «Слагаемые» меняются местами. Меняется и «сумма». Сумма свойств элементов.
Вторая снаружи оболочка более консервативна. Она в меньшей степени влияет на химические особенности элементов, чем внешняя. Разница в их облике становится не такой разительной.
Скандий словно «вспоминает», что третья электронная оболочка осталась у него недостроенной. В ней-то должно быть 18 электронов, а пока скопилось 10. Калий и кальций об этом точно «забыли» и свои очередные электроны разместили в четвертой оболочке. Со скандия справедливость начинает восстанавливаться.
На протяжении ряда из десяти элементов застраивается предыдущая оболочка. Внешняя остается неизменной. Всего 2 электрона на ней, такая «малость» электронов во внешней сфере атома — особенность металлов. А потому на «перегоне» скандий — цинк содержатся только металлы: какой им резон принимать на внешнюю оболочку электроны, вступая в соединения? Внешних-то электронов всего-навсего два. Взаимодействуя с другими, эти элементы запросто расстаются со своими электронами, да еще не прочь и позаимствовать их из достраивающейся предыдущей оболочки. Потому-то и способны они проявлять различные положительные валентности. Скажем, марганец может быть двух-, трех-, четырех-, шести- и даже семивалентным, положительно валентным.
Точно такую же картину мы наблюдаем и в последующих периодах менделеевской таблицы.
Вот почему металлов так много и почему они похожи друг на друга больше, чем неметаллы.
Некоторая несуразица
Слышал ли кто-нибудь о шестивалентном кислороде? Или семивалентном фторе? Никто и никогда.
Мы вовсе не хотим прослыть пессимистами. Но тем не менее с уверенностью заявляем: с такими ионами кислорода и фтора химии не придется иметь дела.
Этим элементам совсем невыгодно сразу сбрасывать такое большое количество электронов. Куда легче добрать — два или один, — чтобы образовалась устойчивая восьмиэлектронная оболочка. А потому известно очень мало соединений, в которых кислород проявлял бы положительную валентность. Так, удалось получить окисел F2O, где кислород положительно двухвалентен. Этот факт уже из области химической экзотики. Соединения положительно валентного фтора тоже большая редкость.
В «Правилах распорядка Большого дома» есть один важный пункт: высшая положительная валентность элемента равна номеру группы, где он располагается.
Кислород и фтор порядок нарушают. Между тем они навсегда прописались в шестой и седьмой группах. И ни разу не вставал вопрос об их переселении. Поскольку по всем другим статьям химическое поведение кислорода и фтора ничем не отличается от образа жизни их более тяжелых соседей в других этажах Большого дома.
И все-таки некоторая несуразица налицо. Химики о ней хорошо знают, но не придают ей значения. Ибо архитектура менделеевской таблицы от этого не терпит никакого ущерба.
Увы, есть еще несуразица. И на этот раз повнушительнее.
В средние века рудокопы находили иногда странные руды. Они были очень похожи на железные. Но вот беда: выплавить из них железо никак не удавалось. Рудокопы объясняли свои неудачи проделками нечистой силы — зловредных карликов кобольдов и престарелого насмешника черта Ника.
Потом, конечно, выяснилось, что нечисть здесь ни при чем. Руды содержали не железо, а два других похожих на него металла. В память о былых заблуждениях их так и назвали — кобальт и никель.
В те же средние века на берегу реки Платино дель Пино в Южной Америке испанские завоеватели обнаружили странное металлическое вещество, блестящее и тяжелое, которое не растворялось ни в каких кислотах. Загадочный металл получил имя платины. А спустя три столетия выяснилось, что платина встречается в природе всегда вместе с пятью спутниками — рутением, родием, палладием, осмием и иридием. Все эти шесть редких металлов трудно отличить друг от друга. Дружную когорту стали именовать семейством платиновых металлов.
Настало время, когда их пришлось расселять в Большом доме.
Вы ждете теперь, наверное, занятного повествования о том, как это было сложно и как ученые постепенно, с трудностями, большими и малыми, справлялись?
Нет, все оказалось очень просто…
Об оригинальности в архитектуре
Приходилось ли вам видеть дом, где все пролеты, все секции одинаковы, спроектированы по типовому проекту, а одна выстроена иначе? Словно рассчитывал и возводил ее другой архитектор, обладающий иной творческой фантазией.
Вряд ли вам встречалось что-нибудь подобное.
А вот Большой дом как раз такое любопытное строение. Одну из его секций Менделеев сконструировал своеобразно. Добавим от себя: вынужден был так сделать.
Эта секция — восьмая группа периодической системы. Входящие в нее элементы располагаются по три. Притом не на каждом этаже, а только в больших периодах таблицы. В одном железо, кобальт и никель, в двух других платиновые металлы.
Менделеев всячески пытался найти для них более подходящие места. Но таких мест не оказывалось. И ему пришлось пристраивать к периодической системе дополнительную, восьмую группу.
Почему восьмую? Да потому, что последней до тех пор была седьмая, где разместились галогены.
Однако номер группы в этом случае имеет значение чисто формальное.
Валентность плюс восемь в восьмой группе — редкое исключение, а никак не правило. Только рутений и осмий с трудом пытаются установить соответствие: для них известны неустойчивые окислы RuO4 и OsO4.
Все же остальные металлы подобных «высот» не достигают, как ни пытались им помочь ученые.
Разгадку давайте поищем вместе.
Обратим внимание и на такой факт: платиновые металлы в химические реакции вступают с большим трудом. Поэтому посудой, сделанной из платины, химики теперь часто пользуются для своих экспериментов. Платина и ее спутники как бы «благородные газы» среди металлов. И неспроста титул «благородные» закрепился за ними с давних пор. И в природе они встречаются в свободном, самородном состоянии.
Или взять железо. Обычное, оно ведет себя как элемент средней химической активности. Чистое — очень устойчиво.
(Вот, кстати, повод для размышлений. Быть может, многие элементы, а не только металлы, в сверхчистом состоянии отличаются высокой сопротивляемостью к химическим воздействиям.)
Повинна в «благородстве» платиновых металлов не внешняя, а предыдущая электронная оболочка их атомов.
Ей не хватает очень немногого, чтобы завершиться, заполниться восемнадцатью электронами. Оказывается, восемнадцатиэлектронная оболочка — конструкция тоже достаточно прочная. А благодаря этому платиновые металлы не склонны отдавать с нее электроны. Приобретать они тоже не могут, ведь все-таки они металлы.
Такая «нерешительность» и объясняет все дело.
И все же восьмая группа не очень увязывается с логикой менделеевской таблицы. Чтобы устранить подобную несуразицу, химики предлагают объединить восьмую и нулевую группы в одну.
Насколько справедлив такой шаг, покажет будущее.
Четырнадцать близнецов
Их называют лантаноидами. Называют потому, что все они — общим числом четырнадцать — «лантаноподобны», похожи на лантан и друг на друга почти как две капли воды. Благодаря такому удивительному химическому подобию их всех помещают в одну-единственную клетку, клетку лантана, которая значится в таблице под номером 57.
Нет ли здесь недоразумения? Ведь и сам Менделеев и многие другие ученые рассуждали так: каждому элементу свойственно одно, вполне определенное место в периодической системе.
А в этом случае в одну клетку втиснулись целых полтора десятка ее обитателей, все они оказались элементами третьей группы и шестого периода.
Нельзя ли попробовать рассортировать их по другим группам?
Пробовали. Многие химики, в том числе и сам Дмитрий Иванович. Помещали церий в четвертую группу, празеодим — в пятую, неодим — в шестую и так далее. Но никакой логики в этом распределении не обнаруживалось. В главных и побочных подгруппах таблицы Менделеева стоят сходные элементы. А церий имел мало общего с цирконием, празеодим и неодим были чужаками по отношению к ниобию и молибдену. И другие редкоземельные элементы (таково общее название лантана и лантаноидов) не находили себе родственников в соответствующих группах. Зато они очень похожи, подобно братьям-близнецам.
Когда химикам задавали вопрос, в какие же клетки таблицы поместить лантаноиды, ученые недоуменно пожимали плечами. Да и что они могли ответить, если не знали, в чем причина удивительного сходства лантаноидов!
А объяснение это оказалось довольно простым.
В периодической системе есть такие любопытные группы элементов, атомы которых устроены весьма своеобразно. У них, этих атомов, очередные электроны попадают не во внешнюю и даже не в предыдущую оболочки. У них электроны, подчиняясь строгим законам физики, просачиваются в третью снаружи оболочку.
Там они чувствуют себя весьма уютно. И покидать свои места ни при каких обстоятельствах не желают. В химических реакциях принимают участие только в очень редких случаях.
Поэтому все лантаноиды, как правило, исключительно трехвалентны. Поскольку имеют 3 электрона на внешних оболочках.
Что лантаноидов четырнадцать — ни больше, ни меньше, — тоже не случайно. В третьей снаружи оболочке, которая в их атомах застраивается, есть 14 вакантных мест, ранее остававшихся незаполненными.
Вот почему химики сочли возможным разместить все лантаноиды в одной-единственной клетке вместе с лантаном.
Мир металлов и его парадоксы
Восемь с лишним десятков элементов периодической системы — металлы. В целом они друг на друга похожи больше, чем неметаллы. И в то же время не счесть неожиданностей в металлическом царстве.
Например, какого цвета различные металлы?
Металлурги знай себе твердят: есть черные, есть цветные. К черным относят железо и его сплавы. К цветным — все остальные, кроме благородных: «их величеств» серебра, золота, платины и ее спутников.
Грубое это деление, и сами металлы категорически выступают против такой уравниловки.
Каждому металлу свойствен особый цветовой оттенок. У темной, матовой или серебристой основы всегда существует определенная подцветка. В этом ученые убедились, изучая металлы в очень чистом состоянии. Ведь многие из них, оказавшись на воздухе, рано или поздно покрываются тончайшей пленкой окисла, которая маскирует истинную расцветку. Чистые же металлы дают богатейшую цветовую гамму. И внимательный глаз различает металлы с синеватым, голубоватым, зеленоватым оттенком, с красноватым и желтоватым отливом, темно-серые, как морская вода осенним пасмурным днем, и блестящие серебристые, отражающие солнечные лучи, точно зеркало.
Окраска металла зависит от многого. В том числе и от способа обработки. По-разному выглядит металл, полученный спеканием отдельных металлических крупинок, и тот же металл, приготовленный в виде слитка.
Когда металлы сравнивают друг с другом по весу, различают легкие, средние и тяжелые.
Среди этих «весовых категорий» есть свои рекордсмены.
Литий, натрий, калий не тонут в воде. Они легче ее. Плотность лития, например, почти в два раза меньше плотности воды, равной единице. Если бы литий не был таким активным элементом, он оказался бы прекрасным материалом для самых различных конструкций. Представляете себе пароход или автомобиль, целиком сделанный из лития? К сожалению, химия накладывает запрет на такую заманчивую возможность.
«Абсолютный чемпион» среди металлов по весу — осмий. Один кубический сантиметр этого благородного металла весит 22,6 грамма. Чтобы уравновесить осмиевый кубик, на другую чашку весов пришлось бы положить, скажем, три кубика меди, два кубика свинца или четыре кубика иттрия. Такими же высокими показателями отличаются ближайшие соседи осмия — платина и иридий. Благородные металлы оказываются и самыми тяжеловесными.
Твердость металлов вошла в поговорку. Про волевого, принципиального человека говорят, что у него «железный характер». Но в мире металлов дело обстоит несколько иначе.
Железо вовсе не котируется в качестве образца твердости. Пальма первенства принадлежит здесь хрому, который этой своей особенностью лишь немного уступает алмазу. Вот, кстати, парадокс: чемпионы по твердости среди химических элементов — отнюдь не металлы. В шкале сравнительной твердости на первом месте стоят углерод в форме алмаза и кристаллический бор. Железо же скорее мягкий металл: оно в два раза менее твердо, чем хром. А наши знакомые легковесы — щелочные металлы — почти так же мягки, как воск.
Металлы-жидкости, металл-газ (!)
Все металлы — вещества твердые, твердые в той или иной степени. Это общее правило. Однако есть исключения.
Некоторые металлы скорее представляют собой жидкости. Крупинки галлия или цезия легко бы расплавились на ладони, потому что температура их плавления немногим менее 30 градусов. Франций, который пока в виде чистого металла не приготовлен, плавился бы уже при комнатной температуре. А вот всем известная ртуть — классический пример жидкого металла. Она замерзает при минус 39 градусах, почему и применяется для изготовления самых разнообразных термометров.
В этом отношении сильным конкурентом ртути оказывается галлий. И вот благодаря каким обстоятельствам. Ртуть закипает сравнительно быстро, примерно при 300 градусах. Значит, измерять высокие температуры с помощью ртутных термометров нельзя. А чтобы галлий превратился в пар, нужна температура 2000 градусов. Ни один металл не может так долго оставаться в жидком состоянии, иметь такую разницу между температурами плавления и кипения. Кроме галлия. Потому-то он настоящая находка для изготовления высокотемпературных термометров.
Еще один штрих, на сей раз совершенно удивительный. Ученые теоретически доказали: если бы существовал тяжелый аналог ртути (элемент с очень большим порядковым номером, неизвестный на Земле обитатель воображаемого восьмого этажа Большого дома). то его естественное состояние при обычных условиях было бы газообразное. Газ, обладающий химическими свойствами металла! Удастся ли когда-нибудь ученым познакомиться с таким уникумом?
Свинцовую проволоку можно расплавить в пламени спички. Оловянная фольга, брошенная в огонь, моментально превращается в каплю жидкого олова. А вот чтобы превратить в жидкость вольфрам, тантал или рений, приходится поднимать температуру выше 3000 градусов. Эти металлы расплавить труднее, чем все прочие. Вот почему нити накаливания в электрических лампах делают из вольфрама и рения.
Температуры кипения некоторых металлов достигают поистине грандиозных величин. Скажем, гафний закипает при 5400 градусах (!) — это почти температура поверхности Солнца.
Необычные соединения
Какое первое химическое соединение сознательно получил человек?
Историки науки не могут ответить с полной определенностью.
Мы рискнем сделать собственное предположение.
Первым веществом, которое люди приготовляли, заранее зная, что они хотят получить, было… соединение двух металлов — меди и олова. Мы сознательно не употребили слово «химическое». Потому что соединение меди и олова (а это самая обыкновенная, всем известная бронза) необычное. Оно называется сплавом.
Древние люди научились сначала выплавлять металлы из их руд, а уже затем сплавлять друг с другом.
Так на заре цивилизации появились зерна одной из отраслей будущей науки химии. Ее называют теперь металлохимия, или химия металлов.
Строение соединений металлов с неметаллами обычно определяется валентностью входящих в них элементов. Скажем, в молекуле поваренной соли содержится положительно одновалентный натрий и отрицательно одновалентный хлор. В молекуле аммиака NH3 отрицательно трехвалентный азот связан с тремя положительно одновалентными атомами водорода.
Химические соединения металлов друг с другом (их называют интерметаллическими соединениями) законам валентности обычно не подчиняются. Их состав не связан с валентностью реагирующих элементов. Поэтому формулы интерметаллических соединений выглядят довольно странно, например MgZn5, KCd7, NaZn12 и так далее. Одна и та же пара металлов часто может образовывать несколько интерметаллических продуктов, скажем, натрий с оловом дают девять таких удивительных образований.
Металлы могут взаимодействовать между собой, как правило, в расплавленном состоянии. Но не всегда сплавляемые металлы образуют друг с другом химические соединения. Иногда один металл просто растворяется в другом. Образуется однородная смесь неопределенного состава, ее не удается выразить четкой химической формулой. Такую смесь именуют твердым раствором.
Сплавов огромное количество. И никто еще не взял на себя труд хотя бы приблизительно подсчитать, сколько их уже известно и сколько вообще может быть получено. Здесь снова «пахнет» миллионами, как в мире органических соединений.
Известны сплавы, состоящие из доброго десятка металлов, и каждая новая добавка по-своему влияет на свойства. Известны сплавы из двух металлов — биметаллические, но в зависимости от того, сколько какого компонента взято, свойства будут различными.
Одни металлы сплавляются очень легко и в любой пропорции. Таковы бронза и латунь (сплав меди с цинком). Другие ни при каких условиях не желают сплавляться, например медь с вольфрамом. Ученые все же приготовили их сплав, но необычным путем, методом так называемой порошковой металлургии: спеканием медного и вольфрамового порошка под давлением.
Существуют сплавы жидкие при комнатной температуре и сплавы исключительно жаростойкие, которые охотно берет на вооружение космическая техника. Немало, наконец, таких сплавов, что не разрушаются под действием даже самых сильных химических реагентов, и сплавов, по твердости лишь немного уступающих алмазу…
Первый кибернетик в химии
Кибернетические машины могут многое. Они научились играть в шахматы; предсказывать погоду; выяснять, что происходит в недрах далеких звезд; производить расчеты совершенно невообразимой трудности. Только умей задать им программу действий. И все крепче становится дружба кибернетики с большой химией. Огромные заводы-автоматы, управляемые счетно-вычислительными машинами. Множество химических процессов, о которых исследователям все становится известным ранее, чем эти процессы осуществят на практике…
Но есть в распоряжении химиков одна совершенно необычная «кибернетическая» машина. Она была изобретена около ста лет назад, когда и само слово «кибернетика» отсутствовало в языках народов мира.
Эта удивительная машина — периодическая система элементов.
Она позволила ученым делать то, на что ранее не отваживались даже самые дерзкие из исследователей. Периодическая система дала возможность предсказывать существование элементов, еще не известных, еще не открытых в лабораториях. Мало предсказывать. Она выдавала данные о том, какими свойствами будут обладать эти незнакомцы. Окажутся они металлами или неметаллами. Будут тяжелыми, как свинец, или легкими, как натрий. В каких земных рудах и минералах следует искать неизвестные элементы. Даже на эти вопросы давала ответ «кибернетическая» машина, изобретенная Менделеевым.
В 1875 году французский ученый Поль Лекок де Буабодран сообщил коллегам важную новость. В цинковой руде ему удалось обнаружить примесь нового элемента, маленькую крупинку весом не более грамма. Опытный исследователь со всех сторон изучил свойства галлия (такое имя получил «новорожденный»). И как полагается, напечатал об этом статью.
Прошло немного времени, и почта доставила Буабодрану конверт со штемпелем Санкт-Петербурга. В коротком письме французский химик прочитал, что корреспондент целиком и полностью согласен с его результатами. Кроме одной детали: удельный вес галлия должен быть не 4,7, а 5,9.
Под текстом стояла подпись: Д. Менделеев.
Буабодран заволновался. Неужели русский титан химии опередил его в открытии нового элемента?
Нет, Менделеев не держал в руках галлия. Он просто умело воспользовался периодической системой. Ученый уже давно знал, что в таблице, на том месте, где нашел место галлий, должен был рано или поздно оказаться неизвестный элемент. И предварительное имя дал ему Менделеев: «экаалюминий». И химическую природу исключительно точно предсказал, зная свойства его соседей по периодической системе…
Вот как Менделеев стал первым «программистом» в химии. Еще с добрый десяток неизвестных элементов предсказал Менделеев и с большей или меньшей полнотой описал их свойства. Их имена: скандий, германий, полоний, астат, гафний, рений, технеций, франций, радий, актиний, протактиний. И к 1925 году многие из них были успешно открыты.
«Кибернетическая машина» застопорилась
В двадцатых годах нашего столетия физика и химия могли похвастать грандиозными успехами. За каких-то два десятилетия эти науки едва ли не достигли большего, чем за всю предшествующую историю человечества.
А дело открытия новых элементов вдруг застопорилось. В периодической системе было еще несколько «пробелов», которые предстояло заполнить. Им соответствовали клетки с номерами 43, 61, 85 и 87.
Но что же это за странные элементы, которые никак не хотели вселяться в периодическую систему?
Незнакомец первый. Элемент седьмой группы. Его порядковый номер 43. Расположен в таблице между марганцем и рением. И по свойствам должен быть подобен этим элементам. Искать его следовало в марганцевых рудах.
Незнакомец второй. Собрат редкоземельных элементов, во всем на них обязанный походить. Порядковый номер 61.
Незнакомец третий. Самый тяжелый галоген. Старший брат йода. Он мог стать сюрпризом для химиков. Еще бы, у него не исключались слабые свойства металла! И галоген и металл — великолепный пример двуликого элемента. Его ожидала квартира номер 85 Большого дома.
Незнакомец четвертый. Ох, какой интересный элемент! Самый яростный, самый активный металл, который легко плавился бы в ладони. Самый тяжелый из щелочных металлов. Номер его 87.
Ученые составили весьма подробные досье на таинственных незнакомцев. Шерлок Холмс отыскивал преступника по пеплу выкуренных сигар, по частичкам глины, приставшим к подошвам. Но его приемы не шли ни в какое сравнение с точнейшими методами химиков, научившихся распознавать мельчайшие количества неизвестных веществ.
Хитроумного сыщика всегда сопровождала удача. Химикам же не везло. Сколько ни преследовали они загадочных незнакомцев, упорно не желавших въезжать в уготованные им квартиры, ученых ждали одни лишь разочарования.
Незнакомцев искали всюду: в пепле сигар и в золе растений; в самых редких, самых экзотических минералах — гордости минералогических музеев; в воде морей и океанов. Увы!
На полку нерешенных проблем легло «Дело о таинственном исчезновении химических элементов № 43, 61, 85, 87». «Унылое дело», как сказали бы иные следователи.
Неужели природа выкинула неожиданный трюк: исключила эти элементы из списка простых веществ, существующих на нашей планете? По странной, свойственной ей, природе, прихоти…
Действительно, попахивало какой-то мистикой. Чудес, как известно, на свете не бывает, но четыре квартиры Большого дома необъяснимым образом продолжали пустовать.
Они заполнились лишь тогда, когда ученые научились искусственно приготовлять химические элементы.
Как один элемент превратить в другой
Бесчисленное множество химических реакций происходит в окружающем нас мире. Все они подчиняются власти химии электронных оболочек. Атом может приобрести электроны, может отдать их — он станет отрицательно или положительно заряженным ионом. Атом может в совокупности с сотнями и тысячами других построить гигантскую молекулу. Но он останется носителем свойств того же самого элемента. Два с лишним миллиона соединений образует углерод. И в каждом из них, будь то углекислый газ CO2 или сложнейший антибиотик, углерод остается углеродом.
Чтобы превратить один элемент в другой, нужно перестроить ядра его атомов. Нужно изменить заряд ядра.
Химики, проводя химические процессы, используют высокую температуру и большое давление, применяют катализаторы — небольшие добавки различных веществ, ускоряющих течение реакции.
Тысячами градусов и сотнями тысяч атмосфер атомное ядро перестроить не удается. Превратить один элемент в другой таким путем невозможно.
Это под силу новой науке — ядерной химии.
У ядерной химии — свои методы. Ее «температуры и давления» — это протоны и нейтроны, ядра тяжелого изотопа водорода (дейтроны) и ядра атомов гелия (альфа-частицы), наконец, ионы легких элементов таблицы Менделеева — бора и кислорода, неона и аргона. Ее химические аппараты — ядерные реакторы, где рождаются некоторые бомбардирующие частицы, и ускорители (сложные физические установки, где частицы разгоняются до больших скоростей). Ведь чтобы проникнуть в атомное ядро, частица-снаряд (особенно если она положительно заряжена) должна обладать большой энергией; тогда ей легче преодолеть отталкивающее действие заряда ядра. У ядерной химии своя символика, но уравнения ее реакций записываются и подобно «обычным» химическим уравнениям.
Эта новая наука позволила заселить пустовавшие клетки таблицы Менделеева.
Греческое слово «технетос», что значит «искусство», вошло в название первого элемента, искусственно приготовленного человеком. В конце 1936 года быстрый поток дейтронов, ускоренных в циклотроне, обрушился на пластинку из молибдена. Стремительные дейтроны, как нож сквозь масло, пробились через электронные оболочки и достигли ядра. Дейтрон, состоящий из протона и нейтрона, при столкновении с ядром распался, нейтрон отлетел в сторону, а протон застрял в ядре. Тем самым заряд ядра увеличился на единицу. Значит, молибден, обитающий в клетке номер 42, превратился в своего правого соседа — элемент номер 43.
Подобно тому, как в обычной химии одно и то же соединение можно получить разными способами, так и в ядерной химии один и тот же элемент удается искусственно приготовить с помощью различных ядерных реакций.
Тот же технеций люди научились создавать в количествах, измеряемых килограммами, на самой удивительной в мире фабрике. Эта фабрика — ядерный реактор. Здесь вырабатывается энергия деления урановых ядер под действием медленных нейтронов.
Ядра урана распадаются на разнообразные осколки, каждое на два. Осколки — ядра атомов элементов середины таблицы Менделеева. Уран, делясь, порождает элементы, которые обитают более чем в 30 клетках периодической системы — от 30 номера до 64. В том числе и технеций. И еще один странный элемент, тщетные поиски которого в земной коре длились десятилетиями. Прометий, обитатель 61-й клетки.
Ядерная химия предоставила в распоряжение ученых элементы тяжелее урана. При делении урановых ядер, кроме осколков, вылетает много нейтронов. Они могут поглотиться неразделившимися ядрами. Так возникает возможность синтеза элементов с порядковыми номерами 93, 94 и далее, трансурановых элементов.
Много способов получения таких элементов знает ядерная химия. Ныне трансурановых элементов известно 12: нептуний, плутоний, америций, кюрий, берклий, калифорний, эйнштейний, фермий, менделеевий и лоуренсий. И курчатовий — самый тяжелый трансурановый элемент, недавно (в 1964 году) синтезированный группой советских физиков во главе с Г. Н. Флеровым. Название одному из трансуранов, с порядковым номером 102, пока не дано.
Представьте себе удивление каменщика, который сегодня возвел каменную кладку нового этажа дома, а завтра обнаружил, что вся его работа исчезла. Именно в таком положении находятся исследователи, изучающие химические свойства тяжелых трансуранов. Эти элементы крайне неустойчивы, время их жизни измеряется минутами и даже секундами. Работая с обычными элементами, химик нисколько не стеснен рамками времени. Когда же в его руки попадают короткоживущие представители таблицы Менделеева, в особенности тяжелые трансураны, каждая минута исследования начинает цениться на вес золота. Мало того что изучаемые объекты вот-вот исчезнут. Их в распоряжении химика мизерные количества, иногда буквально считанные атомы.
А потому необходимы специальные методы работы. Ими ведает новая молодая ветвь химии — радиохимия, химия радиоактивных элементов.
Смерть и бессмертие в мире элементов
Пришло время, когда химики сделались своеобразными археологами. Они научились измерять возраст различных минералов земной коры, подобно тому как археолог определяет, сколько веков назад изготовлено какое-нибудь бронзовое украшение или глиняный сосуд.
Оказалось, что возраст иных минералов превышает четыре с половиной миллиарда лет. Они так же стары, как и сама планета Земля. Но ведь минералы — это химические соединения. Они состоят из элементов. Стало быть, элементы практически бессмертны…
Не кажется ли вам нелепой сама постановка вопроса: может ли элемент умереть? Ведь смерть — это печальный удел живых существ…
Нет, этот вопрос не бессмыслен, как может показаться на первый взгляд.
Есть такое физическое явление: радиоактивность. Оно состоит в том, что элементы (а точнее, ядра их атомов) могут самопроизвольно разрушаться. Одни ядра исторгают из своих недр электроны. Другие — испускают так называемые альфа-частицы (ядра гелия). Третьи — разваливаются на две примерно равные половинки: этот процесс именуют спонтанным делением.
Все ли элементы радиоактивны? Нет, не все. Главным образом те, что стоят в конце периодической системы, начиная с полония.
Распадаясь, радиоактивный элемент не исчезает вовсе. Он превращается в другой. Эти цепочки радиоактивных превращений могут быть очень длинными.
Например, из тория и урана в конце концов образуется устойчивый свинец. А на этом пути рождается и погибает добрый десяток радиоактивных элементов.
Радиоактивные элементы живучи в разной степени. Одни, прежде чем исчезнуть полностью, существуют десятки миллиардов лет. Жизнь других настолько коротка, что измеряется минутами и даже секундами. Ученые оценивают живучесть радиоактивных элементов с помощью специальной величины: периода полураспада. В этот промежуток времени взятое количество радиоактивного элемента распадается ровно наполовину.
Периоды полураспада урана и тория равны нескольким миллиардам лет.
Совсем иначе обстоит дело с их предшественниками по таблице Менделеева — протактинием, актинием, радием и францием, радоном, астатом и полонием. Их жизнь куда короче: во всяком случае, не больше 100 тысяч лет. А раз так, то возникает неожиданное недоразумение.
Почему, собственно, эти короткоживущие элементы существуют на Земле? Ведь нашей планете что-то около 5 миллиардов лет… За этот трудно вообразимый срок должны были сотни раз исчезнуть и радий и актиний и иже с ними.
Однако живут. И прячутся в земных минералах испокон веку… Словно природа имеет в своем распоряжении «живую» воду, не дающую им погибать.
Дело в другом: просто-напросто они непрерывно рождаются вновь, потому что их питает вечный источник. Земные запасы урана и тория. Ведь пока эти «патриархи» среди радиоактивных элементов совершают долгий и сложный путь превращений в устойчивый свинец, они походя превращаются в промежуточные элементы. И получается, что среди химических элементов мы можем выделить две большие группы — первичных и вторичных.
К первичным относятся все нерадиоактивные элементы и уран с торием, у которых периоды полураспада превышают возраст Земли. Они были свидетелями образования солнечной системы.
Остальные — вторичные.
И все-таки наступит момент, когда периодическая система недосчитается нескольких элементов. Уран и торий — вечный источник вторичных элементов. Однако относительно вечный. Когда-то с лика Земли исчезнут и они. Исчезнут полностью эдак через сотню миллиардов лет. А вместе с ними уйдут в небытие и продукты их радиоактивных превращений.
Один, два, много…
Примерно такими были счетные способности первобытного человека. Его математический аппарат насчитывал всего две количественные величины — «много — мало».
Почти таким же критерием пользовались люди лет сто назад, когда пытались оценивать, сколько каких элементов припасено нашей планетой в ее «закромах».
Широко используются в практике, скажем, свинец, цинк, серебро, стало быть, их много. Значит, это элементы распространенные. А редкие земли (лантаноиды) потому и редкие, что на Земле почти не встречаются. Их мало.
Вот как легко было рассуждать какое-то столетие назад.
Право же, первые ревизоры кладовых химических элементов занимались работой не очень обременительной. Вспоминая об их «деятельности», наши современники весело улыбаются.
Да и как же не улыбнуться, если теперь они точно могут ответить на вопрос: сколько чего? Если они даже могут сказать, сколько атомов каждого элемента содержится в земной коре. Они наверняка знают, что пресловутых редких земель в минералах планеты лишь немногим меньше, чем свинца, цинка и серебра, вместе взятых.
Скрупулезная «бухгалтерия» запасов химических элементов началась с научного подвига. Его совершил американский ученый Фрэнк Кларк. Он проделал более пяти с половиной тысяч химических анализов. Самых различных минералов — из тропиков и из тундры. Самых разнообразных вод — из глухого таежного озера и Тихого океана. Исследовал образцы всевозможных почв с разных концов света.
Двадцать лет продолжался этот титанический труд. Благодаря Кларку и другим ученым человечество получило вполне четкое представление, каких элементов на Земле больше всего.
Так родилась наука геохимия. Она поведала людям такие удивительные истории, какие раньше не могли и присниться.
Вот что оказалось: первые 26 представителей менделеевской таблицы — от водорода до железа — практически образуют всю земную кору. Они составляют 99,7 процента от ее веса. Только «жалких» три десятых процента приходится на долю остальных 67 элементов, встречающихся в природе.
Чего же больше всего на Земле?
Не железа, не меди, не олова, хотя человек пользовался ими тысячелетиями и запасы этих металлов представлялись огромными, неисчерпаемыми. Больше всего — кислорода. Если на одну чашу воображаемых весов положить земные ресурсы кислорода, а на другую — всех прочих элементов, чаши почти уравновесятся. Почти наполовину земная кора состоит из кислорода. Где его только нет: в водах, в атмосфере, в огромном количестве горных пород, в любом животном и растении — всюду кислород играет весьма видную роль.
Четвертая часть земной «тверди» — кремний. Основа основ неорганической природы.
Дальше элементы Земли по своим запасам располагаются в таком порядке: алюминий — 7,4 процента; железо — 4,2; кальций — 3,3; натрий — 2,4; калий и магний — 2,35; водород — 1,0; титан — 0,6.
Вот первая десятка химических элементов в нашей планете.
А чего на Земле всего меньше?
Очень мало золота, платины и ее спутников. Поэтому они и ценятся так дорого.
Но любопытный парадокс: золото было первым из металлов, который стал известен человеку. Платину открыли, когда и слыхом не слыхивали ни о кислороде, ни о кремнии, ни об алюминии.
У благородных металлов есть уникальная особенность. Они встречаются в природе не в виде соединений, а в самородном состоянии. Не надо затрачивать никаких усилий на выплавку. Потому-то их нашли на Земле, именно нашли в столь давние времена.
Однако приз за редкость все-таки принадлежит не им. Этой печальной награды удостаиваются вторичные радиоактивные элементы.
Мы вправе назвать их элементами-призраками.
И геохимики говорят: полония на Земле всего-навсего 9600 тонн, радона и того меньше — 260 тонн, актиния — 26 тысяч тонн. Радий и протактиний настоящие гиганты среди призраков: их в общей сложности около 100 миллионов тонн, но в сравнении с золотом и платиной это ничтожно малое количество. А вот астат и франций неудобно причислить даже к призракам, они нечто еще менее материальное. Земные запасы астата и франция измеряются (смешно сказать!)… миллиграммами.
Имя самого редкого элемента на Земле — астат (69 миллиграммов на всю толщу земной коры). Комментарии, как говорится, излишни.
Первые трансурановые элементы — нептуний и плутоний — тоже, оказывается, существуют на Земле. Они рождаются в природе благодаря очень редким ядерным реакциям урана со свободными нейтронами. Эти призраки «тянут» на сотни и тысячи тонн. А вот о прометии и технеции, в появлении которых также повинен уран (ему свойствен процесс самопроизвольного деления, когда ядра распадаются на два примерно равных осколка), о них прямо-таки нечего сказать. Ученые нашли еле заметные следы технеция, а прометий все еще пытаются отыскать в урановых минералах. Еще не изобрели таких весов, на которых можно было бы взвесить земные «запасы» прометия и технеция.
Справедливо ли поступила природа?
Вот как утверждают теперь ученые: в образце любого минерала можно обнаружить присутствие всех химических элементов, известных в природе. Всех до единого. Правда, в весьма различной пропорции. Но почему одних много, других чрезвычайно мало?
В периодической системе все элементы обладают полнейшим равноправием. Каждый занимает свое определенное место. Когда же речь заходит о земных запасах элементов, это равноправие исчезает как дым.
Легкие элементы таблицы Менделеева, во всяком случае первые три десятка ее представителей, составляют основную массу земной коры. Но и среди них отсутствует равенство. Одних — больше, других — меньше. Скажем, бор, бериллий и скандий принадлежат к числу весьма редких элементов.
Пока Земля существует, на ней произошел кое-какой «переучет» запасов элементов. Исчезло немало урана и тория из-за их радиоактивности. Улетучилась в мировое пространство большая часть инертных газов и водорода. Но общая картина не изменилась.
Ученый наших дней записывает: распространенность химических элементов в земной коре закономерно убывает от легких элементов к средним и далее — к тяжелым. Но всякое бывает. Например, тяжелого свинца гораздо больше, чем многих легких представителей менделеевской таблицы.
Почему так? Почему не всех поровну? Может, природа поступила несправедливо, «накопив» одни элементы и не позаботившись о запасах других?
Нет, существуют законы, в согласии с которыми одних элементов на Земле много, других мало. Признаться честно, мы этих законов до конца не знаем. И довольствуемся лишь предположениями.
Ведь сами-то химические элементы не существовали всегда. Вселенная так устроена, что непрерывно в разных ее местах происходит гигантский, ни с чем не сравнимый по своей грандиозности процесс образования, синтеза элементов. Космические ядерные реакторы, космические ускорители — это звезды. В недрах некоторых из них идет «варка» химических элементов.
Там господствуют невиданные температуры, невообразимые давления. Там стихия законов ядерной химии, царство ядерно-химических реакций, превращающих один элемент в другой, легкие — в тяжелые. И они таковы, эти законы, что одни элементы образуются с большей легкостью и в более внушительном количестве; другие — труднее и потому в меньшей пропорции.
Все зависит от прочности атомных ядер. На сей счет у ядерной химии вполне определенное мнение. Ядра изотопов легких элементов содержат почти одинаковое число протонов и нейтронов. Эти элементарные частицы образуют здесь весьма прочные сооружения. И легкие ядра легче синтезируются. Природе вообще свойственно стремление создавать системы с наибольшей устойчивостью. Легче синтезируются, но с меньшей охотой вступают в ядерные реакции, чтобы дать дорогу созданию ядер с большими зарядами. У последних количество нейтронов уже заметно превышает запасы протонов, и потому ядра средней и большой массы не могут похвастать особой устойчивостью. Они сильнее подвержены всяким случайностям, легче склонны к превращениям и потому не способны накапливаться в слишком большом количестве.
Ядерно-химические законы таковы, что чем выше заряды ядер, тем труднее эти ядра синтезируются и, следовательно, тем меньше их образуется.
Химический состав нашей Земли — это словно безмолвный слепок, немое отражение динамики законов, которые управляют процессом происхождения элементов. Когда ученые до конца познают эти законы, станет понятным, почему так по-разному распространены различные химические элементы.
Тропою ложных солнц
В 80-х годах прошлого столетия один зарубежный химический журнал опубликовал любопытную заметку. Малоизвестный научному миру автор сообщал в ней о том, что ему удалось обнаружить сразу два новых элемента. И имена он дал им звучные: космий и неокосмий. В ту пору открытие новых элементов было явлением прямо-таки массовым. Иные исследователи даже не удосуживались придумывать «новорожденным» названия, а обозначали их буквами греческого алфавита.
Выяснилось вскоре, что «первооткрыватель» космия и неокосмия просто-напросто посмеялся над этой эпидемией открытий. Его заметка была чем-то вроде первоапрельской шутки. Автор носил фамилию Косман.
…Сто четыре элемента расположились в таблице Менделеева. Сто четыре истинных открытия элементов зафиксировала история науки. Рядом с этим перечнем существует другой, не в пример более длинный, насчитывающий несколько сот названий. Этакие «святцы» мертворожденных элементов, тех, что появились на свет в результате заблуждений, ошибок опытов, а то и просто недобросовестности иных исследователей.
Долог и тернист был путь открывателей элементов. Подобен тропе, продирающейся сквозь дебри и теряющейся среди узких, обрывистых скал… А рядом пролегла другая — торная тропа. Но это тропа ложных солнц, ложных открытий химических элементов.
Какие только курьезы и парадоксы не встречались на ней! Случай с Косманом — буквально капля в море.
Англичанин Крукс выделил из иттрия целое скопище новых простых веществ, назвав их метаэлементами. А на деле это были смеси давно известных элементов.
Немец Свинне искал трансурановые элементы в образцах так называемой космической пыли, собранной в ледниках Гренландии известным полярным путешественником Норденшельдом. И поспешил сообщить, что-де удалось ему найти в этой пыли элемент с порядковым номером 108… Истина вскоре взяла реванш. Незадачливый исследователь просто был в плену неверной теоретической идеи.
А как не вспомнить англичанина Фриенда, который организовал специальную экспедицию в Палестину, чтобы в безжизненных водах Мертвого моря «выловить» следы 85-го и 87-го элементов? Или американца Аллисона: этот неудачник, когда ученые терялись в догадках, почему отсутствуют на Земле тяжелые аналоги йода и цезия, вдруг стал открывать их всюду. В любых растворах и минералах, которые проверял с помощью своего нового метода. Метод оказался порочным. Глаза исследователя при работе слишком утомлялись, и утомление рождало призраки.
Даже великие люди не избежали ошибок на тропе ложных солнц. Итальянцу Ферми показалось, что в уране, обстрелянном нейтронами, возникает сразу несколько трансурановых элементов. На деле то были осколки деления ядер урана — элементы середины периодической системы.
И в наши дни эта пресловутая тропа еще не кончилась. В 1958 году группа ученых в Стокгольме синтезировала новый элемент, номер 102. В честь изобретателя динамита его назвали нобелий. Советские и американские исследователи эти результаты опровергли. И теперь ученые шутят: от нобелия остался один символ — «No», что по-английски означает «нет». Хотя другими способами теперь в СССР и в США достоверно получены изотопы сто второго элемента.
Судьба одного из ста четырех…
Это маленькая повесть о судьбе химического элемента.
Он занимает квартиру под номером 92. Его имя уран.
Оно говорит само за себя. Ведь с ураном связано два величайших открытия науки всех времен и народов. Открытие радиоактивности и деления ядер тяжелых элементов под действием нейтронов. Уран дал людям ключ к освоению ядерной энергии. Уран помог им получить элементы, неизвестные природе: трансураны, технеций и прометий.
Исторические документы свидетельствуют: биография урана началась 24 сентября 1789 года.
Всякое случалось в истории открытия химических элементов. Бывало и такое, когда автора открытия невозможно назвать — он остался безвестным. А порой список «первооткрывателей» нового элемента выглядел весьма солидно. «Крестный отец» урана установлен твердо — берлинский химик Мартин Клапрот, один из основателей аналитической химии. Обстоятельства сыграли с ним не очень веселую шутку — Мартин Генрих Клапрот оказался лишь одним из «крестных отцов» героя нашего повествования.
Исстари знавали люди смоляную обманку и считали ее рудой цинка и железа. Зоркий глаз Клапрота-аналитика заподозрил в ней примесь неизвестного металла, и подозрению этому суждено было сбыться. Новый элемент явился в виде черного порошка с металлическим блеском. В честь планеты Уран, незадолго до этого открытой астрономом Гершелем, получил он свое имя.
С той поры целых полстолетия никто не сомневался в достоверности Клапротова открытия. Никто не смел усомниться в правоте величайшего химика-аналитика Европы. Элемент уран шествовал по страницам учебников химии.
В 1843 году это победное шествие слегка притормозил французский химик Эжен Пелиго. Он доказал, что не элемент уран держал в руках Клапрот. Всего-навсего окись урана. Беспристрастные историки отметили позже: Пелиго можно считать вторым «крестным отцом» элемента.
Но и тогда не завершился список «крестных» урана. Третьим был Дмитрий Иванович Менделеев.
Уран никак поначалу не хотел помещаться в его таблицу. Собственно, место ему отводилось. В третьей группе. Между кадмием и оловом, там, где стоит теперь индий. Это место диктовалось величиной атомного веса урана. Но не свойствами. По своим свойствам уран выглядел случайным пришельцем в уготованной ему клетке.
Менделеев решил: атомный вес урана определен неправильно. И увеличил его в полтора раза. Уран оказался в шестой группе таблицы. Последним в ряду элементов. Так состоялось третье «рождение» урана.
А экспериментаторы вскоре подтвердили правоту Менделеева.
Где твое место, уран?
Нет в менделеевской системе элементов вообще без места. Есть элементы без определенного места. Скажем, самый первый из них — водород. Ведь до сих пор не пришли ученые к единому мнению: куда поместить элемент номер 1 — в первую ли, в седьмую ли группу таблицы Менделеева…
Аналогичным образом сложилась и судьба урана.
Но разве Менделеев не решил вопрос о его месте окончательно, раз и навсегда?!
В течение десятилетий никто не оспаривал положения урана в шестой группе периодической системы. Как самого тяжелого собрата хрома, молибдена и вольфрама. Оно казалось незыблемым.
Пришли иные времена. В ряду элементов уран перестал быть последним. Справа от него выстроилась целая когорта трансурановых элементов, полученных искусственно. И встал вопрос о том, куда их расселить в менделеевской таблице. В каких ее группах и каких клетках расставить символы трансуранов. После долгих споров многие ученые пришли к выводу: их нужно поместить всех вместе, в одной группе, в одной клетке.
Не с неба упало такое решение: подобное уже случалось в менделеевской таблице. В ее шестом периоде. Ведь все лантаноиды общим числом 14 располагают в третьей группе, в одной клетке лантана.
Периодом ниже должна появиться такая же картина — это давно предсказывали физики. В седьмом периоде, говорили они, должно существовать семейство элементов, подобное лантаноидам. Семейство, чье имя — актиноиды. Потому что начинаться оно будет сразу же после актиния. Он в таблице стоит как раз под лантаном.
Стало быть, все трансурановые элементы — члены этого семейства. Не только они, но и уран и его ближайшие левые соседи — протактиний и торий. Им всем надлежало покинуть старые, обжитые места в шестой, пятой и четвертой группах. И перебраться в третью.
Почти сто лет назад Менделеев выселил уран из этой группы. Теперь он снова оказался в ней. Но уже с новым «видом на жительство». Вот какие курьезы встречаются в жизни периодической системы.
Физики согласны с таким положением дел. Химики же — не все и не полностью, потому что в третьей группе уран по своим свойствам такой же чужак, каким был во времена Менделеева. И для тория с протактинием третья группа не подходит.
Где твое место, уран? Ученым еще придется об этом поспорить.
Маленькие истории из области археологии
Когда человек впервые стал применять для своих нужд железо? Ответ, казалось бы, сам собой напрашивается: когда научился выплавлять железо из руд. Историки даже установили приблизительную дату этого великого события. Дату наступления на Земле «железного века».
А век-то этот, он наступил раньше, чем первобытный металлург в примитивной домне добыл первые килограммы железа. К такому выводу пришли химики, вооруженные могущественными методами анализа.
Первые куски железа, которыми воспользовались наши предки, в самом прямом смысле упали с неба. В так называемых железных метеоритах всегда, кроме железа, содержится никель и кобальт. Анализируя состав некоторых древнейших железных орудий, химики обнаружили в них присутствие соседей железа по таблице Менделеева — кобальт и никель.
А в железных рудах Земли они встречаются далеко не всегда.
Бесспорен ли этот вывод? На сто процентов утверждать не беремся… Познавать древность — дело исключительно нелегкое. Зато здесь можно столкнуться с неожиданностями удивительными.
Вот какую пилюлю преподнесли однажды археологи историкам химии.
…В 1912 году профессор Оксфордского университета Гюнтер производил раскопки древнеримских развалин близ Неаполя и обнаружил стеклянную мозаику удивительной красоты. За два тысячелетия окраска стекол, казалось, совсем не потускнела.
Гюнтер заинтересовался составом красок, которые применялись древними римлянами. Два образчика бледно-зеленоватого стекла отправились в путешествие. В Англии они попали в руки химика Маклея.
Проведен анализ: ничего неожиданного не обнаружено. Разве что содержится какая-то примесь в количестве около полутора процентов. И объяснить ее природу Маклей затрудняется.
Тут в дело вмешивается случай. Кому-то приходит в голову испытать образец примеси на радиоактивность. Мысль оказывается более чем удачной, потому что примесь действительно радиоактивна. Какой же элемент является ее причиной?
Наступает очередь химиков — и те докладывают: неизвестная примесь есть не что иное, как окись урана.
Открытие ли это Америки? Пожалуй, нет. Соли урана давненько применяются для окраски стекол. Вот пример первого практического применения урана. В римских же стеклах уран, по-видимому, оказался случайно.
Временно в этой истории ставится точка. Проходят десятилетия, и забытый факт попадает в поле зрения американского археолога и химика Келея.
Келей проводит большую работу, повторяет анализы, сопоставляет данные. И приходит выводу: присутствие урана в древнеримских стеклах не случайность, скорее закономерность. Римляне были знакомы с минералами урана и пользовались ими для практических нужд. В частности, для окраски стекол.
Не здесь ли истоки биографии урана?
Уран и его профессии
Девяносто второй элемент менделеевской таблицы в двадцатом столетии стал едва ли не самым знаменитым. Потому что именно он заставил работать ядерный реактор. Он дал людям ключ к овладению энергией принципиально нового типа.
И добывают теперь уран в больших количествах: более сорока тысяч тонн за год во всем мире. Ядерной энергетике этого пока вполне хватает.
Но вот парадокс: непосредственно («по назначению») используется не более 5 процентов добытого урана. Остальные 95 называют отвальным ураном. Он уже непосредственно не годится в работу, так как содержит слишком мало изотопа урана-235. Того, что служит основным ядерным горючим.
Так неужели труды геологов, горняков и химиков во многом затрачиваются вхолостую?
Напрасное опасение: у урана немало других, «неядерных» профессий. Просто неспециалисты о них мало знают. А зря. Уран с интересом изучают биологи. Оказывается, девяносто второй просто необходим для нормального развития растений. Он, например, заметно увеличивает содержание сахара в моркови и свекле, а также в некоторых фруктах. Уран помогает развиваться ценным почвенным микроорганизмам.
Уран нужен и животным. Ученые проделали интересный опыт. Крыс в течение года подкармливали небольшими количествами урановых солей. Содержание элемента оставалось в организме практически неизменным. Никаких вредных последствий не наблюдалось. Между тем вес животных увеличился почти в два раза.
Исследователи считают, что уран очень сильна способствует усвоению фосфора, азота и калия — важнейших жизненных элементов.
Уран в медицине? Это одно из самых старых практических амплуа элемента. Его солями пытались лечить разные болезни: диабет, всевозможные кожные заболевания, наконец, опухоли. И небезуспешно. Сейчас «уранотерапия» снова на повестке дня.
В металлургии уран находит любопытное использование. Его сплав с железом (ферроуран) добавляют в сталь для удаления кислорода и азота. Ферроуран позволяет изготовлять стали, которые могут работать при очень низких температурах. А вот ураноникелевые стали весьма устойчивы даже к самым сильным химическим реагентам, например к «царской водке» (смеси азотной и соляной кислот).
Как катализаторы многих химических реакций уран и его соединения также очень интересны и своеобразны. Синтез аммиака из азота и водорода проводят иногда с помощью карбида урана. Окислы урана ускоряют процессы окисления метана кислородом, получения метилового и этилового спиртов из окиси углерода и водорода, приготовления уксусной кислоты. Немало продуктов органической химии удается получить, используя урановые катализаторы.
Химия урана необычно богата. В своих соединениях он может выступать в различных валентных состояниях: шести-, пяти-, четырех- и трехвалентном. Соединения урана различной валентности настолько отличаются друг от друга, что можно говорить как бы о химии четырех различных элементов.
Недостроенное здание?
Много добрых слов посвятили мы периодической системе и ее великому архитектору. И вдруг спохватились: а ведь здание-то не достроено. Седьмой его этаж возведен чуть больше чем наполовину. На нем должно быть 32 квартиры, а оборудовано всего 17. Да и квартиранты здесь какие-то странные: сразу и не поймешь, проживают ли они или нет. Словом, сплошная фантасмагория.
Химики и физики давно уже спорят: имеет ли таблица Менделеева логический конец? Или, проще говоря, какой порядковый номер должен иметь самый последний элемент?
Лет сорок назад на страницах специальных серьезных статей и книг по физике замелькало число 137. Один крупный ученый даже написал брошюру, которую прямо так и озаглавил «Магическое число 137».
Чем же оно примечательно?
В атомах самая близкая к ядру электронная оболочка не располагается всегда на одном и том же расстоянии от него. Растет ядерный заряд, и радиус оболочки становится меньше. В атоме урана она куда ближе к ядру, чем, скажем, в атоме калия. В конце концов должен наступить момент, когда и ядро и ближняя к нему оболочка будут одного размера. А что произойдет в этом случае с ее электронами?
Они «упадут» на ядро, поглотятся им. Но когда в ядро извне проникает отрицательный заряд, общий положительный заряд ядра уменьшается на единицу. Стало быть, образуется элемент, порядковый номер которого на единицу меньше.
Вот он — предел числа элементов. Самой последней в Большом доме оказывается квартира номер 137.
Потом, лет десять назад, физики убедились в ошибке. Они проделали более точные расчеты. И показали: электрон рухнет на ядро с зарядом что-то около 150.
Видите, сколь радужны перспективы достройки Большого дома! Сколько новых элементов, сколько неожиданных открытий поджидает химиков в будущем! Более сорока квартирантов ожидают ордера на въезд в здание, заложенное Менделеевым.
Увы, пока это лишь сказка, заманчивая, но еще несбыточная фантазия.
Вычисляя порядковый номер самого последнего элемента, ученые не принимали во внимание одного существеннейшего обстоятельства. Не потому, что забыли. Просто хотели посмотреть, что было бы, если бы…
Если бы не было явления радиоактивности. Если бы ядра с очень большими зарядами были так же устойчивы, как ядра весьма многих элементов, обитающих на Земле.
Радиоактивность — полновластный хозяин среди элементов тяжелее висмута. Только одним она определяет долгие жизненные сроки, другим отводит мгновения.
У сто четвертого элемента, курчатовия, период полураспада всего три десятых секунды.
У сто пятого, сто шестого? Наверное, и того меньше. И где-то недалеко печальный барьер: ядро нового элемента погибнет, едва успев родиться. Хорошо еще, если им окажется сто десятый…
Сама природа, ее строгие физические закономерности повинны в том, что здание таблицы Менделеева остается недостроенным.
Но ведь сколько было примеров, когда человек побеждал природу!
Гимн современным алхимикам
Злосчастных алхимиков средневековья пытали по всем правилам испанской инквизиции и сжигали на кострах.
Современных «ядерных» алхимиков с почтением цитируют и награждают Нобелевскими премиями.
Те верили слишком во многое, не ведали, что творят. Их «теорией» были заклинания и молитвы да слепая убежденность в чудесных свойствах таинственного философского камня.
Эти не верят ни в бога, ни в черта. Они верят в силу человеческого разума и бесконечную изобретательность рук человеческих. Они признают добротную, строгую физическую теорию, где много физики, много математики и еще больше дерзких предположений и гипотез.
Алхимики наших дней хотят пробиться в область очень тяжелых элементов.
Но не уподобляются ли они строителям воздушных замков? Ведь только что мы упомянули, что для элементов с порядковыми номерами около 110 радиоактивность определяет более чем жесткие сроки существования.
Так-то оно так, да не совсем. Великий датский физик Нильс Бор высказался однажды о пользе «сумасшедших» идей. Только они, по мнению ученого, способны перевернуть бытующие представления о мироздании.
Есть такие идеи и у создателей сверхтяжелых элементов. Только, пожалуй, «сумасшедшего» в этих идеях не больше, чем, скажем, в теории относительности. Они глубоко продуманы, имеют под собой прочный физический фундамент, выверены тщательными математическими расчетами.
И суть их такова: в области ядер с большими зарядами должны существовать своеобразные «островки устойчивости». Это не значит, что расположенные на них элементы вовсе не будут подвержены радиоактивному распаду. Они просто окажутся более живучими, чем соседи, и просуществуют такой отрезок времени, что удастся не только синтезировать эти элементы, но и исследовать их основные свойства.
Один из таких «островков» — элемент с порядковым номером 126.
Пока все это теория. Теперь дело за практикой. Как изготовить сто двадцать шестой?
Обычные методы ядерной химии бессильны. Ни нейтроны, ни дейтроны, ни альфа-частицы, ни даже ионы легких элементов — аргона, неона, кислорода — здесь не помогут. Потому что нет подходящего элемента-мишени. Все доступные слишком далеко отстоят от номера 126.
И приходится изобретать необычайные методы.
Вот какой оригинальный способ обсуждают сейчас ученые: обстрелять уран ураном. Разогнать ионы урана на специальном ускорителе и обрушить их потом на урановую мишень.
Что получится? Два ядра урана сольются в одно чудовищно сложное ядро. Уран несет заряд, равный 92. Значит, ядро-гигант будет обладать зарядом 184. Оно не имеет не только возможности существовать, но даже права на существование. И моментально развалится на два осколка, с разными массами и разными зарядами. Весьма вероятно, что один из них окажется ядром с зарядом 126…
Такова идея. Было бы ошибкой не верить в то, что она осуществится. Ибо такова жизнь.
На краю Ойкумены
Когда это случится, неизвестно. Но случится. Человек одержит великую победу над природой, быть может, самую большую за всю свою историю.
Он научится управлять радиоактивностью. Неустойчивые элементы сумеет сделать устойчивыми. И наоборот, заставит распадаться самые что ни на есть прочные ядра.
Эту гипотезу пока не взяли на вооружение авторы научно-фантастических романов. А ученые все еще недоуменно пожимают плечами: сейчас они еще не видят практических и теоретических путей к обузданию радиоактивной стихии.
Но мы убеждены, что когда-нибудь эти пути будут найдены. Пусть самым неведомым способом. Таким же неведомым, как атомная электростанция для питекантропов, как метко выразился однажды автор одной научно-популярной книги.
Предположим: желаемое, наконец, осуществилось. Тогда синтез сверх тяжелых элементов перестанет быть проблемой. Ученые получат в свое распоряжение десятки новых обитателей Большого дома. Химики яростно примутся за их изучение.
И столкнутся с неожиданным.
Впрочем, «неожиданным» не совсем то слово. В чем эта неожиданность будет заключаться, известно даже сейчас.
Можем ли мы предсказать свойства, ну, скажем, уже упомянутого элемента номер 126?
Да, и без особого труда.
Вообще-то говоря, мысленно продолжать периодическую систему при желании можно сколь угодно далеко. Ведь физический принцип ее построения в общем и целом ясен. Одному из авторов этих строк некий умелец демонстрировал таблицу, содержащую тысячу элементов. На законный вопрос: «А почему, собственно, тысячу, а не две или не десять?» — «изобретатель» смущенно ответил: «Да, понимаете, бумаги не хватило…»
Но это из области курьезов. Про сто двадцать шестой элемент мы можем сказать совершенно серьезно и определенно: он будет относиться к новому семейству элементов, семейству поразительному. Такого химики еще не видывали.
Семейство начнется у элемента номер 121. И все его восемнадцать членов будут похожи друг на друга несравненно больше, чем наши старые знакомые лантаноиды. Странные жители Большого дома станут различаться между собой едва ли в большей степени, чем изотопы одного и того же элемента.
И все потому, что в атомах элементов этого семейства происходит заполнение четвертой снаружи оболочки, а три внешние устроены совершенно одинаково. Какой хоть сколько-нибудь заметной разницы химических свойств можно ожидать в этом случае?
Один из рассказов мы назвали «Четырнадцать близнецов». Если бы мы решили описать свойства предполагаемого семейства, то, право же, над заголовком пришлось бы поломать голову. «Восемнадцать абсолютно одинаковых» или «Восемнадцать — и все на одно лицо». Ведь слово «близнецы» здесь, как любят говорить физики, «не работает».
Но наша книга не научно-фантастическое произведение. Воздержимся от конкретных характеристик. Подождем лучших времен…
Да, еще проблема: как разместить в периодической системе восемнадцать «абсолютно одинаковых»?
Честно скажем: отчетливо мы себе это не представляем. Тем более что до сих пор не утихают споры о месте лантаноидов и актиноидов, а это все же дело более простое.
Мы желаем тебе, читатель, долгой жизни. Но полагаем, однако, что, когда вопрос о месте восемнадцати в Большом доме приобретет практический интерес, тебя уже не будет на свете. А вот твоим потомкам, близким ли, далеким, им-то уж наверняка придется искать ответ.
«Святцы» элементов
Один чудак, когда ему рассказали о звездах, о том, как они устроены и почему светят, воскликнул: «Это я все понимаю! А каким образом астрономы узнали, как различные звезды называются?»
Звездные каталоги насчитывают сотни тысяч «окрещенных» небесных светил. Но не думайте, что для всех придуманы звучные имена вроде «Бетельгейзе» или «Сириус». Для обозначения звезд астрономы предпочитают пользоваться своеобразным шифром — комбинацией букв и цифр. Иначе нельзя. Иначе запутаешься. А по шифру специалист легко определит, в каком месте небосвода звезда находится и к какому спектральному классу принадлежит.
Химических элементов несравненно меньше, чем звезд. Но и здесь за названиями скрываются волнующие истории открытий. И нередко химик, найдя новый элемент, вставал в тупик: как же «окрестить» «новорожденного»?
Важно было придумать название, которое хоть что-то говорило о свойствах элемента. Это, если хотите, деловые имена. От них не веет романтикой. Например, водород (по-гречески «рождающий воду»), кислород («рождающий кислоты»), фтор («разрушающий»), фосфор («несущий свет»). В названиях запечатлелись важные свойства элементов.
Некоторые элементы наименованы в честь планет солнечной системы — селен и теллур (от греческих слов «Селена» — Луна и «Теллурис» — Земля), уран, нептуний и плутоний.
Кое-какие названия заимствованы из мифологии.
Вот тантал. Так звали любимого сына Зевса. За преступление перед богами Тантал был сурово наказан. Он стоял по горло в воде, и над ним свисали ветви с сочными, ароматными плодами. Но едва он хотел напиться, как вода утекала от него; едва желал утолить голод и протягивал руку к плодам — ветви отклонялись в сторону. Пытаясь выделить элемент тантал из руд, химики перенесли не меньшие муки, прежде чем терпение их было вознаграждено…
Титан и ванадий — их название тоже следствие влияния греческих мифов.
Известны элементы, чьи имена даны в честь различных государств или стран света. Например, германий, галлий (Галлия — старинное название Франции), полоний (в честь Польши), скандий (в честь Скандинавии), франций, рутений (Рутения — латинское название России), европий и америций. А вот элементы, названные в честь городов: гафний (в честь Копенгагена), лютеций (так в старину именовали Париж), берклий (в честь города Беркли в США), иттрий, тербий, эрбий, иттербий (их имена происходят от Иттерби — маленького городка в Швеции, где впервые был обнаружен минерал, содержащий эти элементы).
Наконец, в названиях элементов увековечены имена великих ученых: кюрий, фермий, эйнштейний, менделеевий, лоуренсий.
Только имя одного искусственно полученного элемента — сто второго — до сих пор еще не внесено в метрику.
О происхождении названий элементов древности до сих пор спорят ученые, и неясно окончательно, почему, скажем, сера называется серой, железо — железом, олово — оловом.
Видите, сколько любопытного в «святцах» химических элементов.
Змея, кусающая свой хвост
Душа химической науки
Почти все, что окружает нас на Земле, состоит из химических соединений. Из самых разнообразных сочетаний химических элементов.
Лишь ничтожная доля земной материи предстает в виде элементарных веществ: благородные газы, платиновые металлы, углерод в различных формах — вот, пожалуй, и все.
Возможно, в очень отдаленные времена тот сгусток космической материи, из которой в конце концов, образовалась наша планета, состоял целиком из одних лишь атомов почти сотни химических элементов. Шли столетия, тысячелетия, миллионы лет. Менялись условия. Атомы взаимодействовали друг с другом. Начала свою работу гигантская химическая лаборатория природы. Природа-химик в течение долгой своей эволюции научилась готовить самые разнообразные вещества. От простейшей молекулы воды до бесконечно сложных белков.
Эволюция земного шара и жизни на нем во многом обязана химии.
Ибо все многообразие химических соединений возникло благодаря процессам, называемым химическими реакциями. Они подлинная душа науки химии, ее главное содержание. Невозможно даже приблизительно подсчитать, сколько химических реакций происходит в мире, скажем, в течение всего лишь одной секунды.
Чтобы человек мог произнести, например, слово «секунда», в его мозгу должны совершиться многие химические процессы. Мы говорим, думаем, радуемся, печалимся — и за всеми этими действиями скрываются миллионы химических реакций. Они проходят для нас незримо, но огромную массу химических взаимодействий мы наблюдаем ежедневно, походя, совершенно не вдумываясь в их содержание.
…Бросили в крепкий чай кружочек лимона — и цвет напитка бледнее, чиркнули спичкой — и загорелся деревянный стержень, дерево превратилось в уголь.
Все это химические реакции.
Первобытный человек, который научился разжигать костер, был и первым химиком. Он по своему желанию осуществил первую химическую реакцию — реакцию горения. Самую нужную, самую важную в истории человечества.
Она давала нашим далеким предкам тепло, обогревала их жилища в холодные дни. В наше время она открыла путь в космос, подняв в небо многотонные ракеты. Легенда о Прометее, подарившем людям огонь, в то же время и легенда о первой химической реакции.
Когда простые или сложные вещества вступают во взаимодействие друг с другом, они обычно дают знать об этом.
Бросьте в раствор серной кислоты кусочек цинка. Моментально от него побегут пузырьки газа, а пройдет некоторое время — и металлическая стружка исчезнет. Цинк растворится в кислоте; при этом будет выделяться водород. Как все происходило, вы видели своими глазами.
Или подожгите комок серы. Он загорится голубоватым пламенем, и вы почувствуете удушливый запах: сера соединилась с кислородом и образовала химическое соединение — сернистый ангидрид.
Стоит смочить белый порошок безводной сернокислой меди CuSO4 водой, как он синеет. Соль соединилась с водой, и образовались синие кристаллы медного купороса CuSO4 · 5H2O. Вещества такого вида называются кристаллогидратами.
Вам знаком процесс гашения извести? Негашеную известь обливают водой, получается гашеная известь Ca(OH)2. Цвет вещества не изменился, но легко удостовериться, что реакция прошла. Как? При гашении извести выделяется много тепла.
Первое непременное условие всех до единой химических реакций: они идут с выделением или поглощением тепловой энергии. Иногда тепла выделяется так много, что это легко обнаружить на ощупь. Если мало, то помогают специальные методы измерения.
Молнии и черепахи
Страшная это штука — взрыв. Страшная потому, что взрыв происходит мгновенно. В считанные доли секунды.
А что такое взрыв? Самая обыкновенная химическая реакция, сопровождающаяся выделением большого количества газов. Пример моментально протекающего химического процесса. Скажем, горение пороха в патронной гильзе. Или взрыв динамита.
Взрыв — все-таки своего рода крайность. Большинство реакций проходят в более или менее продолжительные промежутки времени.
Течение многих реакций вроде бы и не удается обнаружить.
…В стеклянном сосуде смешаны два газа — водород и кислород, составные части воды. Сосуд может стоять сколько угодно: месяц, год, сто лет. Однако на поверхности стекла не видно ни единой капельки влаги. Похоже, что водород вовсе не соединяется с кислородом. Да нет, соединяется. Только чрезвычайно медленно. Чтобы на донышке сосуда образовалось чуть заметное количество воды, должны пройти тысячелетия.
В чем дело? В температуре. При комнатной температуре (15–20 градусов) водород и кислород взаимодействуют, но чрезвычайно медленно. Однако стоит нагреть сосуд, как его стенки запотевают: верный признак протекающей реакции. При 550 градусах сосуд разлетится на мелкие осколки: при такой температуре водород и кислород реагируют со взрывом.
Почему же тепло так ускоряет течение этого химического процесса, заставляет черепаху двигаться со скоростью молнии?
Водород и кислород в свободном виде существуют в форме молекул Н2 и О2. Чтобы соединиться в молекулу воды, они должны столкнуться. Чем чаще такие столкновения, тем с большей вероятностью образуется молекула воды. При комнатных температуре и давлении каждая молекула водорода сталкивается с молекулой кислорода… более десяти миллиардов раз в секунду. Если бы любое столкновение приводило к химическому взаимодействию, реакция прошла бы быстрее взрыва: за одну десятимиллиардную долю секунды!
Но мы не заметим в нашем сосуде никаких изменений ни сегодня, ни завтра, ни через десять лет. В обычных условиях очень редкое столкновение приводит к химической реакции. И секрет в том, что сталкиваются молекулы водорода и кислорода.
Прежде чем вступить в реакцию, они должны распасться на атомы. Точнее говоря, валентные связи между атомами кислорода и атомами водорода в их молекулах должны ослабнуть. Ослабнуть настолько, чтобы не препятствовать объединению разнородных атомов водорода и кислорода. Температура и играет роль кнута, подстегивающего реакцию. Она во много раз увеличивает число столкновений. Она заставляет молекулы сильнее колебаться, и это ослабляет валентные связи. А когда водород и кислород встречаются на атомном уровне, то реагируют мгновенно.
Чудесный барьер
Вообразим себе такую картину.
Не успели мы смешать водород с кислородом, как моментально появились пары воды. Едва железная пластинка пришла в соприкосновение с воздухом, как тут же покрылась рыжеватыми разводами ржавчины, а минуло еще немного времени, и твердый блестящий металл превратился в рыхлый порошок окисла.
Все до единой химические реакции в мире стали протекать с завидной скоростью. Все молекулы начали реагировать друг с другом независимо от того, какой энергией они обладают. Каждое столкновение двух молекул приводило к вступлению их в химический союз.
На Земле исчезли металлы — они окислились. Сложные органические вещества, в том числе и те, что входят в состав живой клетки, превратились в простые, но более устойчивые соединения.
Странный мир получился бы тогда. Мир без жизни, мир без химии, фантастический мир очень устойчивых соединений, не имеющих никакого желания вступать в химические взаимодействия.
К счастью, такой кошмар нам не грозит. На пути всеобщей «химической катастрофы» стоит чудесный барьер.
Этот барьер представляет собой так называемую энергию активации. Чтобы молекулы смогли вступить в химическую реакцию, их энергии должны быть не меньше соответствующих величин энергии активации.
Даже при обычной температуре, например, среди молекул водорода и кислорода отыщутся такие, у которых энергия равна энергии активации или больше ее. Потому-то образование воды идет в этих условиях, хотя и чрезвычайно медленно. Просто слишком мало достаточно энергичных молекул. А высокая температура приводит к тому, что активационного барьера достигают многие молекулы, и число актов химического взаимодействия водорода и кислорода возрастает в огромной степени.
Змея, кусающая свой хвост
У медицины есть свой символ, дошедший до нас из очень отдаленных времен. И сейчас, скажем, на погонах военных врачей можно увидеть змею, обвившуюся вокруг чаши.
Оказывается, нечто подобное есть и у химии. Это змея, кусающая свой хвост.
У древних народов существовал культ всевозможных мистических знаков, смысл которых затрудняются объяснить современные историки.
Мистика мистикой, а в «химическую змею» вложено вполне определенное содержание. Она символизирует обратимую химическую реакцию.
Два атома водорода и атом кислорода, соединяясь, дают молекулу воды. Одновременно другая молекула воды распадается на составные части. В одно и то же мгновение протекают две противоположные реакции: образование воды (прямая реакция) и ее распад (обратная реакция). Химик, желая отобразить на бумаге эти два противоречивых процесса, напишет: 2H2 + O22H2O. Стрелочка с острием направо показывает ход прямой реакции, с острием налево — направление реакции обратной.
В принципе все до единой химические реакции обратимы.
Сначала преобладает прямая реакция. Чаша весов склоняется в сторону образования молекул воды. Потом нарастает реакция противоположная. И наконец, наступает момент, когда число образующихся молекул равно числу распадающихся. Слева ли направо, справа ли налево — реакции идут с одинаковой скоростью.
Химик скажет: наступило равновесие.
Рано или поздно оно устанавливается в любой химической реакции. Иногда мгновенно. Иногда через много дней. Раз на раз не приходится.
В своей практической деятельности химия преследует две цели. Во-первых, она стремится достичь того, чтобы химический процесс дошел до конца, чтобы все исходные продукты прореагировали между собой. Во-вторых, она ставит задачу добиться максимального выхода нужного продукта. Для осуществления этих целей необходимо как можно дольше оттянуть момент наступления химического равновесия. Прямая реакция — да, обратная — нет.
Тут-то химику и приходится стать немного математиком. Он определяет отношение двух величин: концентрации образовавшихся веществ к концентрации веществ, первоначально вступивших в реакцию.
Это отношение — дробь. Всякая дробь тем больше, чем больше ее числитель и чем меньше знаменатель.
Если преобладает прямая реакция, количество получившихся веществ со временем превысит количество исходных. Числитель станет больше знаменателя. Получится неправильная дробь. Если наоборот, налицо дробь правильная.
Химик называет величину этой дроби константой равновесия реакции К. Если он хочет, чтобы химическая реакция дала наибольшее количество нужного продукта, то предварительно должен рассчитать значение К при разных температурах.
А вот как эта «арифметика» выглядит на практике.
При комнатной температуре К для синтеза аммиака равна примерно 100 миллионам. Казалось бы, смесь азота и водорода в таких условиях моментально должна превратиться в аммиак. Однако не превращается. Очень уж мала скорость прямой реакции. Может, выйти из положения поможет повышение температуры?
Нагреваем нашу смесь до 500 градусов…
В этот момент химик схватит нас за руку:
— Что вы делаете! У вас ровным счетом ничего не получится!
Право же, он нас вовремя одернул, этот химик со своими расчетами. Они вот что показывают: при температуре в полтысячи градусов К составляет всего-навсего… шесть тысяч, 6 · 103! «Зеленая улица» обратной реакции 2NH3 → 3H2 + N2. А мы бы нагревали и нагревали смесь и диву давались, почему у нас ничего не получается.
Для синтеза аммиака наиболее выгодны возможно низкая температура и возможно высокое давление. Здесь помогает еще один закон, управляющий миром химических реакций.
Этот закон носит название принципа Ле-Шателье, в честь открывшего его французского ученого.
Представим себе пружину, вделанную в неподвижную опору. Если ее не сжимать и не растягивать, то можно сказать, что она находится в равновесии. Если сжимать ее или, наоборот, растягивать, пружина из состояния равновесия выходит. Одновременно начинают расти силы ее упругости: они-то и противодействуют сжатию или растяжению пружины. Наконец наступает момент, когда обе силы уравновешиваются. Пружина снова оказывается в равновесном состоянии. Но это будет уже иное, не начальное равновесие. Оно смещено в сторону сжатия или растяжения.
Изменение состояния равновесия у деформируемой пружины представляет собой аналогию (правда, грубую) действию принципа Ле-Шателье. Вот как его формулирует химия. Пусть внешняя сила действует на систему, находящуюся в равновесии. Тогда равновесие смещается в направлении, которое указывается внешним воздействием. Смещается до тех пор, пока силы противодействия не уравняются с внешними.
Вернемся к примеру с получением аммиака. По уравнению реакции его синтеза мы видим, что из четырех объемов газов (три объема водорода и один объем азота) получается два объема газообразного аммиака (2NH3). Увеличение внешнего давления всегда приводит к уменьшению объема. В данном случае оно выгодно. «Пружина сжимается». Реакция идет в основном слева направо: 3H2 + N2 → 2NH3, и выход аммиака увеличивается.
При синтезе аммиака выделяется тепло. Если мы будем нагревать смесь, то реакция пойдет справа налево. Потому что нагревание ведет к увеличению объема газов, а ведь объем исходных продуктов (3H2 и N2) больше объема получившегося продукта (2NH3). Следовательно, обратная реакция преобладает над прямой. «Пружина» растягивается.
В обоих случаях установится новое равновесие. Но в первом оно будет соответствовать увеличению выхода аммиака, а во втором — резкому уменьшению.
Как «черепаха» становится «молнией», и наоборот
Лет сто с лишком назад один химик осторожно ввел платиновую проволочку в сосуд, где находилась смесь водорода и кислорода.
Произошло необычное. Сосуд наполнился туманом — водяными парами. Температура осталась неизменной, давление таким, как было, а реакция взаимодействия водорода с кислородом, «рассчитанная» на тысячелетия, прошла за несколько секунд.
Удивительное на этом не кончилось. Платиновая проволочка, моментально соединившая два газа, совершенно не изменилась. Ее внешний вид, ее химический состав, ее вес после опыта были точно такие же, как и до опыта.
Ученый отнюдь не был иллюзионистом, из тех, что изобретают хитроумные фокусы, очаровывая любопытную публику. Он был серьезным исследователем — немецкий химик Дёберейнер. А явление, которое он наблюдал, называют теперь катализом. Вещества, способные превращать «черепах» в «молнии», именуются катализаторами. Катализаторов прямо-таки неисчислимое количество. Ими могут быть металлы, твердые и порошкообразные, окислы самых различных элементов, соли, основания. В чистом виде и в виде смесей.
Без катализатора процесс синтеза аммиака малоэффективен, как бы мы ни варьировали величины давлений и температур. Иное дело — в присутствии катализатора. Самое обычное металлическое железо с примесью окислов алюминия и калия значительно ускоряет эту реакцию.
Химия двадцатого столетия обязана своим неслыханным расцветом именно применению катализаторов. Да что там! Разнообразные жизненные процессы протекают в животных и растительных организмах благодаря специальным катализаторам — ферментам. Химия неживого и живого — вот сфера действия удивительных ускорителей!
А если вместо платиновой проволочки взять медную, алюминиевую, железную? Снова затуманятся стенки сосуда? Увы! Водород и кислород вовсе не желают взаимодействовать так, как они соединялись по мановению волшебной платиновой палочки…
Не всякое вещество может ускорять тот или иной процесс. Потому химики и говорят, что катализаторы обладают избирательностью действия: могут активно влиять на одну реакцию, совершенно не обращая внимания на другую. Конечно, есть и исключения из этого правила. Скажем, окись алюминия способна катализировать несколько десятков различных реакций синтеза как органических, так и неорганических соединений. Наконец, разные катализаторы могут заставить смесь одних и тех же веществ реагировать по-разному, давать различные продукты.
А вот пример веществ, не менее удивительных, — промоторы. Взятые сами по себе, они никак не влияют на ход реакции: не ускоряют и не замедляют ее. А добавленные к катализатору, ускоряют реакцию в гораздо большей степени, чем это сделал бы он один. Платиновая проволочка, «загрязненная» железом, алюминием или двуокисью кремния, произвела бы в смеси водорода и кислорода еще более впечатляющий эффект.
Есть, оказывается, и другой катализ. Катализ шиворот-навыворот. Есть антикатализ и антикатализаторы. Или ингибиторы, как их называют ученые. В переводе на русский язык это означает «замедлители». Их задача — замедлять быстро текущие химические реакции.
Цепные реакции
…В стеклянной колбе смешаны два газа — хлор и водород. При обычных условиях они взаимодействуют очень медленно. Но подожжем около колбы магниевую стружку.
Моментально происходит взрыв. (Если кто надумает проделать подобный опыт, то категорически обязательно упрятать колбу под колпак из толстой проволоки.)
Почему же смесь хлора и водорода взрывается под действием яркого света?
Здесь происходит цепная реакция. Если бы нагрели колбу градусов до семисот, она тоже бы взорвалась: хлор и водород соединились бы мгновенно. В долю секунды. Нас бы это не удивило. Ведь тепло во много раз повысило бы энергию активации молекул. Но в опыте, о котором мы только что рассказали, температура нисколько не менялась. Свет вызвал эту реакцию.
Кванты, мельчайшие порции света, несут большую энергию. Гораздо больше той, что требуется для активирования молекулы. Вот на пути светового кванта встречается молекула хлора. Квант разрывает ее на атомы и передает им свою энергию.
Атомы хлора оказываются в возбужденном, богатом энергией состоянии. Такие атомы, в свою очередь, обрушиваются на молекулы водорода, разрывают их на атомы. Один из них соединяется с атомом хлора. Другой остается на свободе. Но он возбужден. Он жаждет поделиться своей энергией. С кем? Да с молекулой хлора. Как только он с ней сталкивается, флегматичной молекуле хлора приходит конец.
И опять на свободе оказывается активный хлорный атом, и он недолго ищет, куда приложить свою силу.
Так и получается у нас длинная последовательная цепочка реакций.
Стоит реакции начаться, как все новые и новые молекулы будут активироваться благодаря энергии, которая выделяется в результате реакции. Скорость реакции нарастает подобно снежной лавине, несущейся с гор. Когда лавина достигнет подножья долины, она замирает. Цепная реакция затихает, когда все молекулы будут увлечены ею, все молекулы водорода и хлора прореагируют.
Химики знают множество цепных реакций. А изучил, как они протекают, наш выдающийся ученый Николай Николаевич Семенов. Известны цепные реакции и физикам. Например, деление ядер урана нейтронами — образчик физической цепной реакции.
Как химия подружилась с электричеством
Странное занятие на первый взгляд выбрал себе солидный человек, к которому все знакомые относились с большим уважением.
Сначала он изготовлял небольшие металлические диски. Много десятков дисков — медных и цинковых. Потом принялся вырезать кружочки из губки и пропитывал их соленой водой. Затем человек стал накладывать свои заготовки друг на друга так, как ребенок строит пирамиду. Правда, при этом соблюдалась определенная последовательность: медный диск — губчатый кружочек — диск из цинка. Одно и то же сочетание кружочков повторялось много раз. Словом, до тех пор, пока столбик не обрушивался.
Человек прикоснулся мокрыми пальцами к основанию своего оригинального сооружения — и тут же отдернул руку. Как говорится в просторечье, его основательно «дернуло» электрическим током.
Так в 1800 году знаменитый итальянский физик Алессандро Вольта изобрел гальванический элемент — химический источник тока. Электричество в «вольтовом столбе» возникало благодаря химическим реакциям.
Это было рождение новой науки — электрохимии.
В руках ученых появился прибор, который позволял в течение длительного времени получать электрический ток. До того момента, пока в «вольтовом столбе» не прекратятся химические процессы.
Заманчивым казалось выяснить, как действует электричество на самые различные вещества.
Англичане врач Карлейль и инженер Никольсон выбрали в качестве объекта изучения воду. К тому времени у химиков было достаточно оснований утверждать, что вода состоит из водорода и кислорода. Но окончательно подтвердить эту догадку на опыте как-то не удавалось.
Ученые использовали электрическую батарею, состоящую из 17 элементов Вольта. Она давала очень сильный ток. И вода бурно стала разлагаться на два газа — водород и кислород, начался ее электролиз. Именно так называют процесс разложения веществ электрическим током.
Враг номер один…
Сотни и тысячи доменных печей выплавляют сталь и чугун во всем мире. Экономисты в разных странах скрупулезно подсчитывают, сколько миллионов тонн металла приготовлено в этом году, делают прогнозы, сколько выплавят в следующем.
И те же экономисты сообщают нам потрясающий факт: каждая восьмая домна работает впустую. Ежегодно около 12 процентов добычи металла бесславно теряется для человечества, приносится в жертву беспощадному врагу…
Этот враг попросту именуется ржавлением. Наука называет его коррозией металлов.
Гибнут не только черные, гибнут и цветные металлы — медь, олово, цинк.
Коррозия — это окисление металлов. Ведь большинство из них не очень-то устойчивы в свободном состоянии. И даже на воздухе блестящая поверхность металлического предмета со временем покрывается зловещими разноцветными разводами окисей.
Окисляясь, металлы и сплавы утрачивают свои многие ценные качества. Ухудшается прочность и эластичность, снижается теплопроводность и электропроводность.
Раз начавшись, процесс коррозии не останавливается на полпути. Пусть не сразу, но «рыжий дьявол» до конца поедает металлическое изделие. Молекулы кислорода попадают на поверхность металла. Образуются первые молекулы окисла. Возникает, как говорят, окисная пленка. Она достаточно рыхлая, и через нее, как сквозь сито, «просеиваются» атомы металла, чтобы немедленно окислиться. И наоборот, через поры пленки лезут в глубь металла кислородные молекулы и продолжают свою разрушительную работу.
В более агрессивном химическом окружении процесс коррозии течет стремительнее. Хлор, фтор, сернистый газ, сероводород не менее опасные враги металлов. Когда металл корродирует под действием газов, химики называют это явление газовой коррозией.
А различные растворы? И они страшны для металла. Например, обыкновенная морская вода. Громадные океанские суда приходится время от времени отводить в доки на капитальный ремонт: менять изъеденную коррозией обшивку днища и бортов.
Впрочем, послушайте-ка историю о том, как однажды жестоко просчитался один американский миллионер.
Он пожелал иметь лучшую яхту в мире. Заказал проект, придумал волнующее название «Зов моря». Денег не жалел. Исполнители из кожи вон лезли, чтобы угодить заказчику. Оставалось немногое — отделать каюты.
Но яхта так и не вышла в море. Море ее не дозвалось. Корпус и днище яхты незадолго до торжественного дня оказались разрушенными коррозией.
Почему? Да потому, что коррозия — это процесс электрохимический.
Строители яхты хотели обшить ее днище так называемым монель-металлом — сплавом из никеля и меди. Их решение было правильным: ведь этот сплав, хотя и дорог, но зато очень устойчив к коррозии в морской воде. Устойчив, но механически не очень прочен. И многие детали судна пришлось делать из других металлов — специальных сталей.
Это и погубило яхту. В местах соприкосновения монель-металла и стали возник мощный гальванический элемент, и днище моментально начало разрушаться. Финал был печален.
Огорчение миллионера не поддавалось описанию, а строителям яхты пришлось навсегда запомнить один из законов коррозии: ее скорость резко увеличивается, если в основной металл добавляются другие, которые образуют с ним гальванический элемент.
…и как с ним бороться
Много веков стоит в Дели удивительная колонна. Потому удивительная, что сделана она из чистейшего железа. Время над ней не властно. Века проходят, а колонна все выглядит как новенькая, не ржавеет. Словно коррозия изменила здесь своим привычкам…
Как древнейшим металлургам удалось выплавить чистое железо — полнейшая загадка. Кое-кто из горячих умов утверждал, что не человеческих рук это дело. Дескать, пришельцы из иных миров воздвигли этот обелиск в память своего пребывания на Земле.
Но если лишить колонну загадочного ореола ее происхождения, остается чрезвычайно важный для химиков факт: чем чище металл, тем медленнее разрушается он коррозией. Хочешь успешно бороться с ней, применяй как можно более чистые металлы.
И не только одна чистота здесь существенна. Важно, чтобы поверхность металлической детали была обработана тщательно. Ведь отдельные «бугорки» или «впадины» могут, оказывается, играть роль посторонних включений. Ученым и инженерам удалось достичь почти идеальной гладкости поверхности. Изделия с такой поверхностью уже нашли применение в конструкциях ракет и космических кораблей.
Итак, проблема борьбы с коррозией решена? Отнюдь нет. Получить очень чистые металлы, и притом в огромных количествах, — дело трудоемкое, сложное, да и весьма дорогое. Опять же техника больше предпочитает иметь дело со сплавами: у них ведь гораздо богаче диапазон различных свойств. А сплав — это уже два металла как минимум.
Правда, химики достаточно хорошо изучили всевозможные механизмы коррозии. И, готовясь получить новый сплав с заранее заданными свойствами, внимательно обдумывают и «коррозионную» сторону вопроса. Теперь создано много сплавов, отличающихся большой устойчивостью к коррозии.
В быту повсюду встречаются оцинкованные и луженые изделия. Железо покрывают пленкой цинка или олова для предохранения от ржавления. До поры до времени помогает и такой способ. Или вспомните железные крыши домов, покрашенные плотным слоем масляной краски.
Ослабить, уменьшить коррозию — это значит еще и каким-то путем резко замедлить скорость электрохимических реакций, которые составляют суть коррозионного процесса. Для этого и применяют специальные неорганические и органические вещества — так называемые ингибиторы.
Сначала их искали ощупью. На них наталкивались случайно.
Оружейники еще в допетровской Руси применяли любопытный способ. Чтобы очистить ружейные стволы от окалины, они промывали (протравляли) их серной кислотой. А в кислоту предварительно насыпали пшеничные отруби. Благодаря этому примитивному методу удавалось предохранить металл от растворения в кислоте.
Теперь поиск новых ингибиторов не вдохновенное искусство, не ожидание счастливой случайности, а точная наука. Известны сотни самых разнообразных химических замедлителей коррозии.
О «здоровье» металлов следует заботиться ранее, чем они «заболеют» коррозией. Вот главная задача химиков — врачевателей металлов.
Светящаяся струя
Сколько известно состояний вещества? Современные физики насчитывают — ни много, ни мало — семь. Три из них весьма широко известны: газ, жидкость, твердое тело. Собственно, в обиходе ни с какими другими мы практически не встречаемся.
Да и химия довольствовалась ими в течение многих столетий. И лишь в последнее десятилетие она стала иметь дело с четвертым состоянием вещества. С плазмой.
Плазма, если хотите, тоже газ. Но газ необычный. В ее состав входят не только нейтральные частицы — атомы и молекулы, но также ионы и электроны. Ионизированные частицы присутствуют и в обыкновенном газе, и чем выше его температура, тем их больше. Поэтому четкой границы между ионизированным газом и плазмой нет. Однако условно считается, что газ превращается в плазму, когда начинает проявлять основные ее свойства, скажем высокую электропроводность.
Как ни парадоксально на первый взгляд, во вселенной плазма — хозяин положения. Вещество Солнца и звезд, газов космического пространства находится в состоянии плазмы. Это естественная плазма. На Земле же ее приходится готовить искусственно, в специальных устройствах, называемых плазмотронами. В них с помощью электрической дуги различные газы (гелий, водород, азот, аргон) превращаются в плазму. Поскольку светящаяся струя плазмы сжата узким каналом сопла плазмотрона и магнитным полем, то в ней развивается температура в несколько десятков тысяч градусов.
О таких температурах уже давно мечтали химики, ведь роль высоких температур для многих химических процессов трудно переоценить. Теперь эта мечта сбылась, и родилась новая отрасль химии — плазмохимия, или химия «холодной» плазмы.
Почему «холодной»? Да потому, что существует еще и «горячая» плазма, разогретая до миллионов градусов. Именно с ее помощью физики стремятся совершить термоядерный синтез — осуществить управляемую ядерную реакцию превращения водорода в гелий.
Химикам же вполне достаточно плазмы «холодной». Изучить, как протекают химические процессы при температуре в десять тысяч градусов, — что может быть заманчивее?
Скептики полагали: напрасен труд, ибо в столь накаленной атмосфере все до единого вещества ожидает одна участь — разрушение, диссоциация самых сложных молекул на отдельные атомы и ионы.
Истинная картина оказалась куда более сложной. Плазма не только разрушала, но и созидала. В ней охотно шли процессы синтеза новых химических соединений, и среди них таких, которые нельзя получить другими способами. Это были удивительные, не описанные ни в одной из химических книг вещества: Al2O, Ba2O3, SO, SiO, CaCl и прочие. Элементы проявляли в них непривычные, аномальные валентности. Все это было очень интересно, но плазмохимия ставила перед собой практически более важные задачи. Получать известные ценнейшие вещества дешево и быстро.
И вот несколько слов о ее достижениях.
Огромна роль ацетилена для многих процессов органического синтеза, скажем, для получения пластмасс, каучуков, красителей и лекарств. Но готовят ацетилен до сих пор по старинке: разлагают водой карбид кальция. Это и дорого и неудобно.
В плазмотроне дело обстоит по-иному. С помощью водорода создается плазма с температурой в 5000 градусов. Водородная плазменная струя несет свою громадную энергию в специальный реактор, куда подается метан. Метан интенсивно перемешивается с водородом, и в течение одной десятитысячной доли секунды более 75 процентов метана превращается в ацетилен.
Идеально? Бесспорно! Увы, всегда что-то мешает. Стоит оставить ацетилен на лишнее мгновение в высокотемпературной зоне плазмы, как он начнет разрушаться. Следовательно, необходимо стремительно понизить температуру до безопасной. Этого можно достичь различными методами, но здесь-то и заключается главная техническая трудность. Пока лишь 15 процентов образовавшегося ацетилена удается спасти от диссоциации. Но и это уже неплохо!
В лабораториях разработан способ плазмохимического разложения дешевых жидких углеводородов на ацетилен, этилен и пропилен.
На очереди стоит чрезвычайно важная проблема — фиксация атмосферного азота. Ведь химическое получение азотсодержащих соединений, например, аммиака, — дело трудоемкое, сложное и дорогое. Еще несколько десятилетий назад пытались в промышленном масштабе осуществить электросинтез окислов азота, но экономическая эффективность процесса оказалась весьма низкой. Плазмохимия в этом случае куда более перспективна.
Солнце в роли химика
Однажды Стивенсон, изобретатель паровоза, прогуливался со своим другом, геологом Бекландом, неподалеку от первой в Англии железной дороги. Вскоре они увидели поезд.
Скажи мне, Бекланд, — спросил Стивенсон, — что приводит в движение этот поезд?
— Рука машиниста, который управляет одним из твоих чудных локомотивов?
— Нет.
— Пар, который движет машину?
— Нет.
— Огонь, который разводят под котлом?
— Еще раз нет; им движет Солнце, светившее в ту отдаленную эпоху, когда жили растения, превратившиеся в уголь, который машинист подбрасывает в топку.
Все живое обязано своим происхождением Солнцу, а особенно растения. Попробуйте вырастить их в темноте: у вас получатся бледные тонкие нити вместо сочных зеленых стеблей. Именно под воздействием солнечного света хлорофилл (красящее вещество зеленого листа) превращает углекислый газ воздуха в сложные молекулы органических веществ, которые и составляют основную массу растения.
Значит, Солнце, вернее, его лучи, — главный «химик», который синтезирует в растениях все органические вещества? Казалось бы, именно так. Недаром процесс усвоения растениями углекислоты назван фотосинтезом.
Ведь известно, что под действием света происходят многие химические реакции. Даже специальная область химии есть, которая их исследует, ее называют фотохимией.
Но пока еще изучение фотохимических реакций не привело к созданию в лабораториях ни белков, ни углеводов. А ведь именно эти соединения являются первичными продуктами фотосинтеза растений.
Для синтеза очень сложных органических молекул растение на начальной стадии использует лишь углекислоту, воду и солнечный свет. Но, может быть, и еще что-то играет роль в этих процессах?
Представьте себе такую фабрику: по трубам в нее подаются сода, нефть, калийная селитра и так далее, а из ворот выезжают машины, груженные булками, колбасой, сахаром. Фантастика, конечно, но нечто подобное происходит в растениях.
Оказалось, что и у растений есть свои катализаторы. Они получили название ферментов. И каждый фермент заставляет реакцию идти только в определенном направлении. Получается, что при фотосинтезе работает не один «химик» — Солнце, но и его коллеги — ферменты (катализаторы). Солнце предоставляет энергию, необходимую для реакции, а ферменты направляют реакцию в нужную сторону.
И хотя мы еще не можем отобрать у природы, в частности у растений, их «патентов» на производство многих веществ, но заставить работать в нужном для нас направлении в ряде случаев уже умеем. В частности, здесь ученым помогло изучение процессов фотосинтеза. Совсем недавно было обнаружено, что при освещении светом различных длин волн растения в процессе фотосинтеза образуют вещества различной химической природы. Так, если их освещать красно-желтыми лучами, основными соединениями, получающимися в результате фотосинтеза, будут углеводы. Если синими — образуются белки.
Это позволяет надеяться, что в недалеком будущем люди смогут получать необходимые им сложные органические соединения с помощью растений в значительных масштабах. Ведь в самом деле, вместо того чтобы строить фабрики и заводы, оснащать их уникальным оборудованием, разрабатывать сложнейшую технологию синтеза, достаточно построить теплицы и регулировать интенсивность и спектральный состав световых лучей. А растения сами создадут все, что необходимо: от простейших углеводов до сложнейших белков.
Два варианта химических пут
В существовании атомов не сомневались многие ученые даже самой седой старины. Но как они, эти атомы, связаны друг с другом в веществе? На сей счет философская мысль либо хранила молчание, либо пускалась в плавание по морю фантазии.
Знаменитый французский естествоиспытатель Декарт, например, так представлял себе связь между атомами. У одних атомов существуют выступы наподобие крючков; другие — наделены петельками. Крючочек цепляется за петельку, два атома объединяются.
Пока люди не знали толком, как устроен атом, все их представления о связи атомов, о химической связи оставались беспочвенными. Отыскать истину ученым помог электрон. Однако не сразу. Открыли электрон в 1895 году, а попытки объяснить с его помощью химическую связь сделали лет эдак двадцать спустя. Когда разобрались, как именно электроны распределяются вокруг атомного ядра.
Не все атомные электроны в химической связи участвуют. Только те, что расположены во внешней или на крайний случай во внешней и предшествующей ей оболочках.
Допустим, встречаются два атома — натрия и фтора. У первого снаружи крутится один электрон, у второго — семь. Встречаются и моментально образуют прочнейшую молекулу фтористого натрия. А каким образом? Благодаря перераспределению электронов.
Натриевый атом легко расстается с наружным электроном. При этом он становится положительно заряженным ионом, и у него обнажается предыдущая электронная оболочка. Она содержит восемь электронов, и вырвать их из этого октета очень и очень непросто.
Атом фтора, напротив, с готовностью берет дополнительный электрон на внешнюю свою оболочку; тем самым она тоже становится восьмиэлектронной. И одновременно на сцене появляется отрицательно заряженный ион фтора.
Положительное притягивается к отрицательному. Электрические силы прочно стягивают противоположно заряженные ионы натрия и фтора. Между ними возникает химическая связь. Ее называют ионной. Это один из главных видов химической связи.
А вот второй.
Почему, скажем, существует такое соединение, как молекулы фтора F2? Ведь атомы фтора не могут сбрасывать электроны с внешней оболочки. Разнородно заряженных ионов здесь не получается.
Химическая связь между атомами фтора осуществляется с помощью пары электронов. Каждый из атомов выделяет по одному электрону в совместное пользование. И получается, что у первого атома на внешней оболочке появляется как бы восемь электронов и у второго тоже. Такую связь именуют ковалентной. Большая часть известных химических соединений получается с помощью химической связи первого или второго типа.
Химия и излучение
Пока химики не изобрели зеленого листа. Но свет уже применяется на практике для осуществления фотохимических реакций. Кстати, фотографические процессы — это пример деятельности фотохимии. Именно свет оказывается главным фотографом.
Не только световыми лучами ограничивается интерес химиков. Ведь есть еще рентгеновские и радиоактивные излучения. Они несут огромную энергию. Так, рентгеновы лучи в тысячи, а гамма-лучи в миллионы раз «интенсивней» световых.
Разве могли химики оставить их без внимания?
И вот в энциклопедиях и учебниках, специальных книгах и статьях, в популярных брошюрах и очерках появляется новый термин: «радиационная химия». Так называется наука, изучающая действия излучений на химические реакции.
Она молода, но и ей уже есть чем похвастать.
Например, нефтехимики широко применяют процесс крекинга нефти. Сложные органические соединения, содержащиеся в ней, при этом расщепляются на более простые. Образуются, в частности, углеводороды, входящие в состав бензина.
Крекинг — дело капризное. Его ведут при высокой температуре и в присутствии катализаторов. И в течение довольно продолжительного времени.
Это по-старому. А по-новому крекинг не нуждается ни в тепле, ни в химических ускорителях, не требует многих часов работы.
По-новому значит, с применением гамма-излучения. Оно проводит радиационный крекинг. Разрушает сложные органические молекулы. Излучение выступает как разрушитель.
Но не всегда.
Если поток электронов (бета-лучи) направить на легкие газообразные углеводороды — метан, этан или пропан, — происходит усложнение молекул, образуются более тяжелые жидкие углеводороды. Вместо радиационного разрушения — радиационный синтез.
Способность радиоизлучений «сшивать» молекулы используется в процессе полимеризации.
Всем известен полиэтилен. Но не все знают, что его приготовление — дело сложное. Оно не обходится без больших давлений, без специальных катализаторов и особой аппаратуры. А радиационная полимеризация ничего подобного не требует. И стоит радиационный полиэтилен вдвое дешевле.
Это лишь некоторые достижения радиационной химии. Они становятся все более внушительными день ото дня.
Но радиоактивное излучение для человека не только друг. И враг. Враг коварный и беспощадный, вызывающий лучевую болезнь.
Пока нет универсальных рецептов для борьбы с этим тяжелым недугом. Лучше всего не допускать возможности попасть под радиоактивное облучение.
Как? Свинцовые блоки, многометровая толща бетона, толстенные слои металла и камня поглощают потоки радиоактивных лучей. Надежно. Но очень дорого, громоздко и неудобно. Вообразите себе самочувствие человека, одетого в свинцовый скафандр…
Химики, где вы? Неужели не сумеете изыскать средств более простых, но таких, чтобы надежно предохраняли человека от облучения?
Первые опыты (пока только опыты) в этом направлении уже сделаны.
Рентгеновы лучи моментально засвечивают фотопластинки и пленки. Разрушают светочувствительные слои бромсеребряной эмульсии.
А вот что сделали года четыре назад итальянские химики. Они смочили поверхность фотопластинки раствором неорганических соединений — сернокислого титана и селенистой кислоты. И выяснилось, что пластинка потеряла чувствительность не только к видимому свету, но и к рентгеновскому излучению.
В чем дело? Быть может, произошло химическое взаимодействие между этими веществами и бромистым серебром? И образовались новые соединения, устойчивые к облучению?
Отнюдь! Никакого химического взаимодействия не было, и фотопластинка восстанавливала свою былую чувствительность, стоило лишь хорошенько промыть ее водой. Словом, что здесь происходит, еще неясно. Есть только намек на совершенно неожиданную возможность защиты от облучения.
И воображение уже рисует человека, одетого в самый обычный костюм, пропитанный специальным химическим составом. Составом, который останавливает потоки смертоносных излучений.
Самая длинная реакция
Сотни и тысячи сложнейших органических соединений создали химики в своих лабораториях за последние годы. Таких сложных, что даже простое изображение их структурных формул на бумаге представляется делом нелегким. Во всяком случае, требует немало времени.
Среди побед, которыми могут похвастаться химики-органики, величайшая — это, бесспорно, синтез молекулы белка. Притом белка первостепенной важности.
Речь идет о химическом синтезе инсулина — гормона, управляющего обменом углеводов в организме.
Даже специалистам-химикам еще неясны некоторые детали строения этой белковой молекулы. Инсулин — это поистине молекула-гигант, хотя число входящих в нее элементов очень ограниченно. Но они располагаются в ней в самых причудливых сочетаниях.
А потому для простоты примем, что молекула инсулина состоит из двух частей, двух цепочек — цепи А и цепи В. И связаны друг с другом эти цепи так называемой дисульфидной связью. Иначе говоря, между ними как бы перекинут мостик, состоящий из двух атомов серы.
План генерального наступления на инсулин был следующим. Отдельно синтезировать цепи А и В. Затем соединить их, да так, чтобы между ними обязательно протянулся дисульфидный мостик.
Теперь немного арифметики. Чтобы получить цепь А, химикам понадобилось провести около сотни различных последовательных реакций. Построение цепи В потребовало больше ста. И ушло на это много месяцев кропотливейшего, труда.
Но вот обе цепи, наконец, получены. Надо их связать. Именно здесь и встретились основные трудности. Не раз постигали исследователей жестокие разочарования. И все же в один прекрасный вечер в лабораторном дневнике появилась лаконичная запись: «Молекула инсулина полностью синтезирована».
Двести двадцать три последовательных этапа потребовалось ученым, чтобы искусственно получить инсулин. Вдумайтесь только в эту цифру: до сих пор еще ни одно из известных химических соединений не было приготовлено с таким трудом. Десять человек не покладая рук работали около трех лет…
Биохимики же сообщают весьма любопытную вещь: в живой клетке белок синтезируется всего за… 2–3 секунды.
Три года — и три секунды! Насколько все-таки синтетический аппарат живой клетки совершеннее современной химии!
Химический музей
Вопрос без ответа
Если собрать величайших химиков мира и попросить их ответить на один-единственный вопрос: сколько химических соединений могут образовать элементы периодической системы, то это высокоавторитетное собрание не даст даже приблизительного ответа.
Нам известно самое простое химическое соединение: молекула водорода; Проще и быть не может. Ведь водород — самый первый, самый легкий представитель таблицы Менделеева.
А самое сложное? Тут всякая определённость исчезает. Химии знакомы поистине гигантские молекулы, состоящие из десятков, сотен тысяч и даже миллионов атомов И никто не в состоянии сказать, существует ли вообще какой-нибудь лредел сложности.
Зато мы сравнительно точно можем подсчитать, сколько химических соединений известно. Но число, которое мы получим сегодня, завтра уже устареет. Ведь сейчас ежедневно в лабораториях земного шара синтезируется примерно десяток новых веществ. И с каждым годом эта дневная продукция возрастает.
Служба химической информации дает справку: всего выделено из природного сырья и получено искусственно около 2 миллионов химических соединений.
Количество весьма внушительное, но оказывается, что вклад обитателей Большого дома весьма различен.
Скажем, у благородных газов — гелия, неона и аргона — число соединений равно нулю. Для редкоземельного элемента прометия (его физики искусственно готовят в ядерных реакторах) достоверно получено лишь три соединения, да и то самые обычные: гидрат окиси, нитрат и хлорид. Не лучше положение и у других искусственных элементов. У некоторых ученым приходится подсчитывать число атомов… Где уж тут говорить о каких-либо соединениях!
Но есть в менделеевской таблице уникальный элемент. По количеству образуемых сложных веществ он занимает совершенно исключительное положение.
В Большом доме ему принадлежит квартира номер 6. Этот элемент — углерод.
Из двух миллионов разнообразнейших молекул 1 миллион 700 тысяч — молекулы, основу, каркас которых составляют атомы углерода. Изучает эти соединения громадный раздел химии — органическая химия. Соединения же всех прочих элементов входят в «сферу влияния» химии неорганической.
Получается, что органических веществ почти в шесть раз больше, чем неорганических.
Новое органическое вещество, как правило, синтезировать гораздо легче. Для неоргаников же было бы идеалом, если бы они каждый день могли рапортовать о получении хотя бы одного нового соединения. Правда, в последние годы перспективы стали более обнадеживающими.
Органикам помогает одна чудесная особенность атомов углерода.
Причина многообразия и ее следствия
Атомы этого элемента чрезвычайно легко могут образовывать цепи, выстраиваться в длинную шеренгу.
Самая короткая цепь содержит два углеродных атома, Например, молекула углеводорода этана насчитывает два звена в цепочке: Н3С—СН3. Самая длинная? Пока это не известно. Удалось получить соединение, где в цепи располагается 70 углеродных звеньев. (Нужно оговориться, что речь идет об обыкновенных соединениях, а не о полимерах. Там углеродные цепи имеют протяженность значительно большую.)
Ничего подобного мы не встретим у других элементов. Только кремний может позволить себе роскошь образовать шестизвенную цепочку. Да для германия ученые получили любопытное соединение — германоводород Ge3H8, где три металлических атома находятся в одной цепи. В семействе металлов это вообще единственный случай.
Словом, по способности к «цепеобразованию» углерод вне всякой конкуренции.
Но если бы углеродные цепочки были только линейные, органическая химия не знала бы столь баснословного количества соединений.
Цепи могут ветвиться. Могут замыкаться, образуя циклы — многоугольники. Из трех, четырех, пяти, шести и более атомов углерода.
В углеводороде бутане цепочка из четырех углеродных атомов:
Здесь атомы вытянуты «по струнке». Но они могут разместиться и так:
Число атомов то же самое, но связаны они друг с другом по-иному. И само вещество имеет другие свойства и называется иначе — изобутан. Короче: «Федот, да не тот».
Из пяти углеродных атомов, помимо линейной, можно сконструировать еще пять разветвленных цепей. Каждой «конструкции» будет отвечать самостоятельное химическое вещество.
Для таких разновидностей химических соединений, в которых содержатся одни и те же атомы, правда расположенные различными способами, химики придумали специальное название — изомеры. Их тем больше, чем больше атомов углерода в молекуле. Количество изомеров растет чуть ли не в геометрической прогрессии.
А органическая химия зачисляет в свой актив сотни тысяч новых соединений.
Химические кольца
Ходит немало легенд о том, как великие ученые делали свои великие открытия.
Рассказывали, что Ньютон предавался однажды раздумью в своем саду. К ногам его вдруг упало яблоко. Это навело гениального физика на мысль о законе всемирного тяготения.
Говорили, что Менделеев увидел периодическую систему во сне. Так что ему оставалось только проснуться и изобразить свое «сновидение» на бумаге.
Словом, об открытиях и их авторах измышлялось всякое.
Но идея, пришедшая в голову знаменитого немецкого химика Кекуле, была действительно навеяна довольно-таки любопытной картиной.
Ученые уже давно знали о бензоле — одном из важнейших органических соединений. Знали, что он состоит из шести атомов углерода и шести атомов водорода. Изучили многие его реакции.
И не ведали главного: как шестерка углеродных атомов располагается в пространстве.
Эта проблема не давала покоя Кекуле. А решил он ее так. Впрочем, дадим ему слово: «Я сидел и писал учебник, но работа не двигалась. Мысли мои витали где-то далеко. Атомы прыгали перед моими глазами. Мой умственный взор мог различить длинные ряды, извивающиеся подобно змеям. Но смотрите! Одна из змей схватила свой собственный хвост и в таком виде, как бы дразня, завертелась перед моими глазами. Как будто вспышка молнии разбудила меня…»
Случайный образ, возникший в сознании Кекуле, помог ему сделать вывод: углеродные цепи способны замыкаться, образовывать циклы.
Вслед за Кекуле химики стали изображать строение бензола следующим образом:
Бензольное кольцо сыграло в органической химии колоссальную роль.
Кольца могут содержать разные количества углеродных атомов. Кольца могут и сращиваться, образуя причудливые геометрические фигуры. В мире колец существует такое же разнообразие конструкций, как и среди незамкнутых цепей атомов углерода. Любая книга по органической химии чем-то напоминает учебник геометрии, ибо чуть ли не на каждой ее странице встретишь «геометрические фигуры» — структурные формулы сложных органических соединений.
Вот какие занятные «гармошки» могут образовывать бензольные кольца:
Левая «гармошка» — структурная формула нафталина. Правая — это антрацен, он содержится в каменном угле.
Третья возможность
Считалось, что элемент углерод един в трех лицах. Ученые это «триединство» именовали так: аллотропия. Иными словами, один и тот же элемент может существовать в трех аллотропных модификациях.
Три лица углерода — алмаз, графит и сажа. Они весьма не похожи друг на друга: «король твердости» алмаз, мягкие шелушащиеся чешуйки графита и матово-черный порошок сажи. Причина такого различия — неодинаковое расположение углеродных атомов в молекуле.
У алмаза они лежат в вершинах геометрической фигуры, именуемой тетраэдром. Атомы связаны здесь чрезвычайно прочно. Потому алмаз и отличается небывалой твердостью.
Атомы углерода в графите, напротив, имеют плоскостное расположение. Отдельные же плоскости связаны между собой довольно слабо. Благодаря этому графит мягок и легко расслаивается на чешуйки.
О строении сажи много спорили. Долгое время господствовало мнение, что сажа не является кристаллическим веществом. Ее рассматривали как аморфную разновидность углерода. И вот сравнительно недавно выяснилось: графит и сажа практически одно и то же. Их молекулярное устройство одинаково. Итак, остались алмаз и графит. Третьего не дано.
Ученые, однако, задались целью искусственно создать третью разновидность углерода. Задача формулировалась следующим образом.
В алмазе и графите цепочки атомов углерода замкнутые, хотя и по-разному расположены в пространстве. Но нельзя ли заставить углеродные атомы вытянуться в длинную линейную цепочку? Иными словами, нельзя ли получить полимерную молекулу, состоящую только из углеродов, расположенных на одной прямой?
Для изготовления любого химического продукта требуется исходное сырье. Для получения «углерода номер 3» выбор такого сырья однозначен.
Начальным продуктом может быть только ацетилен — соединение двух атомов углерода и двух атомов водорода, С2Н2.
Почему ацетилен? Да потому, что в его молекуле с атомами углерода связано наименьшее из возможных количество водородных атомов. А лишние водороды оказались бы помехой для синтеза.
У ацетилена есть еще одна особенность: он, как говорят химики, весьма реакционноспособен. Атомы углерода связаны в его молекуле тремя химическими связями (Н—СС—Н), причем две из них сравнительно легко разрываются и могут быть использованы на соединение с атомами других молекул, например, того же ацетилена.
Итак, первый шаг задуманного: из мономера — ацетилена приготовить полимер — полиацетилен.
Попытка эта не первая. Еще в прошлом веке немецкий химик Байер пытался провести такую реакцию. Но единственно, чего достиг, — получил учетверенную молекулу ацетилена — тетраацетилен. Однако она оказалась феноменально непрочной. Этим путем шли и другие химики разных стран. Увы, результаты их работ приносили лишь разочарование.
Только могущественные методы органического синтеза наших дней позволили, наконец, получить полиацетилен. Его родиной стал Советский Союз. Наши ученые создали новый класс органических соединений, так называемые полиины. Новорожденные вещества сразу нашли практическое применение, оказавшись превосходными полупроводниками.
Теперь предстоял второй шаг на пути к синтезу третьей разновидности углерода: изгнание из молекулы полиацетилена атомов водорода. Так, чтобы сохранилась цепочка из одних углеродов.
Процесс, с помощью которого хотели выгнать водородные атомы, на языке химиков носит длинное и нудное название — окислительная дегидрополиконденсация. Не будем вдаваться в объяснение сути процесса. В лабораторных дневниках его описание заняло десятки страниц, ибо освободить полиацетилен от водорода оказалось весьма непросто. Многие опыты кончались неудачей.
И все-таки советские ученые достигли блестящего успеха!
…Невзрачный, напоминающий сажу, черный порошок. Химический анализ показал: на 99 процентов он состоит из чистого углерода. На девяносто девять, но пока еще не на все сто.
Собственно, на пути к полной победе предстоит сделать еще один шаг. Нужно избавиться от этого пресловутого процента водорода. Именно он мешает углеродным атомам собраться в едином ровном строю, вытянуться в параллельные цепочки. Именно он последнее препятствие на пути к «углероду номер 3».
Синтезированную «почти третью» разновидность углерода химики назвали карбином. Он уже продемонстрировал свои удивительные способности. Прекрасный полупроводник, обладает фотоэлектрическими свойствами и потрясающе устойчив к нагреванию: полторы тысячи градусов для него ничто!
И мы уверены, недалеко время, когда «стопроцентный» карбин станет реальностью.
Кое-что о комплексных соединениях
Много великих химиков жило и творило в девятнадцатом столетии. Но трое из этого блестящего созвездия ученых — химики величайшие. Они сделали для своей науки больше чем кто бы то ни было. Они заложили основу современной химии.
Это Дмитрий Иванович Менделеев, открывший периодический закон и периодическую систему элементов.
Александр Михайлович Бутлеров, создавший теорию строения органических соединений.
Третий — немецкий химик Альфред Вернер. Его открытие умещается всего в два слова: «координационная теория». Оно — целая эпоха в развитии неорганической химии.
…Все началось с того, что химики стали изучать, как металлы взаимодействуют с аммиаком. Они брали обычную соль, например хлористую медь. Добавляли нашатырного спирта. Раствор выпаривали. Получали красивые сине-зеленые кристаллы. Анализировали их. Вещество имело простой состав, но эта простота оказывалась загадочной.
Формула хлористой меди — CuCl2. Здесь медь двухвалентна, все предельно ясно. Кристаллы «аммиачного» соединения тоже устроены не бог весть как сложно: Cu(NH3)2Cl2.
Но благодаря каким силам две молекулы аммиака прочно и надежно связываются с атомом меди? Ведь обе ее валентности израсходованы на связь с атомами хлора. Выходит, в этом соединении медь должна быть четырехвалентной?
А вот другой пример, аналогичное кобальтовое соединение Co(NH3)6Cl3. Кобальт, типичный трехвалентный элемент, здесь девятивалентен?!
Такие соединения синтезировались во множестве, и каждое из них представляло собой мину замедленного действия, заложенную в фундамент здания теории валентности.
Концы не сходились с концами. У многих металлов обнаруживались валентности совершенно необычные.
Альфред Вернер объяснил это странное явление.
Он полагал так: атомы, после того как насытили свои обычные, законные валентности, могут проявлять еще валентности дополнительные. Скажем, медь, затратив две основные валентности на атомы хлора, изыскивает две дополнительные для присоединения аммиака.
Соединения, подобные Cu(NH3)2Cl2, называют комплексными. Здесь комплексным является катион [Cu(NH3)2]2+. Во многих веществах сложное строение у аниона, например у K2[PtCl6] комплексный анион [PtCl6]2–.
Но сколько побочных валентностей может проявлять металл? Это количество определяется величиной координационного числа. Наименьшее его значение равно 2, наибольшее — 12. Так, в аммиачном соединении меди оно 2. Именно столько молекул аммиака присоединено к медному атому.
Загадка необычных валентностей была решена. Родился новый раздел неорганической химии — химия комплексных соединений.
Их ныне известно великое множество, более сотни тысяч. Их изучают во всех химических институтах и лабораториях мира. Ими интересуются не только химики-теоретики, которые хотят знать, как что устроено и почему так устроено.
Без комплексных соединений нет жизни. Ведь и гемоглобин, важная составная часть крови, и хлорофилл, основа жизнедеятельности растений, — комплексные соединения. Многие ферменты и энзимы устроены «по-комплексному».
Аналитики с помощью комплексных соединений проводят сложнейшие анализы самых различных веществ.
Химики получают многие металлы в очень чистом состоянии, беря в помощники комплексы. Их используют как ценные красители, ими умягчают воду. Словом, они вездесущи — комплексные соединения.
Сюрприз простого соединения
Освоить фотографию в наш век — дело более чем нехитрое. Оно, пожалуй, под силу и октябренку. Пусть он не будет знать всех тайн фотографического процесса. (Между нами говоря, кое-что неясно даже специалистам.) Но снимать и проявлять — тут требуется лишь небольшая практика да несколько добрых советов взрослых.
А поэтому мы не будем расписывать в подробностях, что нужно делать фотографу.
Он, например, хорошо знает, что иногда фотографии покрываются бурыми пятнами. Особенно когда они лежат на свету и долго хранятся. «Стало быть, — скажет фотограф, — в процессе проявления бумаги (или пластинки) изображение недозакрепилось».
По-научному это значит: пластинку или фотобумагу недостаточно держали в фиксирующем растворе.
Зачем нужен фиксаж? И на этот вопрос легко ответит всякий, кто хоть немного увлекался фото.
Чтобы удалить с поверхности пленки остатки бромистого серебра, которое не разложилось при действии света.
Фиксажей изобретено немало. Но самый дешевый, самый популярный из них — гипосульфит. Химики называют его тиосульфатом натрия.
Но сначала о сульфате. Он известен давным давно, и открыл его немецкий химик Иоганн Глаубер. Поэтому сульфат натрия именуют еще и глауберовой солью. Его формула Na2SO4 · 10H2O.
Химики любят изображать соединения в виде структурных формул. Безводный сульфат натрия они нарисуют так:
И даже новичок в химии, взглянув на формулу, легко увидит: сера здесь положительно шестивалентна, кислород — отрицательно двухвалентен.
Тиосульфат построен почти так же. За исключением одной детали — вместо атома кислорода стоит атом серы:
или так:
Просто? Конечно. Но до чего же все-таки любопытное соединение этот тиосульфат! Оно содержит два атома серы разной валентности. Один несет заряд 6+, другой 2–. Не так уж часто сталкиваются химики с подобным явлением.
Даже в самом обыденном нередко кроется необычное.
Чего не знал Гемфри Дэви
Список научных трудов знаменитого английского химика Гемфри Дэви чрезвычайно обширен.
Он был не только талантливым ученым, но и весьма удачливым исследователем. За какую бы проблему ни брался Дэви, он почти всегда успешно ее разрешал. Он получил немало новых химических соединений. Разработал несколько новых методов исследования. Дэви, наконец, открыл четыре элемента — калий и натрий, магний и барий.
Среди его работ есть небольшое исследование. В нем сообщается о приготовлении простого химического соединения — гидрата хлора. Здесь к молекуле хлора присоединялось шесть молекул воды: Cl2 · 6H2O.
Дэви тщательно изучил свойства этого вещества. Но так и не узнал, что получил соединение совершенно нового типа. Соединение, в котором отсутствует химическая связь.
В этом убедились химики двадцатого столетия. Они пытались объяснить существование гидрата хлора с помощью современных представлений о валентности. И безуспешно: вещество оказалось крепким орешком.
И далеко не единственным.
Десятилетиями химики искали ответа на вопрос: так ли уж безнадежно инертны инертные газы или все-таки их можно заставить вступить в химическое взаимодействие? Мы с вами уже знаем, чем все кончилось. Но пока дело решалось, ученым удалось приготовить несколько гидратов аргона, криптона, ксенона и радона.
И в них обычная химическая связь отсутствовала. Между тем многие из них сравнительно прочные вещества.
Новую загадку загадало химикам простое органическое соединение, называемое мочевиной. Она охотно объединялась со многими углеводородами и спиртами. Эта странная «дружба» вызывала удивление: какие силы влекут друг к другу молекулу мочевины и спирта? Какие угодно, только не химические…
Как бы там ни было, новый класс соединений — веществ без химической связи — разрастался с пугающей быстротой.
Но оказалось, что в этом нет ничего сверхъестественного.
Две молекулы, вступающие в союз, неравноправны. Одна вступает как хозяин, другая же «приходит в гости».
Молекулы-хозяева образуют кристаллическую решетку. В решетке всегда есть пустоты, полости, не занятые атомами. В такие пустоты и входят молекулы-гости. Однако гостеприимство в данном случае довольно оригинальное. Пришельцы надолго засиживаются в гостях у хозяев, поскольку просто так не могут покинуть полости кристаллической решетки.
Так, молекулы газов хлора, аргона, криптона и других попадают, как в западню, в пустоты кристаллической структуры воды.
Химики называют теперь эти и ряд других веществ без химической связи между разными молекулами клатратнымй (или клеточными) соединениями включения.
26, 28, или нечто совсем удивительное
Называются эти вещества катенанами. От латинского слова «катена», что означает цепь.
Ну что ж: цепь так цепь. Кого этим удивишь? В словаре химика-органика понятие «цепь» употребляется едва ли не чаще прочих терминов.
Однако цепь цепи рознь. Мы с вами уже имели возможность убедиться, что всякие бывают цепочки — и линейные и разветвленные, подчас весьма хитроумные комбинации цепочек.
Но вдумайтесь: цепь в органических соединениях — понятие образное, но не очень-то строгое. Ведь в обиходе под цепью понимают нечто иное. Ее звенья не скреплены жесткой механической связью, а свободно входят одно в другое.
В сложных органических соединениях циклы как бы «припаяны» друг к другу. Например, три бензольных кольца в антрацене. Вроде бы цепочка из циклов. Цепочка, да не совсем…
Вот химики и стали ломать голову: а нельзя ли соединить отдельные циклы, как два звена сочленяются в обычной цепи? Скажем, так:
Словом, чтобы две циклические молекулы соединялись без участия химической связи, так сказать, чисто механически.
Эта заманчивая идея много лет вызревала в умах ученых. На их стороне была теория. Она не ставила непреодолимых препятствий для задуманного синтеза. Она даже высчитала, из скольких углеродных атомов должны состоять циклы, чтобы они могли сплестись подобающим образом.
У практики же дела долго обстояли не блестяще: на какой-то из стадий процесс синтеза заходил в тупик. И химикам приходилось пускаться на новые ухищрения.
Новое соединение родилось в прекрасный апрельский день 1964 года. Его сотворили два немецких химика, Люттрингхауз и Шилл. Для этого потребовалось двадцать последовательных химических операций, двадцать стадий.
Соединение состоит из двух циклических молекул, связанных друг с другом, подобно звеньям цепи. Одно звено содержит 26, другое — 28 углеродных атомов. Отсюда и столь прозаическое название вещества: катенан 26, 28.
Два сцепленных кольца — это уже вчерашний день катенановой химии. Ученые теперь работают над получением еще более причудливых образований из колец, например такого:
или такого:
Здесь мы видим модели трехзвенных катенанов. У верхнего среднее звено должно содержать 26 атомов углерода, а крайние — по 20. Для сложного переплетения трех колец (нижний катенан) они должны состоять как минимум из 30 атомов каждое.
Внешний вид старшего в новом семействе — катенана 26, 28 до удивления обычен: белый кристаллический порошок, плавящийся при 125 градусах.
Известны ли катенаны в природе? В ней все целесообразно, она не растрачивает свои способности попусту. Если природные катенаны существуют, они должны выполнять какую-то функцию.
Это-то и предстоит выяснить ученым.
Похвальное слово жидкости Кадэ
В 1760 году малоизвестный французский химик Кадэ, сам того не подозревая, вошел в историю.
В своей лаборатории он провел (нам неведомо — зачем) вот какой химический опыт.
Кадэ нагрел уксуснокислую соль калия с окисью мышьяка. Что при этом получилось, он так никогда и не узнал. Причиной тому было образовавшееся вещество, которое имело поистине дьявольский характер.
Это была черная густая жидкость. Она дымилась на воздухе. Легко воспламенялась. И в довершение всего обладала совершенно непереносимым запахом.
Жидкость Кадэ изучили лет семьдесят спустя. И обнаружили, что ее главные составные части — мышьяковистые соединения. Соединения в высшей степени своеобразные.
Чтобы это своеобразие оценить, вспомним, что все органические соединения отличаются одной главнейшей особенностью: в их основе лежат цепи из атомов углерода — прямые, разветвленные или замкнутые. Правда, в эти цепи могут вклиниваться атомы некоторых других элементов. Но таких элементов (органогенов) очень немного: кислород, азот, водород, сера, ну еще фосфор.
Мышьяк к ним уж никак не принадлежит.
В состав жидкости Кадэ входило вещество, названное дикакодилом (от греческого слова «какадос» — зловонный). Оно было построено так, что атомы мышьяка прочно затесались между атомами углерода:
Органические соединения, в которых углеродные цепи включают в себя атомы элементов — неорганогенов (металлов и неметаллов), именуют ныне элементоорганическими соединениями (в случае металлов — металлоорганическими).
Стало быть, Кадэ синтезировал первое в мире элементоорганическое соединение.
Теперь подобных веществ известно более 15 тысяч. Элементоорганика, металлоорганика стала большой самостоятельной областью химии. Одной из важнейших ее глав.
Она перекинула мостик между химией органической и химией неорганической. И лишний раз подчеркнула, сколь условно подразделение наук в наше время.
В самом деле, какая же это органика, если ей приходится изучать соединения, где важнейшую роль играют металлы — типичные представители неживой природы?
И напротив, какая же это неорганика, если многие подвластные ей вещества все же во многих своих проявлениях чистейшей воды органические производные?
Особый интерес для науки представляют металлоорганические соединения. Обязательное условие их существования — связь между атомом металла и атомом углерода.
Почти все металлы главных подгрупп Большого дома могут входить в состав металлоорганических соединений.
Свойства этих веществ чрезвычайно разнообразны.
Одни со страшной силой взрываются даже при температурах много ниже нуля. Другие, напротив, обладают завидной термической устойчивостью.
Одни чрезвычайно активны химически, тогда как другие не очень-то подвержены всевозможным внешним воздействиям.
И все до единого ядовиты. Кроме металлоорганических соединений германия. Их безобидность остается пока загадкой.
Диапазон применения элементоорганических соединений чрезвычайно широк и практически неисчерпаем. Где только они не «работают»! С их помощью получают пластмассы и каучуки, изготовляют полупроводники и сверхчистые металлы. Они выступают в роли лекарственных препаратов и средств для борьбы с вредителями растений, они входят в состав ракетных и моторных топлив. Они являются, наконец, ценнейшими химическими реактивами и катализаторами, позволяя проводить многие важные процессы.
В нашей стране сложилась крупнейшая школа химиков-элементооргаников. Ею руководит академик Александр Николаевич Несмеянов. Недавно за свои работы он был удостоен Ленинской премии.
Повесть о ТЭСе
ТЭС — это сокращение. Так называют соединение, для практической деятельности человека полезное чрезвычайно. Оно помогает экономить бензин. Правда, никто еще не подсчитал, сколько именно литров сэкономил ТЭС за всю свою историю. Но, без сомнения, подсчет дал бы весьма внушительное число.
Так что ж в конце концов такое это загадочное ТЭС? Химик скажет: металлоорганическое соединение углеводорода этана с металлическим свинцом. Отнимите у каждой из четырех молекул этана (C2H6) по атому водорода и присоедините углеводородные остатки (этилы — С2Н5) к одному-единственному атому свинца. Вот тогда вы и получите вещество с довольно простой формулой Pb(C2H5)4. Его называют тетраэтилсвинец, а сокращенно ТЭС.
ТЭС — это тяжелая жидкость чуть зеленоватого цвета, с еле уловимым запахом свежих фруктов, но отнюдь не безвредная. Она относится к числу сильных ядов. Сам по себе ТЭС особого интереса не представляет. Вещество как вещество, химику известны куда более любопытные соединения. Но стоит в бак с автомобильным бензином добавить всего полпроцента ТЭСа, как начинаются чудеса.
Сердце автомобиля или самолета — двигатель внутреннего сгорания. Принцип его работы прост. В цилиндре сжимается смесь бензина с воздухом. Затем она воспламеняется с помощью электрической искры. Происходит взрыв, выделяется энергия, а за счет ее и работает двигатель.
Многое зависит от степени сжатия смеси. Чем оно сильнее, тем выше мощность мотора. И тем экономнее расходуется топливо. Это — в идеале. А в действительности смесь не может сжаться достаточно сильно. Отсюда возникают «заболевания» двигателя: неполное, неравномерное сгорание топлива приводит к перегреву двигателя, к быстрому изнашиванию его деталей. Да и расход бензина неоправданно возрастает.
Инженеры вносили в конструкцию двигателей всевозможные улучшения, химики старались изготовить более чистые сорта бензина. «Заболевание» в какой-то мере поддавалось излечению, но не до конца. Моторы продолжали «стучать» и перегреваться; неравномерные взрывы смеси (детонация) укорачивали сроки их службы.
В результате долгих размышлений ученые пришли к выводу: детонацию можно подавить, заставить смесь сгорать равномерно, но сделать это удастся, лишь изменив каким-то путем свойства самого топлива.
Каким?
Ответ на этот вопрос упорно искал американский инженер Томас Миджли. Сначала он предложил совершенно неожиданный выход из положения: бензин надо… окрасить в красный цвет. Тогда топливо приобретет способность поглощать больше тепла, станет более летучим. И смесь бензина с воздухом удастся сжать сильнее.
Миджли «окрасил» бензин, добавив к нему немного йода. И, о радость, бензин действительно стал детонировать меньше. Но стоило исследователю вместо йода употребить обычную краску, как двигатель снова оказался во власти прежних бед.
Стало быть, цвет здесь ни при чем. Однако огорчение Миджли оказалось кратковременным. Его осенила блестящая мысль: вероятно, существуют вещества, ничтожные добавки которых существенно повышают качество бензина.
Йод делал это лишь в слабой степени. Нужно было искать другие вещества, простые и сложные. Ученые испробовали десятки и сотни соединений. Практики и теоретики работали бок о бок. Теоретики, наконец, пришли к очень важному заключению. Вещества-антидетонаторы следует искать среди соединений элементов с большим атомным весом. Например, стоит испытать соединения свинца.
Но как ввести свинец в бензин? Ни сам металл, ни его соли в бензине нерастворимы. Существует один-единственный способ: взять какое-нибудь органическое соединение свинца.
Тогда-то и было произнесено впервые слово «тетраэтилсвинец», ТЭС. Это случилось в 1921 году.
Добавки (и притом ничтожные) ТЭСа к бензину действительно оказались чудесными. Качество горючего резко улучшилось. Смесь бензина с воздухом удалось сжать в два раза сильнее. А это означало, что при той же скорости машины расход бензина сократился вдвое. «Сердца» автомобилей и самолетов стали работать без перебоев.
А вот любопытная экономическая справка: мировое производство ТЭСа ныне столь велико, что создается угроза довольно быстрого исчерпания естественных ресурсов свинца.
У ТЭСа есть одно неприятное качество — высокая токсичность. Вы, вероятно, видели на баках многих грузовых автомобилей предостерегающую надпись: «Этилированный бензин — яд!» С бензином, содержащим ТЭС, нужно обращаться очень осторожно.
ТЭС — пионер среди антидетонаторов топлива. Он остался важнейшим среди них и в настоящее время. Но ученые серьезно подумывают о его замене другим веществом, столь же эффективным, но совершенно безвредным.
Одно из них уже найдено. Его именуют ЦТМ. Если хотите узнать, что это такое, прочтите следующий рассказ.
Необычные бутерброды
Металлоорганических соединений в наши дни известно очень много: одним десятком тысяч здесь уже не ограничишься. Но лет пятнадцать назад в металлоорганике существовал досадный провал. Химикам никак не удавалось включить в органические молекулы так называемые переходные металлы. Металлы, которые в периодической системе Менделеева располагаются в побочных подгруппах. А таких металлов без малого пять десятков. Если и доводилось химикам получать их органические соединения, то они оказывались чрезвычайно непрочными, эдакой «металлоорганической экзотикой».
В 1951 году вмешался в дело (как это не раз бывало в истории науки) Его Величество Случай. Английский химик Паусон дал задание своему студенту Кили. Нельзя сказать, чтобы задание было таким уж сложным. Кили надлежало синтезировать углеводород с довольно длинным названием: дициклопентадиенил. Для этого требовалось спарить два пятичленных углеродных цикла. Иными словами, из двух соединений с формулой С5Н5 получить одно: С10Н8 (предполагалось, что 2 атома водорода должны отщепиться).
Кили знал, что такая реакция пойдет только в присутствии катализатора, и выбрал хлористое железо.
В одно прекрасное утро Паусон и Кили от удивления развели руками. Продуктом реакции оказалась не бесцветная жидкость, а красивые оранжевые кристаллы, притом весьма стойкие. Они выдерживали нагревание почти до 500 градусов — дело в органике далеко не столь уж частое.
Но удивление учителя и ученика возросло еще боле, когда таинственные кристаллы подвергли химическому анализу. Действительно, было чему поражаться: кристаллы содержали углерод, водород и… железо. Типичный переходный металл железо «запросто» объединился с типичными органическими веществами.
И формула этого железоорганического соединения оказалась необычной:
Оба кольца (циклопентадиены) — правильные плоские пятиугольники. Они словно два ломтя хлеба, между которыми вложена «закуска» — атом железа. Такого рода соединения называют «Сандвичевыми» (так как их строение напоминает английский сандвич).
Ферроцен (это имя дали нашему железоорганическому соединению) стал первым представителем семейства «сандвичевых».
Строение ферроцена мы для простоты изобразили сугубо схематично в одной плоскости; в действительности же его молекула имеет более сложную пространственную структуру.
Синтез ферроцена оказался одной из крупнейших сенсаций в современной химии. И теоретикам и практикам пришлось пересмотреть многие считавшиеся незыблемыми представления о возможностях металлоорганики.
Ферроцен родился в 1951 году. Ныне же таких «ценов» несколько десятков. «Сандвичевые» соединения получены почти для всех переходных металлов.
Пока они представляют интерес для химиков-теоретиков. Что до практического использования, здесь еще много неясного. Однако…
Тут-то и наступает очередь познакомиться с ЦТМ.
Полное название этого вещества очень длинное, но легко запоминается, потому что звучит наподобие детской считалки:
Циклопентодиенил —
Марганецтрикарбонил.
И строение его молекулы нетрудно изобразить:
Просто вместо другого «куска хлеба» (циклопентадиенильного кольца) «закуска» (атом марганца) связана с тремя молекулами окиси углерода.
ЦТМ — прекрасный антидетонатор. Лучше нашего старого знакомца ТЭСа. И по своим рабочим характеристикам и потому еще, что почти безвреден. Он проходит всестороннюю практическую проверку. Уже мчатся грузовики с буквами ЦТМ на бензобаках.
Полная замена ТЭСа на ЦТМ, как подсчитали экономисты, может дать годовую экономию в 3 миллиарда рублей. Но это не самый главный выигрыш — здоровее и чище станет воздух наших городов.
Странные причуды угарного газа
Соединение совсем нехитрое. Всего один атом углерода и один кислорода. В быту называется угарным газом, в науке — окисью углерода. Весьма ядовито, в химические реакции вступает неохотно — вот краткая характеристика вещества с примитивной формулой CO.
…Так было или не совсем так, но в 1916 году на одном немецком химическом заводе произошло событие малоинтересное. Понадобился кому-то старый-престарый стальной баллон (в нем лет пять кряду под давлением хранили смесь двух газов — водорода и окиси углерода). Его вскрыли, газы выпустили, а на дне баллона обнаружили немного жидкости светло-коричневого цвета, с неприятным, каким-то «пыльным» запахом.
Оказалось, что жидкость эта — известное, но очень редкое химическое соединение атома железа с пятью молекулами угарного газа. Пентакарбонил железа Fe(CO)5 — так именовалось оно в химических справочниках.
(Кстати, о судьбах научных открытий. Пентакарбонил железа в один и тот же день — 15 июня 1891 года — получили двое ученых: Бертло во Франции и Монд в Англии. Право, такие совпадения встречаются не столь уж часто.)
Разобрались, как возникло вещество в баллоне. Здесь не было ничего сверхъестественного. Водород сделал внутреннюю железную поверхность вместилища чрезвычайно активной, восстановив окислы железа до металла. Угарный газ, находясь под давлением, прореагировал с железом. Изучив механизм реакции, химики на этом же заводе сконструировали аппарат, в котором можно было получать килограммы вещества.
Дело в том, что пентакарбонил оказался нужным для практики. Он неплохо зарекомендовал себя в качестве антидетонатора (прямо скажем, везет нам на них!). Было даже создано специальное горючее с добавкой пентакарбонила железа — так называемый моталин. Но недолго проездили автомобили на моталине. Пентакарбонил слишком легко разлагался на составные части, и железный порошок забивал поршневые кольца двигателей. А тут еще подоспело открытие ТЭСа…
Отметим про себя легкость разложения пентакарбонила железа и обратимся на время к проблемам несколько иного плана.
Карбонилов теперь известно множество: для хрома и молибдена, вольфрама и урана, кобальта и никеля, марганца и рения. По свойствам эти соединения различаются: одни — жидкости, другие — твердые тела; одни — неустойчивы, другие, напротив, достаточно прочны.
Но есть у них одно общее и весьма любопытное качество: обычные представления о валентности неприменимы для объяснения строения карбонилов.
Вспомните: в комплексных соединениях к ионам металлов присоединяются нейтральные молекулы, притом в различном количестве. Поэтому в химии комплексных соединений пользуются понятием не валентности, а координационного числа. Оно показывает, сколько молекул, атомов или сложных ионов связано с центральным атомом.
Карбонилы еще более своеобразные плоды выдумки природы. В них с нейтральными молекулами связаны нейтральные атомы. Валентность металлов в этих соединениях приходится считать равной нулю! Ведь окись углерода — нейтральная молекула.
Вот еще один из парадоксов химии, и, признаться, он до сих пор не имеет строгого теоретического объяснения.
На этом мы закончим маленький теоретический экскурс.
Карбонилы металлов оказались лакомым кусочком для практики.
Например, в роли катализаторов.
Но это амплуа карбонилов не самое главное. Есть кое-что и поважнее.
Вернемся еще раз на тот самый завод, на складе которого был найден старый баллон, на дне которого обнаружилась непонятная жидкость, которая оказалась пентакарбонилом железа, который…
«Который», словом, начали получать чуть ли не в промышленном масштабе. Но вот однажды рабочий, приставленный к аппарату синтеза, замечтался, и началась утечка пентакарбонила. Пары вещества оседали на стальной лист, лежавший неподалеку. Рабочий, наконец, обнаружил аварию и быстро ее ликвидировал, нечаянно столкнув лист в пролет здания.
Охотничья байка гласит: «Раз в год и палка стреляет». Стальной лист, мирно лежавший на солнце, упав вниз, взорвался.
Специальная «комиссия по расследованию» провела не одно заседание, прежде чем эксперты констатировали: лист «взорвался» потому, что был покрыт чрезвычайно мелким порошком железа. Всякие измельченные порошки вообще склонны к взрыву — взрывает, например, мучная пыль, сахарная пудра.
Железный порошок на листе образовался в результате разложения пентакарбонила.
Приготовление мельчайших металлических порошков путем разложения карбонилов металлов чрезвычайно заинтересовало ученых.
Они выяснили, что такие порошки отличаются весьма своеобразными свойствами. Размеры их частиц исключительно малы, чуть более микрона. Например, порошок железа можно получить в виде пышной железной «ваты», состоящей из прочных металлических цепочек.
Укладываясь на горячей поверхности, карбонилы образуют на ней весьма прочную и тонкую пленку. И при всем этом порошки и пленки обладают ценнейшими магнитными и электрическими свойствами, что открыло им широкую дорогу в радиотехнику и электронику.
Карбонильные порошки привлекательны и для порошковой металлургии.
Красное и зеленое
Они оба — сложнейшие органические вещества. Чтобы изобразить их структурные формулы, понадобилась бы целая страница в нашей книжке. Оба они комплексные соединения, притом необычные: единственный атом металла славно затерялся в центре сложного ажурного каркаса, состоящего из нескольких циклов. Химики называют такие соединения внутрикомплексными.
Они — это гемоглобин и хлорофилл. Красный цвет крови, зеленая окраска растений — их рук дело. Эти два вещества держат ключи ко всему живому на Земле.
«Стержень» гемоглобина — атом железа. Кровь разных животных содержит различные гемоглобины, но устроены в основе своей они одинаково. В крови человека около 750 граммов гемоглобина.
Гемоглобин переносит кислород от органов дыхания к тканям организма.
Хлорофилл устроен почти так же. Но атом металла в нем иной, это атом магния. Жизненная функция хлорофилла очень ответственна и сложна. С его помощью растения ассимилируют углекислый газ из воздуха.
Химики лишь начинают познавать сущность механизма работы гемоглобина и хлорофилла. Видимо, очень существенную роль играют центральные атомы металлов — железа и магния.
Но оказывается, у природы чрезвычайно богатая фантазия. Железо и магний — вовсе не единственные металлы, которые могут забираться внутрь порфинового скелета (так называется органический каркас, общий для гемоглобина и хлорофилла). В амплуа металлического «стержня» могут выступать медь, марганец и ванадий.
Обитают на Земле существа с… голубой кровью. Это некоторые виды моллюсков. В гемоглобине их крови железо отсутствует; его место занимает медь.
Вот какие удивительные экспонаты обнаруживаются в нашем химическом музее!
Все в одном
В начале 30-х годов нашего века геохимики высказали очень интересную гипотезу. В любом природном образце, утверждали они, будь то осколок камня, деревянный брусок, щепоть земли, капля воды — словом, всюду можно отыскать атомы всех до единого химических элементов, известных на Земле.
Такое предположение поначалу показалось фантастическим. Но взор аналитической химии с каждым годом становился все острее. Методы анализа позволяли обнаруживать миллионные и миллиардные доли грамма веществ. И выяснилось, что если идея геохимиков верна и не на все сто процентов, то, во всяком случае, не так уж далека от истины.
Действительно, интересно: в камне, поднятом на берегу реки, мы находим кремний и алюминий, калий и цинк, серебро и уран — чуть ли не всю периодическую систему Менделеева. Конечно, большинство элементов будет содержаться в количестве считанных атомов — любопытен сам факт.
Наивно было бы думать, что в найденном камне все элементы входят в состав какого-то одного соединения. Отнюдь нет! Мы имеем дело со сложной смесью сложных химических веществ. Главную роль в них играют кремний, алюминий и кислород. Остальных же элементов меньше, а многие вообще составляют ничтожную примесь.
Так в природе. А в химической лаборатории? Могут ли ученые приготовить соединение, в молекулу которого входили бы все элементы менделеевской таблицы?
Химикам приходилось получать очень сложные вещества, состоящие более чем из десятка элементов. Но немногим более. И никто пока еще не ставил себе задачу создать такую молекулярную постройку, где химическими узами связались бы все обитатели Большого дома. Не только потому, что руки не дошли, да и для практики это малоинтересно. Соорудить такую молекулу-монстра чрезвычайно трудно.
Трудно, но, по-видимому, возможно.
Редкое химическое соединение удается получить в один прием, провести реакцию в одну стадию. Если бы мы задались целью построить молекулу, объемлющую все химические элементы, потребовались бы многие десятки, а то и сотни стадий. Столь сложное «здание» можно воздвигнуть только по частям.
Мы не беремся изобразить на бумаге формулу даже простейшего варианта гипотетического «всеэлементного» соединения. Просто потому, что никто еще не продумал путей его создания.
Когда нет проекта, нет чертежей сооружения, его невозможно представить себе отчетливо. Можно только фантазировать.
Самый необычный атом, самая необычная химия
Вот символ этого удивительного атома — Ps. Но не пытайтесь отыскать его в менделеевской таблице. Потому что это вовсе не атом какого-либо химического элемента.
И живет он ничтожное мгновение — меньше одной десятимиллионной доли секунды. Однако про него нельзя сказать, что он радиоактивен.
Ps расшифровывается как позитроний. Его устройство чрезвычайно просто.
Возьмите атом водорода, наипростейший атом химического элемента. Один электрон вращается вокруг одного-единственного протона.
Атом позитрония возникает при определенных видах радиоактивных превращений, которые сопровождаются испусканием позитрона. На какое-то, очень короткое, время позитрон с электроном образуют устойчивую систему.
В позитронии роль протона исполняет элементарная частица позитрон. Это антипод электрона. У позитрона такие же размеры, та же масса, и отличается он лишь тем, что имеет противоположный (положительный) заряд.
Если позитрон и электрон сталкиваются, то им обоим приходит конец. Они, как говорят физики, аннигилируют. Иными словами: превращаются в ничто. А если быть более точными — в излучение.
Но перед тем как исчезнуть, два непримиримых врага короткое мгновение существуют рядом друг с другом. Тогда и рождается атом-призрак позитроний. Атом без ядра, так как электрон и позитрон вращаются вокруг общего центра тяжести.
Кому интересен позитроний? Ну, казалось бы, только физикам-теоретикам; может, еще писателям-фантастам, которые ищут новые типы горючего для своих звездолетов.
Но вот недавно в США вышла в свет толстенная книжка под названием «Химия позитрония». Это никакой не фантастический роман. Книга написана серьезными учеными и толкует о том, как исследователи используют необычный атом для своих нужд.
Во время своей короткой жизни позитроний способен вступить в химическую реакцию. Особенно легко он реагирует с химическими соединениями, у которых сохранились свободные валентности. Эти неиспользованные вакансии и занимают атомы позитрония.
С помощью специальных приборов химики прослеживают характер распада позитрония, забравшегося в молекулу вещества. Оказывается, в зависимости от строения молекулы он распадается по-разному. Это позволяет химикам исследовать тонкие детали молекулярных конструкций, решать многие сложные и спорные вопросы, где другие методы бессильны.
Еще раз про алмаз
В нашем химическом музее алмаз все-таки не самый главный экспонат. Для уникума он слишком бесхитростен. Его своеобразный углеродный скелет ныне никого не удивляет. Еще в семнадцатом столетии химики совершенно элементарно сожгли алмазный кристалл с помощью солнечных лучей и обыкновеннейшей лупы…
Химики давно размышляли о другом. Нельзя ли графит превратить в алмаз? Ведь и тот и другой — это углерод. Дело оставалось за малым: найти возможность графитовый углеродный каркас перестроить в алмазный, из очень мягкого материала приготовить очень твердый. Ничего не отнимая и ничего не добавляя.
В конце концов такую возможность нашли. Это весьма занятная история, и в свое время мы о ней поведаем. Пока же отметим: чтобы изготовить искусственный алмаз, понадобились гигантские давления.
Потому в качестве героя настоящего очерка мы выбираем давление. Да не какое-нибудь обычное — в одну, две, десять атмосфер, а давление сверхвысокое. Когда на квадратный сантиметр поверхности давят силы в десятки и сотни тысяч килограммов.
Итак, сверхвысокие давления позволяют получать вещества, ранее невиданные.
Скажем, во времена алхимиков известны были две разновидности фосфора — белый и красный. Теперь к ним добавилась третья — черный фосфор. Самый тяжелый, самый плотный, он проводит электрический ток ничуть не хуже многих металлов. Фосфор, типичный неметалл, превратился под влиянием сверхвысоких давлений в почти что металлическое вещество. И притом устойчивое.
Примеру фосфора последовал мышьяк, потом некоторые другие неметаллы. И каждый раз ученые отмечали разительные перемены в свойствах. Тяжелая рука сверхвысокого давления меняла эти свойства прямо на глазах. С точки зрения физики ничего необычного здесь не происходило. Попросту сверхвысокое давление перекраивает кристаллическую структуру элементов и их соединений. Делает их более металличными.
Так родился сугубо физический термин: «металлизация давлением».
…Придет время, и космонавты вступят на поверхность Луны, Марса, Венеры. Затем придет очередь иных, более далеких и еще более загадочных миров. Люди много раз будут сталкиваться с необычным, неожиданным, неведомым.
Но нас сейчас интересует лишь одна частность.
Всюду ли химические элементы одинаковы? Простирается ли могущество периодического закона и таблицы Менделеева на все без исключения космические тела? Или же гениальное творение русского ученого действует только в ограниченных, земных рамках?
Да простит нас читатель, что мы столь часто ставим вопросительные знаки! Но право же, ставить вопросы куда легче, чем давать на них ответы.
Философы придерживаются вполне определенного мнения. Они считают так. Периодический закон и периодическая система одинаковы для всего мироздания. В этом их всеобщность. Одинаковы, но при одной существенной оговорке: там, где окружающие условия не слишком сильно отличаются от земных, где температура и давления не измеряются многозначными числами.
В этом их ограниченность.
Неизвестное под ногами
«Прежде чем считать звезды, посмотри под ноги», — гласит одна восточная поговорка.
Так ли уж хорошо знаем мы нашу грешную планету? К сожалению, очень мало. Мы плохо осведомлены о том, как устроен земной шар внутри, из каких веществ состоят его далекие глубины.
Здесь еще полным-полно всяких гипотез, и ни одной из них нельзя отдать предпочтения.
Правда, буровые скважины достигли уже семикилометровой глубины! И уже начат штурм глубин еще более внушительных. В пятнадцать-двадцать километров. Но примите во внимание, что радиус Земли составляет 6300 километров.
Другая восточная поговорка гласит: «Чтобы узнать вкус ореха, его надо раскусить».
Грубо говоря, наша планета устроена подобно ореху. Сверху скорлупа — земная кора; внутри ядро. В Земле между корой и ядром залегает толстенная прокладка — так называемая мантия.
С грехом пополам мы знаем, из чего состоит земная скорлупа. Даже не скорлупа, а та тонкая, нежная кожурка, которая обволакивает сверху молодой орех. Как построена мантия и тем более ядро — пока уравнение со многими неизвестными.
Решительно утверждать можно лишь одно. Вещества, слагающие земные толщи, совершенно необычные. Ведь чем ближе к центру Земли, тем сильнее давление вышележащих слоев. В ядре давления достигают астрономической величины — 3 миллионов атмосфер.
Кстати, о земном ядре. Ученые не одно столетие спорят о его устройстве. Сколько ученых — столько и гипотез.
Одни считают, что планета имеет железо-никелевое ядро. Другие смотрят иначе. По их мнению, строительный ядерный материал — минерал оливин. В обычных условиях он представляет собой смесь силикатов магния, железа и марганца. Чудовищное давление внутри ядра превращает оливин в своеобразную металлоподобную материю. Наконец, третьи идут еще дальше. Они утверждают: центральная часть ядра состоит из водорода, сжатого до полного отвердения и потому имеющего необычные металлические свойства. Четвертые…
Лучше поставим точку. «Чтобы узнать вкус ореха, надо его раскусить». Но до земного ядра добраться удастся не скоро.
Мы знаем о его устройстве куда меньше, чем о составе атомного ядра. Это ли не парадокс?
Да, неизвестное у нас под ногами! Настоящая кладовая чудес для химика: элементы в необычных кристаллических состояниях; неметаллы, превратившиеся в металлы; самые разнообразные соединения, свойства которых даже трудно себе представить…
Удивительная химия глубин!
А пока же, как не без остроумия заметил советский ученый А. Ф. Капустинский, наша химия остается еще весьма «поверхностной» наукой.
Однако сохраняет ли периодическая система элементов свою силу и в самых глубоких толщах? Да, пока не меняется электронная структура атомов. Пока электроны размещаются на тех оболочках, где им положено быть.
Но «статус-кво» сохраняется до поры до времени.
Когда одно и то же вовсе не одно и то же
Нет, мы еще не распрощались со сверхвысоким давлением. Сейчас оно преподнесет нам новый сюрприз.
Электронное окружение ядра — конструкция довольно прочная. Она может потерять несколько электронов, и тогда атом становится ионом. Этот процесс происходит сплошь да рядом при химических взаимодействиях.
Она может лишиться многих электронов, может, наконец, растерять их все, так что останется «голое» ядро. Такое наблюдается при температурах в миллион градусов. Например, в звездах.
Но вот задачка другого рода. Общее число электронов не меняется, иным становится их расположение. Они по-другому размещаются на электронных оболочках. А если электроны сгруппировались не так, как обычно, то изменятся и свойства атома, свойства элемента.
Это, так сказать, текст под иллюстрацией. Теперь сама иллюстрация.
Вам не составит труда изобразить атом калия. У него четыре оболочки. Ближайшие к ядру (K и L) заполнены до отказа: первая содержит 2, вторая 8 электронов. На них при обычных условиях больше электронов не поместится. Зато две другие далеки от завершения. На M-оболочке всего 8 электронов (когда положено 18), а N-оболочка вообще только начала застраиваться (1 электрон), причем раньше, чем нацело закончилась предыдущая.
У калия впервые отмечается непоследовательное, ступенчатое формирование электронных оболочек.
Но мы можем вообразить и такой случай. Собственный, «калиевый» электрон, вместо того чтобы входить в четвертую оболочку, начал продолжать третью (ведь в ней-то осталось еще десять вакантных мест).
Фантастика? В обычных условиях — да. Но стоит вступить в действие сверхвысоким давлениям, как ситуация может измениться.
При сверхвысоких давлениях электронное окружение ядра сильно сжимается. Тогда-то и становятся возможными всякого рода «провалы» внешних электронов в глубже лежащие незаполненные оболочки.
Скажем, наружный электрон калия из четвертой оболочки вдавливается в третью. И в M-оболочке будет теперь девять электронов.
Что же получается? Порядковый номер калия (19) тот же. Количество электронов такое же. Словом, никакого превращения элементов не произошло.
И в то же время наш старый знакомый щелочной металл калий перестает быть нашим знакомым. Вместо него появляется некто неизвестный, с тремя оболочками вместо четырех, с девятью электронами на внешней оболочке вместо столь привычного одного. А стало быть, и химический характер «новокалия» придется изучать с самого начала.
Каким окажется этот характер, можно лишь догадываться: еще никто не держал в руках и крупицы «калия-оборотня».
Если же сверхвысокое давление будет наращивать мощь, то и другие, идущие за калием, элементы потеряют свое привычное лицо. Ступенчатое заполнение электронных оболочек — закон для менделеевской таблицы — исчезнет. Пока одна оболочка не кончит свое строительство, следующая останется пустой.
…Это будет тоже периодическая система. Другая, не менделеевская. Ее обитатели (кроме элементов первых трех периодов) окажутся иными. Ее «щелочными» металлами станут медь и прометий, «благородными газами» — никель и неодим, у которых закончат формирование соответствующие внешние оболочки.
Вот какой может оказаться «глубинная» химия! Необычные валентности, странные свойства, удивительные соединения…
Заманчиво? Чрезвычайно! Реально? Кто знает… Вероятно, здесь опять потребуется «сумасшедшая» идея — ведь речь идет о получении материи совершенно нового типа. Положим, что она действительно существует при сверхвысоких давлениях. В обыкновенных же условиях она должна приобрести форму обычных элементов.
Задержать, «заморозить» такой переход — вот в чем задача. Удастся ее решить, и мы получим фактически еще одну науку химию. Химию номер два.
Ее глазами
Слово о пользе анализа
Сказал некогда Михайло Ломоносов: «Широко распростирает химия руки свои…» Двести с лишним лет назад он гениальным своим чутьем понял значение этой науки для грядущих поколений.
И век двадцатый — нагляднейший тому пример. Химия ныне «существо» многорукое. Не всякий академик сразу, за один присест, перечислит все ее отрасли. А чуть ли не каждый год рождаются все новые и новые.
Но есть нечто, без чего любая химическая «рука» повисла бы безжизненной плетью.
Это нечто — химический анализ.
Он помог химикам открыть очень многие существующие на Земле элементы.
Он позволил разобраться в том, какие составные части входят в химические соединения, простые и сложные. От поваренной соли до белков.
Он расшифровал состав горных пород и минералов и помог геохимикам завести скрупулезный бухгалтерский учет земных ресурсов химических элементов.
Ему во многом обязана химия. В том, что сделалась точной наукой. И в самых разнообразных областях человеческой деятельности он первый помощник. Подтверждений тому не счесть.
Скажем, идет выплавка железа из руды в доменной печи. И от того, сколько углерода окажется в полученном металле, будут в сильной степени зависеть его свойства. Так, если углерода более 1,7 процента, мы получим чугун, интервал от 1,7 до 0,2 процента будет отвечать различным маркам сталей, а когда углерода менее 0,2 процента, получается ковкое железо.
В чем разница между чугуном и сталью, латунью и бронзой? Сколько меди в медном купоросе? Много ли калия в минерале карналлите? На все эти и им подобные вопросы мы можем ответить благодаря химическому анализу. Два главных вопроса стоят перед ним: какие элементы входят в состав изучаемого вещества и в каких соотношениях. На первый отвечает анализ качественный, на второй — количественный.
А сколько существует различных анализов, сразу не скажет и опытный специалист.
Чтобы порох был хорошим
Кто изобрел черный (дымный) порох? Легенда утверждает, что швейцарский монах Бертольд Шварц. По мнению ученых, порох знали еще китайцы задолго до нашей эры.
Приготовить черный порох не ахти как трудно: нужно смешать в определенных пропорциях серу, селитру, древесный мелко истолченный уголь. Причем все эти компоненты должны быть высокого качества.
А как его оценить, это качество?
Хороша ли, плоха ли селитра — пороходелы определяли на вкус.
Вот любопытный рецепт «вкусового» анализа селитры, найденный в архиве старинных документов: «Если селитра солона и горька, то она не добра, а только она на языке покусывает и сладка слышится, то такова селитра добра».
Право же, про хорошего пороходела можно было бы сказать: «Он пуд селитры съел!»
Качество серы определяли способом еще более оригинальным.
Кусочек серы сжимали в руке и подносили к уху. Если слышалось легкое потрескивание, сера считалась годной. В противном случае ее выбрасывали, так как она содержала много примесей.
Почему же трещит чистая сера? Ее теплопроводность очень мала. Кусок серы в руке слегка нагревается, в нем появляются участки с разной температурой. В веществе возникают напряжения, хрупкая сера разваливается на кусочки, потому и слышится слабый треск. Загрязненная же сера имеет гораздо большую теплопроводность и поэтому гораздо прочнее. Вот, так сказать, научная основа химического анализа на слух.
Словом, основными аналитическими приборами у химиков прошлого были органы чувств. Это даже нашло отражение в названиях некоторых простых и сложных веществ. Например, бериллий прежде именовали глицием, потому что его соли сладковаты. От латинского слова «сладкий» происходит и название глицерин. А вот природный сульфат натрия называют мирабилитом, что означает «горький».
Как был открыт германий
В начале марта 1886 года в Петербург на имя Дмитрия Ивановича Менделеева пришло письмо. В нем говорилось:
«Милостивый государь!
Разрешите мне при сем передать Вам оттиск сообщения, из которого следует, что мной обнаружен новый элемент „германий“. Сначала я был того мнения, что этот элемент заполняет пробел между сурьмой и висмутом в Вашей замечательно проникновенно построенной периодической системе и что этот элемент совпадает с Вашей экасурьмой, но все указывает на то, что здесь мы имеем дело с экасилицием.
Я надеюсь вскоре сообщить Вам более подробно об этом интересном веществе; сегодня я ограничиваюсь тем лишь, что уведомляю Вас о весьма вероятном новом триумфе Вашего гениального исследования и свидетельствую Вам свое почтение и глубокое уважение.
Преданный Клеменс Винклер.
Фрейберг, Саксония,
26 февраля 1886 г.».
Видимо, недаром почти за сто лет до открытия германия Генри Кавендиш не уставал повторять, что «все определяется мерой, числом и весом». Анализируя довольно редкий минерал аргиродит, незадолго перед этим найденный в Саксонии, Клеменс Винклер обнаружил, что в нем содержались в основном серебро и сера и в качестве небольших примесей железо, цинк и ртуть. Но его сразу же поразил количественный результат анализа — сумма процентного содержания всех найденных в аргиродите элементов упорно держалась цифры 93 и никак не хотела доходить до 100 процентов.
Что же могли представлять собой неуловимые 7 процентов? Ведь методы анализа большинства известных к тому времени элементов довольно хорошо отработали и ни один не должен был скрыться от глаз химика. И Винклер делает смелое предположение: раз эти 7 процентов ускользают при существующей методике анализа, значит, они принадлежат неизвестному элементу. Предположение подтвердилось. Слегка изменив схему анализа, ученый выделил неуловимые 7 процентов и доказал, что они относятся к новому, еще не известному в то время элементу, который был назван в честь родины Винклера германием.
Весовой анализ сыграл важную роль в открытии и другого элемента — аргона, представителя нулевой группы периодической системы.
В начале 90-х годов прошлого столетия английский физик Рэлей занялся определением плотности газов, а отсюда и их атомных весов. Все было хорошо, пока исследователь не дошел до изучения азота. И здесь начались какие-то странности. Литр азота, выделенного из воздуха, весил на 0,0016 грамма больше, чем такое же количество азота, полученного из химических соединений. Злосчастный литр азота из азотистокислого аммония, закиси или окиси азота, мочевины, аммиака и других соединений упорно оказывался легче «воздушного» на ту же самую величину.
Так и не найдя причину этого странного различия, Рэлей публикует заметку в лондонском журнале «Природа», где подробно рассказывает о своих результатах. Вскоре на эту заметку откликнулся химик Рамзай, и, объединив свои усилия, исследователи добились разрешения загадки. В августе 1894 года они сообщили об открытии нового элемента, аргона, который и был причиной первых неудач Рэлея. Оказалось, что содержание его в воздухе составляет около одного процента.
Так ординарный весовой анализ помог ученым открыть новые элементы. Ни одна химическая лаборатория не обходит его своим вниманием и сейчас. Обычное взвешивание помогает в конце концов определить, в каком количестве содержатся составляющие элементы в сложных соединениях и минералах. Конечно, этому предшествуют трудоемкие химические операции отделения различных элементов друг от друга.
Свет и цвет
Перед каждым значительным праздником мы можем услышать по радио слова диктора: «Приказ министра обороны… В ознаменование… приказываю: произвести салют в столице нашей Родины Москве, в столицах союзных республик, а также в городах-героях…»
Красиво небо во время салюта. Желтыми, зелеными, красными огнями расцвечивается оно под грохот орудийных залпов. Традиция отмечать праздники салютами и фейерверками очень стара. Еще за две тысячи лет до нашей эры в Китае было известно искусство пиротехники. Но использовать цвет пламени для химического анализа ученые додумались относительно недавно.
Немногим больше ста лет назад немецкий химик Кирхгоф обратил внимание, что соли различных металлов окрашивают бесцветное пламя газовой горелки в различные цвета. Так, соли натрия придают пламени желтую окраску, кальция — карминово-красную, бария — зеленую и т. д.
Кирхгоф быстро сообразил, что окрашивание пламени в определенный цвет солями различных металлов дает возможность быстро и безошибочно устанавливать присутствие тех или иных химических элементов в изучаемых веществах. Однако радость оказалась преждевременной. Все было хорошо, пока ученый пользовался чистыми солями. Но если, например, смешать соли натрия и калия, то на фоне ярко-желтого пламени горелки (обязанного своим цветом присутствию натрия) фиолетовую окраску калия практически невозможно разглядеть.
На помощь химику Кирхгофу пришел физик Бунзен. Он предложил рассматривать пламя горелки, в которое вносится смесь солей, через специальный прибор — спектроскоп. Основной его деталью служит призма, которая, если через нее пропускать белый свет, разлагает его в спектр, то есть на составляющие. Само название «спектроскоп» по-русски и означает «наблюдать спектр».
Вот здесь-то ученых и поджидала удача. Оказалось, что в отличие от других источников света пламя газовой горелки, в которое вносилась испытуемая соль, давало не сплошной, а линейчатый спектр, причем положение линий на спектре было строго постоянным. Так, если рассматривать в спектроскоп пламя, в которое внесли соли натрия, можно различить две очень близкие друг к другу исключительно яркие желтые линии. Если в пламя внести соли калия, на спектре мы увидим одну красную и две фиолетовые линии и т. д.
Кирхгоф и Бунзен обнаружили, что линии определенных химических элементов появляются на одних и тех же местах всегда, когда их соли вносятся в пламя. Мы можем внести в пламя хлористый, сернокислый, углекислый, азотнокислый натрий, и всегда линии натрия будут появляться на одном и том же месте. Даже если мы смешаем соли натрия с какими-нибудь другими, например, с солями калия, меди, железа, стронция, бария, все равно линии натрия появятся на своем месте.
Кирхгоф и Бунзен, окрыленные своим открытием, работали не покладая рук. Очень многие элементы и соединения испробовали они «на пламя». А через некоторое время составили список химических элементов с характеристиками их линий в спектре. Теперь ученые уже могли безошибочно анализировать многие сложные смеси веществ.
Так родился спектральный анализ. Он оказался не только прекрасным методом качественного определения тех или иных известных химических элементов в смесях. Именно с его помощью были открыты новые элементы: рубидий, цезий, индий и галлий. А когда выяснилось, что интенсивность (яркость) линий зависит от количества присутствующих в смеси веществ, спектральный анализ занял почетное место в ряду количественных методов.
Химический анализ… Солнца
В ожидании солнечного затмения 1868 года астрономы, как всегда, снаряжались солидно. На сей раз они не забыли взять с собой и спектроскоп, незадолго до этого позволивший открыть несколько новых элементов.
Прошло затмение, страсти успокоились. А 25 июля 1868 года Парижская академия наук получила сразу два письма: одно — с берегов далекой Индии от француза Жансена, а другое — из Англии, от англичанина Локьера. В обоих письмах почти слово в слово повторялось одно и то же: оба ученых извещали академию, что каждый из них открыл на Солнце с помощью спектрального анализа неизвестный на Земле элемент. В спектроскопе он дает желтую линию, по цвету схожую с линией натрия. Но к натрию эта линия никакого отношения не имеет.
Почтенное собрание ученых было крайне поражено. Мало того, что Жансену и Локьеру удалось «проанализировать» Солнце, они еще и утверждают, что обнаружили новый элемент!
А на Земле гелий (так был назван «солнечный элемент») открыли лишь в 1895 году, 27 лет спустя.
В честь такого события — открытия метода, позволяющего начать изучение тайн далеких космических светил, — Парижская академия приняла решение отчеканить специальную медаль. Этот метод действительно был достоин специальной медали. Ведь чтобы провести химический анализ любым другим методом, нужно иметь хотя бы самый ничтожный кусочек вещества. А спектральному анализу не страшны никакие расстояния.
После открытия «солнечного элемента» ученые не раз направляли спектрографы (регистрирующие спектроскопы) на Солнце, и оно послушно рассказывало им о себе.
Вслед за Солнцем пришла очередь других звезд — далеких и близких. Блеск звездных атмосфер достигал земных спектроскопов. А в тиши лабораторий ученые разбирались в запутанном частоколе всевозможных спектральных линий. Ученые открывали на небесных светилах элементы, уже известные на Земле.
Лишь спустя восемьдесят лет солнечный гелий передал эстафетную палочку научных неожиданностей элементу технецию. Тому, что занимает место номер 43 в менделеевской таблице. Призрак в земных рудах, технеций сначала был открыт в спектрах некоторых звезд, а затем ученые обнаружили ничтожные его следы на Земле. И в этих звездах технеций — отнюдь не редкий элемент. Он непрерывно образуется там в результате ядерных реакций.
Новых элементов ни на Солнце, ни в звездах уже больше открыть не удалось. Да, пожалуй, и не удастся. Ведь мир един: Земля, Солнце, планеты и звезды, вообще все небесные тела состоят из одних и тех же химических элементов.
Вот что оказалось любопытным: в небесах действует совершенно иная «бухгалтерия» химических элементов, чем на Земле. Не кислород и кремний главенствуют в космосе, а водород и гелий. Их, первых представителей периодической системы, во вселенной во много раз больше, чем всех остальных элементов, вместе взятых. Видите, к какому удивительному парадоксу привела химия звезд: наша Галактика — это в первую очередь царство водорода.
Волны и вещество
Цветовых оттенков в природе неисчислимое множество. Это знают и химики. И подчас сказочная гамма окрасок ставит их в тупик.
— Какого цвета, скажем, раствор нитрата ниодима?
— Розовый, — ответит химик.
— А в какой цвет окрасится раствор трехвалентного железа, если к нему прилить роданида калия?
— В красный.
— А какой будет окраска, если к фенолфталеину добавить раствора щелочи?
— Малиновый.
Так можно продолжать довольно долго: очень многие химические реакции идут в цветовом оформлении. Притом оформлении однотонном. Думается, что если мы назовем еще с десяток соединений, растворы которых имеют цвет, близкий к красному, то окончательно запутаемся. Правда, говорят, что художники и текстильщики, связанные с крашением тканей, различают около двух десятков оттенков красного цвета. Вот что значит наметанный глаз!
Для химиков же такое «интуитивное» различение цветов и оттенков мало подходит. Ведь даже раствор одного и того же вещества в зависимости от концентрации может иметь множество оттенков. Где уж тут их все запомнить!
Живут, оказывается, на Земле люди, что различают цвета с завязанными глазами. Кончиками пальцев. Медики говорят, что у этих людей чрезвычайно развито так называемое кожное зрение. Знаменитый Джонатан Свифт иронизировал по поводу «научной» тематики Лапутянской академии наук: там слепые смешивали различные краски.
Сарказм английского сатирика ныне стал неуместным. Сейчас химики могут сказать о цвете раствора, не видя его в глаза. Помогает в этом так называемая спектрофотометрия. Этот своеобразный метод анализа получил свое название от прибора — спектрофотометра. Прибор позволяет провести анализ окраски химического соединения или его раствора.
Еще Исаак Ньютон, пропуская тонкий солнечный луч через стеклянную призму, обнаружил, что белый цвет — сложный. Каждый, наверное, видел радугу. Все цвета радуги и являются составляющими белого цвета. Такую же радугу наблюдал и Ньютон, пропуская солнечный луч через призму. Эта радуга называется спектром.
Но что такое свет? Это электромагнитные колебания, волны. А каждая волна имеет определенную длину (ее обычно обозначают греческой буквой «лямбда»). С помощью длины волны можно точно характеризовать любой цвет или оттенок. Например, химики говорят: «Красный цвет с длиной волны, равной 620 миллимикронам», или: «Красный цвет с длиной волны, равной 637 миллимикронам». (Миллимикрон — одна тысячная микрона, или одна миллионная доля миллиметра.) Теперь уже не нужно присваивать отдельным оттенкам определенные названия — «малиновый», «красный», «бордовый», «кумачовый», «алый». Достаточно назвать длину волны, и всем ученым на свете станет ясно, о каком цвете, каком оттенке идет речь. Каждое соединение получило как бы своеобразный «паспорт», где в графе «цветность» записано: «Лямбда равна такой-то величине». Поверьте, это весьма солидный документ.
Но это полдела. Ведь цвет соединения зависит от того, какие лучи, с какой длиной волны оно поглощает, а какие — пропускает. Например, если раствор соли никеля зеленый, значит, он поглощает все длины волн света, кроме тех, которые отвечают зеленому цвету. А, к примеру, желтый раствор хромовокислого калия прозрачен только для желтых лучей.
Спектрофотометр как раз и позволяет получить поток световых лучей вполне определенной длины волны и исследовать, как поглощаются они тем или иным веществом. Громадное количество соединений как органических, так и неорганических было исследовано с помощью спектрофотометров.
Кроме света видимого, есть свет невидимый. Тот, которого человеческий глаз не замечает. Эти «потусторонние света», расположенные за границами видимого светового спектра, называют ультрафиолетовым и инфракрасным излучением. Химики проникли и в эту область. Они изучили спектры различных химических веществ в ультрафиолетовой и в инфракрасной областях. Здесь-то и обнаружилось очень интересное явление. Оказалось, что каждому химическому соединению (или иону) присущ свой собственный, характерный только для него спектр полосы поглощения. И здесь каждое вещество имеет свой «цветовой» (инфракрасный или ультрафиолетовый) «паспорт».
С помощью спектров поглощения можно проводить не только качественный, но и количественный анализ. И вот почему: во многих случаях интенсивность окраски тем глубже, чем больше концентрация химического соединения в растворе. Тем сильнее поглощается им свет определенной длины волны. Таким образом, определяя поглощение света раствором (как принято говорить, «определяя его оптическую плотность»), легко можно узнать количество интересующего нас элемента.
И всего лишь ртутная капля
Из глубины веков дошел до нас афоризм: «Все гениальное — просто».
Один-единственный раз Нобелевской премии было удостоено открытие в области химического анализа. Его сделал в 1922 году Ярослав Гейровский, замечательный чешский ученый. С тех пор Прага стала своеобразной Меккой. К Гейровскому начали стекаться многочисленные паломники — учиться новому методу. Полярографии.
Теперь во всем мире публикуется ежегодно больше тысячи статей, посвященных полярографическому анализу.
Вот его суть, так сказать, «на пальцах». Стеклянный стакан с раствором, в котором требуется определить концентрацию данного вещества. На дно стакана налита ртуть. Слой ртути — это один электрод. Из капилляра через определенные промежутки времени в стакан падает ртутная капля. Она-то и является другим электродом.
К электродам подводится электрический ток. В растворе должен начаться электролиз. Он идет лишь при некотором значении потенциала ртутной капли. Если это значение мало, в цепи тока нет. Оно увеличивается, и ионы, содержащиеся в растворе, начинают разряжаться. В цепи возникает ток.
Когда в растворе ионы разных элементов, то они разряжаются не все сразу, а постепенно. Для каждого вида ионов характерно свое значение потенциала.
Химики строят график. На оси абсцисс они откладывают величину потенциала, на ординате — силу возникающего тока. Кривая напоминает лесенку. Каждая ее ступенька соответствует разряжению определенных ионов.
Полученную лесенку сравнивают с кривой-эталоном. С такой кривой, которая заранее была вычерчена для раствора, содержащего известные концентрации известных веществ.
Так одновременно проводится и качественный и количественный анализ раствора. С помощью специальных устройств анализ проходит автоматически.
О полярографическом методе так и хочется сказать — изящный. Но дело не в одном лишь изяществе. Полярография проста, быстра, точна и по этим своим качествам превосходит большинство других методов анализа. С ее помощью можно, скажем, определить присутствие в одном кубическом сантиметре раствора… миллионной доли грамма хлористого цинка. И на весь анализ уйдет меньше десяти минут.
Первоначальную идею Гейровского теперь усовершенствовали, появилось много ее разновидностей. Например, адсорбционный полярографический анализ. Его чувствительность необычайно высока. Миллиардные доли грамма органического вещества в кубике раствора легко поддаются определению.
Где нужна полярография? Да практически всюду. И для автоматического контроля производства и для анализа минерального сырья и сплавов. Полярография позволяет судить о содержании в организме витаминов, гормонов и ядов. Медики даже хотят применить полярографию для ранней диагностики рака.
Химическая призма
Фамилия и специальность этого ученого по странной прихоти судьбы созвучны названию сделанного им открытия.
Он был ботаником, и звали его Михаил Семенович Цвет.
Ботаник Цвет интересовался хлорофиллом. Уже известным нам красящим веществом зеленого листа.
Но профессор Цвет был знаком и с некоторыми приемами химии. В частности, он знал, что существуют некоторые вещества (адсорбенты), на поверхности которых могут задерживаться (адсорбироваться) многие газы и жидкости.
Превратив лист в зеленую кашицу, исследователь сделал из нее спиртовую вытяжку. Кашица обесцветилась. Значит, все красящие соединения перешли в спиртовой раствор.
Потом Цвет приготовил стеклянную трубку и наполнил ее мелом, слегка смоченным в бензоле. И налил туда раствор, содержащий хлорофилл.
Верхний слой мелового порошка окрасился в зеленый цвет.
Капля за каплей ученый начал промывать трубочку бензолом. Зеленое колечко сдвинулось с места, опустилось ниже. А затем — о чудо! — распалось на несколько полосок, по-разному окрашенных. Здесь были желто-зеленая, зелено-синяя, три желтые полоски различных оттенков. Любопытное зрелище наблюдал ботаник Цвет. И оказалось это зрелище величайшей находкой для химиков.
Получалось так, что хлорофилл — сложная смесь нескольких соединений, хотя и близких между собой по строению молекул и свойствам. То, что теперь называют хлорофиллом, — лишь одно из них, правда главное. И все эти вещества удалось отделить друг от друга весьма простым способом.
Все они адсорбировались мелом, но каждое по-своему. Они удерживались на поверхности мелового порошка с различной прочностью. И когда бензол (вымывающая жидкость) проходил через трубку, он увлекал за собой вещества в определенной последовательности. Сначала те, что удерживались слабее. Потом закрепившиеся более прочно. Так происходило разделение.
Как призма разлагает солнечный свет на цвета спектра, так и столбик адсорбента («химическая призма») расщеплял сложную смесь веществ на составные части.
Открытый Цветом в 1903 году новый метод анализа был окрещен самим автором. Ученый назвал его хроматографией, что по-русски означает «цветопись».
Ныне метод химической «цветописи» едва ли не самое важное оружие во всех аналитических лабораториях мира.
Но непостижимы судьбы многих научных открытий. Иные предаются забвению. Порой на долгие годы. Чтобы потом заблестеть на научном горизонте звездами первой величины. Так случилось и с хроматографией. О ней вспомнили по-настоящему лишь в 40-х годах. И, вспомнив, не пожалели.
Как открыли прометий
Собственно, его открывали много раз — этот элемент с порядковым номером 61. И всегда давали новое название — иллиний, флоренций, циклоний. Но всякий раз открытие оказывалось ошибочным, и очередное имя мертворожденного становилось достоянием истории.
Потом ученые доказали: шестьдесят первого элемента просто нет на Земле. Не по какой-то странной прихоти природы, лишившей периодическую систему одного из ее представителей. Дело обстоит иначе. Все изотопы элемента номер 61 радиоактивны, очень неустойчивы и уже давным-давно распались, превратившись в изотопы соседних элементов.
В конце концов в 1945 году его получили искусственно. Так сказать, в процессе работы ядерного реактора. Когда ядра урана — реакторного «горючего» — делятся, они распадаются на множество осколков — ядер более легких элементов. В том числе и прометия (назовем, наконец, неуловимого настоящим именем).
Физики-теоретики после долгих раздумий подписались бы под этим сообщением. Химикам же нужно было «пощупать», прометий своими руками, посмотреть хотя бы на крохотную крупинку нового металла или, на худой конец, его соединения.
Впрочем, вряд ли удалось бы выделить из смеси осколков деления урана более десятых, а то и сотых долей грамма элемента номер 61.
Разве это беда? Ведь к тому времени химикам уже не раз приходилось оперировать с еще меньшими количествами веществ. И довольно успешно.
Вся сложность состоит в другом. Прометий — элемент редкоземельный. О сходстве членов этого семейства мы говорили. А в мешанине ядерных осколков довольно много и ближайших соседей прометия — неодима и самария.
От них-то в первую очередь и надо прометий отделить. Но ох как это не просто! Те химики, которые свою жизнь целиком посвятили редким землям, совершили научный подвиг. Мука — другого слова здесь и не придумаешь — разлучать четырнадцать близнецов, чтобы заполучить каждого по отдельности.
(Француз Ш. Урбэн задумал однажды приготовить чистый тулий. Он добился своего. Но потратил пять лет и провел более пятнадцати тысяч крайне однообразных и утомительных химических операций.)
Выделить чистый прометий, конечно, легче, но ненамного. Учтите, что он радиоактивен и распадается быстро. Не получится ли так, что в конце процессов разделения от него ничего не останется?
Значит, нужны более быстрые методы. Чтобы разделение лантаноидов проводить не за годы, не за месяцы, не за недели даже, а в считанные часы. Таких методов не было на вооружении у химии.
Вот тогда-то и вспомнили о хроматографии.
…Разделительную трубку Цвета (теперь ее называют солиднее: хроматографическая колонка) заполняют адсорбентом (не мелом, как бывало, а специальными ионообменными смолами). Через смолу пропускают раствор солей редкоземельных элементов. Хоть и очень похожи лантаноиды, но ведь не одинаковы же они. Каждый образует со смолой комплексное соединение.
Это соединение различной прочности. В таком различии есть свой порядок. Первый в семействе — лантан связывается со смолой крепче всего; последний — лютеций, наоборот, наиболее слабо.
Дальше смолу промывают специальным раствором. Капли раствора обволакивают зерна смолы и как бы смывают прикрепившиеся ионы редкоземельных элементов. Опять же в строгой последовательности.
И капают из колонки растворы чистых редкоземельных солей: в первую очередь — соли лютеция, в самом конце — лантана.
Именно таким путем отделили прометий от неодима и самария американские ученые Д. Маринский, Д. Гленденин и Ч. Кориэлл. И затратили на весь процесс несколько часов.
Ароматы земляничной поляны
…Полянка в сосновом бору. Жаркий июльский день. И земляника, земляника под ногами — спелые, шероховатые, ярко-красные ягоды. Изумительно вкусные, они прямо тают во рту.
А чем она пахнет, земляника? Признайтесь, вы никогда об этом не задумывались. Вы лишь с наслаждением вдыхали ароматы соснового леса, запахи нагретой солнцем поляны.
Но оказывается, запах — сложнейшая штука. Есть целая наука о запахах. Ученые до сих пор не пришли к единой точке зрения: почему одни вещества обладают сильнейшим запахом, а другие не пахнут вовсе. Почему одни запахи приятны, а другие отвратительны.
Несомненно, запах вещества связан со строением его молекул. Но как именно? Вот этого-то еще до конца и не знают. Строгой физической теории запахов пока нет.
Химикам немного легче. Они в силах опознать различные молекулы, «ответственные» за те или иные запахи. И химики, например, сумеют сказать вам, чем пахнет земляника.
Аромат земляники — это сложнейшая смесь девяноста шести самых разнообразных запахов. Любой, даже самый опытный парфюмер позавидовал бы природе, создавшей великолепные «земляничные» духи.
Как же удалось разобраться в составе «земляничных» духов?
С помощью метода газо-жидкостной хроматографии.
Адсорбент в этом методе — специально приготовленная двуокись кремния SiO2, смоченная нелетучей жидкостью. Движущая среда — благородный газ (например, аргон). Вот и все.
А можно просто стеклянную трубочку смочить нелетучей жидкостью. Только трубочка должна быть очень длинной. Чтобы «разнюхать» аромат свежей земляники, исследователи брали трубку длиной… в 120 метров.
Разумеется, ее пришлось свернуть в спираль. И поместить в специальный прибор — термостат. Он обеспечивал медленное и равномерное повышение температуры. Ведь различные составляющие земляничного запаха по-разному летучи: одни легче, другие труднее. Они и расположились в определенной последовательности по всей длине трубки. А выгоняли их оттуда, пропуская через трубку аргон. На выходе сложная аппаратура фиксировала прохождение различных веществ. В земляничном запахе их оказалось девяносто шесть…
Возможности газовой хроматографии необычайны. Она позволяет обнаруживать концентрации веществ порядка 10–12 грамма!
Многие сложнейшие природные вещества исследовали химики этим способом. Сколько, по-вашему, различных компонентов содержит нефть? Ни много ни мало — около двухсот тридцати! И их удалось не только сосчитать, но и установить, что каждый собой представляет.
Смерть Наполеона: легенда и действительность
Официальная версия гласит: Наполеон Бонапарт I скончался на острове Святой Елены 5 мая 1821 года. Причина смерти — рак желудка, болезнь, меньше чем за полгода упрятавшая в могилу бывшего властителя полумира. Медицинское заключение было подписано доктором Антомарки.
Версия эта утвердилась прочно, но все-таки… ей верили немногие. И были на то основания.
Многие приближенные великого императора до конца дней своих утверждали: Наполеон умер не своей смертью, он был отравлен.
Да и сам Бонапарт за неделю до кончины, диктуя текст завещания, сказал: «Меня убила английская олигархия и ее наемный убийца».
Но чем могли отравить Наполеона? Всяких ядов и в прошлом веке знали более чем достаточно. Но не всяким бы воспользовался неизвестный убийца, чтобы погубить императора.
Требовался яд безвкусный, чтобы жертва ничего не заподозрила. Не очень сильный, чтобы убивал постепенно, медленно накапливаясь в организме. Например, мышьяк.
Так появилась другая версия: Бонапарта отравили мышьяком.
Но как это доказать? Предположения предположениями, а тут необходимы несомненные подтверждения. Свидетелей не осталось. А извлекать прах из гробницы и исследовать его — такое показалось бы кощунством.
И тем не менее спустя 140 лет после печального события в шотландском городе Глазго началось необычное следствие по делу о насильственной смерти Наполеона. Вели дело два врача: Смит и Форшуфвуд.
Они начали с того, что обратились во многие музеи мира со странной просьбой. Дескать, нет ли в музейных коллекциях… пучка волос великого француза? Немало прошло времени, прежде чем следователям посчастливилось. Они получили несколько волосков, срезанных с головы Наполеона через несколько часов после его смерти.
Шотландские врачи знали: мышьяк, попав в человеческий организм, постепенно накапливается в волосах. Если он обнаружится в волосах Бонапарта, то…
Легко сказать — обнаружится. Ведь мышьяка-то в волосах слишком ничтожное количество. Можно, конечно, применить химические методы анализа, но они малочувствительны, не исключают возможных ошибок. А тут надо знать наверняка.
Тогда к следствию подключился шведский физик Вассен.
Драгоценные волоски, надежно упрятанные в алюминиевый цилиндрик, исследователь поместил на несколько часов в урановый реактор.
Когда волоски извлекли и провели соответствующие измерения, выяснилось: да, Наполеон погиб от мышьяка. Мышьяка в его волосах было в тринадцать раз больше обычного. Притом давали императору мышьяк постепенно, малыми дозами.
Каким же образом удалось ученым выяснить истинную причину смерти Бонапарта? Обнаружить мышьяк, не применяя никаких, абсолютно никаких химических методов?
Анализ радиоактивационный
Природный мышьяк — элемент чрезвычайно устойчивый. Во всяком случае, никто из ученых не наблюдал у него хотя бы исчезающе слабой радиоактивности.
Есть у мышьяка и еще одна особенность. Он, как говорят, элемент-одиночка. Многие другие представляют собой смесь двух, трех, а то и более изотопов. Как, скажем, олово, у которого насчитывается десять разновидностей атомов. И все они встречаются в природе.
Мышьяк же одинок. В его ядрах содержится 33 протона и 42 нейтрона, и такая комбинация очень прочна.
Но если в это ядро каким-нибудь способом добавить лишний нейтрон, от былой устойчивости не останется и следа. Образуется другой, радиоактивный изотоп мышьяка. И чтобы его обнаружить, химические методы вовсе не нужны. Достаточно применить специальные приборы, регистрирующие радиоактивные излучения. Чем больше активного мышьяка, тем интенсивнее эти излучения.
В этом и заключается принцип простого, но поистине великого метода — радиоактивационного анализа. Он позволяет определять совершенно ничтожные количества веществ, доли грамма, измеряемые числами, где после запятой стоит 10–12 нулей. Для этого нужно лишь облучить анализируемый объект потоком нейтронов и затем измерить интенсивность излучения, испускаемого образовавшимися радиоактивными изотопами.
Вот каким способом узнали историки обстоятельства смерти Наполеона Бонапарта. Не правда ли, великолепный пример помощи со стороны точных наук!
Для современных аналитиков радиоактивационный анализ — всевидящий глаз. Он легко видит то, чего не в силах разглядеть почти все другие аналитические методы.
Все знают, что чистый германий — великолепнейший полупроводник. Но представьте, что в нем случайно оказалась примесь атомов другого элемента, скажем сурьмы. Примесь не ахти какая: на тысячу миллиардов атомов германия… один-единственный атом сурьмы. И это ничтожнейшее количество сводит на нет полупроводниковые свойства германия.
А потому германий нужно очень тщательно проверять на чистоту.
Это можно сделать только с помощью радиоактивационного анализа.
И вот нейтроны устремляются к германиевой пластинке. Химики знают, что в ней содержится какое-то количество сурьмы. Может, столь малое, что на него и не стоит обращать внимания. А может, слишком большое, и «чистый» германий придется забраковать.
Ядра атомов германия и сурьмы к нейтронам относятся по-разному. Первые их равнодушно пропускают мимо себя, вторые, напротив, поглощают с жадностью. А поэтому образуются лишь радиоактивные изотопы сурьмы. Теперь дело за счетчиками радиоизлучений. Они скажут наверняка: много или мало сурьмы в германии.
Как взвесить невесомое?
Много ли это — 500 микрограммов? Давайте посчитаем. Один микрограмм — тысячная доля миллиграмма, или миллионная доля грамма. Отсюда 500 микрограммов — пять десятитысячных грамма, или половина миллиграмма. Если у нас есть 500 микрограммов воды, то это половина кубического миллиметра, примерно втрое меньше булавочной головки. А если наше вещество раз в десять тяжелее? Значит и объем его раз в десять меньше. Такое количество вещества и разглядеть-то трудно. Казалось бы, что с ним можно сделать? Разве посмотреть под микроскопом, вот и все.
500 микрограммов плутония — и не более — было в руках американских ученых в 1942 году. Но на этом поистине невесомом количестве они сумели изучить основные свойства элемента. Притом с такой полнотой, что спустя год удалось приступить к проектированию большого завода по производству плутония.
Но ведь в ходе всевозможных химических операций химикам многократно приходилось прибегать к взвешиванию…
Казалось бы, что сложного в весах? Весы и есть весы. Даже аналитические микровесы, позволяющие взвешивать с точностью в одну сотую миллиграмма, довольно просты по своей конструкции. Однако такая чувствительность уже давно не устраивала ученых. И в начале нашего века были созданы весы, позволявшие проводить взвешивание с точностью до одной десятитысячной доли миллиграмма. Кстати, именно с помощью таких весов английский химик Вильям Рамзай взвесил около 0,16 кубического сантиметра радона и подтвердил гипотезу Резерфорда о механизме радиоактивного распада радия.
Но и эти весы не были пределом. Несколько позже шведский химик Ганс Петтерсон сконструировал весы, позволявшие проводить взвешивание с точностью до шести десятитысячных долей микрограмма, то есть 6 · 10–10 грамма! Представить себе такую точность крайне трудно. На современных ультрамикровесах можно взвесить массу вещества, в два миллиона раз большую, чем та, которую они ощущают.
Сверхточное взвешивание, взвешивание невесомого — это одно из достижений новой науки, ультрамикрохимии. Есть и другие, не менее важные.
Разработаны методы, позволяющие проводить различные химические операции с исключительно малыми объемами вещества: до одной десятитысячной доли миллилитра (кубического сантиметра), причем точность в ряде случаев достигает величины примерно в одну десятитысячную микролитра (1 · 10–10 литра).
Ультрамикрохимические методы находят широкое применение не только в биологических и биохимических исследованиях, но в особенности при изучении искусственных трансурановых элементов.
Химия единичных атомов
Были времена, когда горько сетовали химики: дескать, трудно изучить свойства нового элемента, если приходится иметь дело с миллиграммами вещества.
Потом «критерий малости» не раз пересматривался. В 1937 году итальянские ученые Перье и Сегре неплохо изучили свойства только что искусственно полученного элемента номер 43 — технеция. В руках исследователей была всего лишь… одна десятимиллиардная доля грамма нового представителя менделеевской таблицы.
Опыт пошел впрок. Работая с трансуранами, химики начисто забыли, что есть такие единицы веса: граммы, миллиграммы, микрограммы. «Невесомые, невидимые количества» — вот какие термины фигурировали на страницах научных статей, посвященных трансурановым элементам. Чем дальше продвигались исследователи в этой области периодической системы, тем большие трудности вставали перед ними.
Наконец дошла очередь до сто первого элемента, которому дали название менделеевий, в честь великого русского химика.
Коль скоро новый трансуран получил имя, то, следовательно, ученые были твердо убеждены в том, что его действительно удалось получить.
Сравнительно просто было рассчитать условия, при которых можно надеяться на успех синтеза элемента номер 101. Не составило особого труда написать уравнение соответствующей ядерной реакции. Удавалось предвидеть, какой изотоп нового трансурана должен образоваться.
Такова была теория. То, что получалось на практике, требовало подтверждения. Доказательств, что изотопы именно сто первого элемента, а никакого другого образовались в результате ядерного процесса.
Дальше начиналась фантастика. «В ходе одного эксперимента по синтезу сто первого нельзя рассчитывать на получение более чем одного атома нового элемента», — утверждали строгие физико-математические выкладки. Так оказалось и на деле. Один атом, единственный атом, неизвестный атом заявлял о своем рождении. Но был ли то атом элемента сто один?
Чуткие радиометрические приборы позволили определить период полураспада атома. Но не его химическую природу.
Да и вообще: можно ли изучить хотя бы основные химические свойства одного-единственного атома?
На помощь пришла хроматография.
Проследите за цепочкой наших рассуждений: сто первый элемент должен относиться к семейству актиноидов. Актиноиды во многих своих особенностях подобны элементам другого аналогичного семейства элементов — лантаноидам. Разделение лантаноидов было успешно произведено с помощью ионообменной хроматографии: при этой сортировке отдельные лантаноиды выделялись из смеси в строго определенной последовательности. Сначала тяжелые, затем — легкие.
Сто первый элемент в ряду актиноидов должен был следовать после эйнштейния (№ 99) и фермия (№ 100). Если бы мы захотели хроматографическим методом разделить эйнштейний, фермий и элемент номер 101, то в первых каплях жидкости, вытекающей из хроматографической колонки, должен был обнаружиться именно менделеевий.
Семнадцать раз подряд ставили ученые эксперименты по синтезу менделеевия. Семнадцать раз применяли ионообменную хроматографию, чтобы выяснить химическую сущность нового, созданного по воле людей, атома. И в каждом случае атом менделеевия появлялся именно в той капле раствора, где ему надлежало появляться по теории. Прежде там выходили из колонки фермий и эйнштейний.
Значит, порядковый номер менделеевия 101, и он по свойствам типичный актиноид.
Есть ли предел?
Все на свете имеет свой конец, кроме вселенной, которая не имела начала и не будет иметь конца. Так что, вообще говоря, и предел анализу есть, безусловно. Если мы научимся определять химическую природу отдельных атомов элементов или молекул химического вещества, на этом можно поставить точку.
Однако здесь пойдет речь не совсем об этом. Еще в начале 40-х годов нашего века, каких-нибудь двадцать пять лет назад, химики могли анализировать большинство примесей, если их содержание в основном веществе составляло 0,01–0,001 процента, и почти всех это устраивало. Но наука и техника в наше время движутся поистине семимильными шагами. К началу 60-х годов запросы уже лежали в области одной тысячемиллиардной доли процента примеси (10–12), и к тому времени по возможностям определения отдельных элементов мы лишь приближались к таким цифрам. Что же, сейчас некоторые элементы и их соединения мы можем определять в таких количествах. И здесь в первую очередь помогают методы активационного анализа, газовой хроматографии и масс-спектрометрии, которые позволяют ученым определять такие «мелочи».
Требования к анализу примесей будут неуклонно повышаться. Известный советский ученый, академик Иван Павлович Алимарин считает, что требования к чистоте материалов стремятся к такому пределу, когда будет необходимо определять единичные атомы примеси, то есть количества вещества порядка 10–23 грамма. Эта нелегкая задача будет решаться совместными усилиями физиков и химиков. Она ныне решена для атомов радиоактивных. Радиоактивные атомы некоторых химических элементов мы уже сейчас можем определять в единичных экземплярах. Однако чувствительность определения стабильных атомов и их соединений еще далека от предела. И здесь методы анализа ждут тех, кто сумеет «закрасить» это «белое пятно».
Число, поражающее воображение
Ученые в своих расчетах часто оперируют так называемыми константами — численными величинами, характеризующими то или иное качество или свойство. Одну из них мы предложили вашему вниманию.
Она называется числом Авогадро, по имени знаменитого итальянского ученого, который ввел эту константу в употребление. Число Авогадро обозначает вполне определенное количество атомов. Количество, содержащееся в одном грамм-атоме данного элемента.
Напомним, что грамм-атомом называется количество элемента, численно равное его атомному весу в граммах. Например, грамм-атом углерода равен (округленно) 14, железа — 56, урана — 238.
И во всех случаях атомов будет ровно столько, чему равно число Авогадро.
Если записать его на бумаге, оно приблизительно представится единицей, за которой следует двадцать три нуля; точнее же — 6,025 · 1023.
Вот сколько атомов содержится в четырнадцати граммах углерода, в пятидесяти шести — железа, в двухстах тридцати восьми — урана.
Число Авогадро столь чудовищно велико, что его трудно себе представить. Однако попробуем.
На земном шаре живет около 3 миллиардов человек. Пусть каждый из землян задастся целью подсчитывать число атомов в грамм-атоме какого-нибудь элемента. Пусть каждый человек работает по восьми часов ежедневно, и пусть каждую секунду он произносит по одной цифре.
Сколько потребуется времени жителям Земли, чтобы пересчитать все 6,025 · 1023 атомов?
Очень простой расчет, который вы легко проделаете сами, приведет к поразительному результату: около 20 миллионов лет. Как говорится, впечатляюще.
Огромная величина числа Авогадро позволяет нам убедиться в том, что идея о повсеместности распространения химических элементов покоится на прочной основе. Хоть несколько атомов любого химического элемента мы можем обнаружить повсюду.
Так велико число Авогадро, что очевидной становится и невозможность получения абсолютно чистого вещества, не содержащего никаких примесей. Ведь совершенно немыслимо уловить один-единственный атом примеси среди 1023 атомов, не внеся при этом никаких новых загрязнений.
В самом деле, грамм, скажем, железа содержит около 1022 атомов. Если примесь, например, атомов меди составляет всего один процент (10 миллиграммов), то это ни много ни мало 1020 атомов. Если довести содержание примеси до одной десятитысячной процента, то все равно на 1023 атомов основного вещества придется 1016 атомов примеси. Допустим, что примесь включает в себя все элементы периодической системы. Тогда каждый посторонний элемент в среднем будет представлен 1014, или ста триллионами атомов.
Широко распростирает химия…
Опять про алмаз
Сырой, необработанный алмаз — чемпион «всея минералов, материалов и прочая» по твердости. Современной технике без алмазов пришлось бы нелегко.
Алмаз отделанный, отшлифованный превращается в бриллиант, и нет ему равных среди драгоценных камней.
Особо ценятся у ювелиров голубые алмазы. Они встречаются в природе безумно редко, и платят за них потому совершенно бешеные деньги.
Но бог с ними, с бриллиантовыми украшениями. Пусть будет побольше алмазов обычных, чтобы не приходилось дрожать над каждым крошечным кристалликом.
Увы, алмазных месторождений на Земле считанное количество, а богатых и того меньше. Одно из них — в Южной Африке. И оно дает до сих пор до 90 процентов мировой добычи алмазов. Если не считать Советского Союза. У нас лет десять назад был открыт крупнейший алмазоносный район в Якутии. Теперь там ведется промышленная добыча алмазов.
Для образования природных алмазов требовались чрезвычайные условия. Гигантские температуры и давления. Алмазы рождались в глубинах земной толщи. Местами алмазосодержащие расплавы вырывались на поверхность и застывали. Но случалось это весьма редко.
А нельзя ли обойтись без услуг природы? Может ли человек сам создавать алмазы?
История науки зафиксировала не один десяток попыток получить искусственные алмазы. (Кстати, одним из первых «искателей счастья» был Анри Муассан, выделивший свободный фтор.) Все до единой не имели успеха. Или метод был в корне неверен, или экспериментаторы не располагали аппаратурой, выдерживающей сочетание высочайших температур и давлений.
Только в середине 50-х годов новейшая техника нашла, наконец, ключи к решению проблемы искусственных алмазов. Исходным сырьем, как и следовало ожидать, послужил графит. Его подвергли одновременному воздействию давления в 100 тысяч атмосфер и температуры около 3 тысяч градусов. Теперь алмазы приготовляют во многих странах мира.
Но химикам-то здесь остается только радоваться вместе со всеми. Их роль не так уж велика: основное взяла на себя физика.
Зато химики преуспели в другом. Они существенно помогли усовершенствовать алмаз.
Как так усовершенствовать? Разве может быть что-нибудь идеальнее алмаза? Его кристаллическая структура — само совершенство в мире кристаллов. Именно благодаря идеальному геометрическому расположению атомов углерода в алмазных кристалликах последние так тверды.
Тверже, чем он есть, алмаз не сделаешь. Но можно изготовить вещество тверже алмаза. И химики создали для этого сырье.
Существует химическое соединение бора с азотом — нитрид бора. Внешне оно ничем не примечательно, но одна его особенность настораживает: кристаллическая структура у него такая же, как у графита. «Белый графит» — это название давно закрепилось за нитридом бора. Правда, никто не пытался изготовлять из него карандашных грифелей…
Химики нашли дешевый способ синтеза нитрида бора. Физики подвергли его жестоким испытаниям: сотни тысяч атмосфер, тысячи градусов… Логика их действий была предельно проста. Раз «черный» графит удалось превратить в алмаз, то нельзя ли из «белого» получить вещество, подобное алмазу?
И получили так называемый боразон, который по своей твердости превосходит алмаз. Он оставляет царапины на гладких алмазных гранях. И выдерживает более высокие температуры — просто так боразон не сожжешь.
Боразон пока еще дорог. Предстоит немало хлопот, чтобы он значительно подешевел. Но главное-то уже сделано. Человек снова оказался способнее природы.
…И вот еще одно сообщение, которое недавно пришло из Токио. Японским ученым удалось приготовить вещество, значительно превосходящее алмаз по твердости. Они подвергли силикат магния (соединение, состоящее из магния, кремния и кислорода) давлению в 150 тонн на квадратный сантиметр. По понятным причинам подробности синтеза не афишируются. Новорожденный «король твердости» пока не имеет имени. Но это и не важно. Важнее другое: несомненно, что уже в ближайшее время алмаз, который столетиями возглавлял список самых твердых веществ, окажется в этом списке далеко не на первом месте.
Бесконечные молекулы
Резина известна каждому. Это мячи и калоши. Это хоккейная шайба и перчатки хирурга. Это, наконец, автомобильные шины и грелки, непромокаемые плащи и водопроводные шланги.
Сейчас резину и изделия из нее получают на сотнях заводов и фабрик. А несколько десятилетий назад во всем мире для изготовления резины пользовались природным каучуком. Слово «каучук» произошло от индейского «као-чао», что значит «слезы гевеи». А гевея — это дерево. Собирая и определенным способом перерабатывая его млечный сок, люди и получали каучук.
Много полезных вещей можно сделать из каучука, да жаль, что добыча его очень трудоемка и растет гевея только в тропиках. И удовлетворить потребности промышленности природным сырьем оказалось невозможным.
Здесь-то и пришла на помощь людям химия. Прежде всего химики задались вопросом: а почему каучук так эластичен? Долго пришлось им исследовать «слезы гевеи», и, наконец, разгадку нашли. Оказалось, что молекулы каучука построены очень своеобразно. Они состоят из большого числа повторяющихся одинаковых звеньев и образуют гигантские цепи. Конечно, такая «длинная» молекула, содержащая около пятнадцати тысяч звеньев, способна изгибаться во всех направлениях, она и обладает эластичностью. Звеном этой цепи оказался углерод, изопрен C5H8, а структурную его формулу можно изобразить так:
Правильнее сказать, что изопрен как бы представляет собой исходный природный мономер. В процессе же полимеризации молекула изопрена несколько изменяется: разрываются двойные связи между атомами углерода. За счет таких освобождающихся связей отдельные звенья соединяются в гигантскую молекулу каучука.
Проблема получения искусственного каучука уже давно волновала ученых и инженеров.
Казалось бы, дело не ахти какое хитрое. Сначала получить изопрен. Потом заставить его полимеризоваться. Связать отдельные изопреновые звенья в длинные и гибкие цепи искусственного каучука.
Казалось одно, оказалось другое. Не без труда химики синтезировали изопрен, а чуть дошло до его полимеризации, каучук не получился. Звенья связывались между собой, но как попало, а не в каком-то определенном порядке. И создавались искусственные продукты, чем-то похожие на каучук, но во многом и отличные от него.
И химикам пришлось изобретать способы заставить изопреновые звенья свиваться в цепь в нужном направлении.
Первый в мире промышленный искусственный каучук был получен в Советском Союзе. Академик Сергей Васильевич Лебедев выбрал для этого другое вещество — бутадиен:
Очень похожее по составу и строению на изопрен, но полимеризацией бутадиена легче управлять.
Сейчас известно довольно большое количество искусственных каучуков (в отличие от натурального их теперь часто называют эластомерами).
Сам природный каучук и изделия из него обладают существенными недостатками. Так, он сильно набухает в маслах и жирах, малостоек к действию многих окислителей, в частности озона, следы которого всегда присутствуют в воздухе. При изготовлении изделий из природного каучука его приходится вулканизовать, то есть подвергать действию высокой температуры в присутствии серы. Именно так превращают каучук в резину или эбонит. При работе изделий из природного каучука (к примеру, автомобильных шин) выделяется значительное количество тепла, что приводит к их старению, быстрому изнашиванию.
Вот почему ученым пришлось позаботиться о создании новых, синтетических каучуков, которые обладали бы более совершенными свойствами. Есть, например, семейство каучуков под названием «буна». Оно происходит от начальных букв двух слов: «бутадиен» и «натрий». (Натрий играет роль катализатора при полимеризации.) Некоторые эластомеры из этого семейства оказались превосходными. Они пошли в основном на изготовление автомобильных покрышек.
Особенно большое значение приобрел так называемый бутилкаучук, который получают совместной полимеризацией изобутилена и изопрена. Во-первых, он оказался самым дешевым. А во-вторых, на него, в отличие от природного каучука, почти не действует озон. Кроме этого, вулканизаты бутилкаучука, который сейчас широко применяется при изготовлении камер, обладают в десять раз большей непроницаемостью для воздуха по сравнению с вулканизатами природного продукта.
Очень своеобразны так называемые полиуретановые каучуки. Обладая высокой прочностью на разрыв и растяжение, они почти не подвержены старению. Из полиуретановых эластомеров готовят так называемый пенистый каучук, пригодный для обивки сидений.
В последнее десятилетие разработаны каучуки, о которых раньше ученые и не помышляли. И прежде всего эластомеры, на основе кремнийорганических и фтороуглеродистых соединений. Эти эластомеры отличаются высокой термостойкостью, вдвое превосходящей термостойкость природного каучука. Они устойчивы к озону, а каучук на основе фтороуглеродистых соединений не боится даже дымящих серной и азотной кислот.
Но и это еще не все. Совсем недавно получены так называемые карбоксилсодержащие каучуки — сополимеры бутадиена и органических кислот. Они оказались исключительно прочными на растяжение.
Можно сказать, что и здесь природа уступила свое первенство материалам, созданным человеком.
Алмазное сердце и шкура носорога
Есть в органической химии класс соединений, получивший название углеводородов. Это действительно углеводороды — в их молекулах, кроме атомов углерода и водорода, больше ничего нет. Типичные наиболее известные их представители — метан (он составляет примерно 95 процентов природного газа), а из жидких углеводородов — нефть, из которой получают различные сорта бензинов, смазочных масел и много других ценных продуктов.
Возьмем самый простейший из углеводородов, метан СН4. Что получится, если атомы водорода в метане заместить на атомы кислорода? Углекислый газ CO2. А если на атомы серы? Легколетучая ядовитая жидкость, сернистый углерод CS2. Ну, а если мы заместим все атомы водорода на атомы хлора? Тоже получим известное вещество: четыреххлористый углерод. А если вместо хлора взять фтор?
На этот вопрос еще три десятка лет назад мало кто мог ответить что-либо вразумительное. Однако в наше время занимается фтороуглеродистыми соединениями уже самостоятельный раздел химии.
По своим физическим свойствам фтороуглероды — почти полные аналоги углеводородов. Но на этом их общие свойства и заканчиваются. Фтороуглероды в отличие от углеводородов оказались крайне реакционнонеспособными веществами. Кроме этого, они в высшей степени устойчивы к нагреванию. Недаром их иногда называют веществами, обладающими «алмазным сердцем и шкурой носорога».
Химическая суть их устойчивости по сравнению с углеводородами (да и другими классами органических соединений) относительно проста. Атомы фтора имеют значительно больший, чем у водорода, размер, а потому плотно «закрывают» доступ другим реакционноспособным атомам к атомам углерода, которые окружают.
С другой стороны, атомы фтора, превратившиеся в ионы, крайне трудно отдают свой электрон и «не хотят» вступать в реакцию с какими-либо другими атомами. Ведь фтор — самый активный из неметаллов, и практически никакой другой неметалл не может окислить его ион (отобрать у его иона электрон). Да и связь углерод — углерод устойчива сама по себе (вспомните алмаз).
Именно в силу своей инертности фтороуглероды и нашли самое широкое применение. Например, пластмасса из фтороуглеродов, так называемый тефлон, устойчива при нагревании до 300 градусов, она не поддается действию серной, азотной, соляной и других кислот. На нее не действуют кипящие щелочи, она не растворяется во всех известных органических и неорганических растворителях.
Фторопласт недаром называют иногда «органической платиной», потому что он изумительный материал для изготовления посуды для химических лабораторий, разнообразной промышленной химической аппаратуры, труб всевозможного назначения. Поверьте, очень многие вещи в мире делались бы из платины, не будь она так дорога. Фторопласт же сравнительно дешев.
Из всех известных в мире веществ фторопласт самое скользкое. Пленка из фторопласта, брошенная на стол, буквально «стекает» на пол. Подшипники из фторопласта практически не нуждаются в смазке. Фторопласт, наконец, чудесный диэлектрик, притом чрезвычайно теплостойкий. Изоляция из фторопласта выдерживает нагрев до 400 градусов (выше температуры плавления свинца!).
Таков фторопласт — один из самых удивительных искусственных материалов, созданных человеком.
Жидкие фтороуглероды негорючи и не замерзают до очень низких температур.
Союз углерода и кремния
Два элемента в природе могут претендовать на особое положение. Во-первых, углерод. Он основа всего живого. И в первую очередь потому, что углеродные атомы способны прочно соединяться друг с другом, образуя цепеобразные соединения:
Во-вторых, кремний. Он основа всей неорганической природы. Но атомы кремния не могут образовать столь длинных цепочек, как атомы углерода, а потому соединений кремния, встречающихся в природе меньше, чем соединений углерода, хотя и значительно больше, чем соединений любых других химических элементов.
Ученые решили «исправить» этот недостаток кремния. В самом деле, ведь кремний так же четырехвалентен, как и углерод. Правда, связь между атомами углерода значительно прочнее, чем между атомами кремния. Но зато кремний не такой активный элемент.
И если бы удалось получить с его участием соединения, подобные органическим, какими удивительными свойствами они могли бы обладать!
Сначала ученым не повезло. Правда, было доказано, что кремний может образовывать соединения, в которых его атомы чередуются с атомами кислорода:
Однако они оказались малоустойчивыми.
Успех пришел, когда атомы кремния решили совместить с атомами углерода. Такие соединения, получившие название кремнийорганических, или силиконов, действительно обладают рядом уникальных свойств. На их основе были созданы различные смолы, позволяющие получать пластические массы, устойчивые в течение длительного времени к действию высоких температур.
Каучуки, изготовленные на основе кремнийорганических полимеров, обладают ценнейшими качествами, например теплостойкостью. Некоторые сорта силиконовой резины устойчивы до температуры в 350 градусов. Представьте себе автомобильную покрышку, сделанную из такой резины.
Силиконовые каучуки совершенно не набухают в органических растворителях. Из них стали изготовлять различные трубопроводы для перекачки горючего.
Некоторые силиконовые жидкости и смолы почти не меняют вязкость в широком интервале температур. Это открыло им дорогу для применения в качестве смазочных материалов. Вследствие малой летучести и высокой температуры кипения силиконовые жидкости нашли широкое применение в насосах для получения высокого вакуума.
Кремнийорганические соединения обладают водоотталкивающими свойствами, и это ценное качество было учтено. Их стали использовать при изготовлении водоотталкивающей ткани. Но дело не только в тканях. Известна пословица «вода камень точит». На строительстве важных сооружений опробовали защиту строительных материалов различными кремнийорганическими жидкостями. Опыты прошли успешно.
На основе силиконов в последнее время были созданы прочные температуростойкие эмали. Пластинки меди или железа, покрытые такими эмалями, в течение нескольких часов выдерживают нагревание до 800 градусов.
И это лишь начало своеобразного союза углерода и кремния. Но такой «двойственный» союз уже не удовлетворяет химиков. Они поставили задачу ввести в молекулы кремнийорганических соединений и другие элементы, такие, как, например, алюминий, титан, бор. Ученые успешно разрешили проблему. Так родился совершенно новый класс веществ — полиорганометаллосилоксаны. В цепочках таких полимеров могут быть разные звенья: кремний — кислород — алюминий, кремний — кислород — титан, кремний — кислород — бор и другие. Подобные вещества плавятся при температурах 500–600 градусов и в этом смысле составляют конкуренцию многим металлам и сплавам.
В литературе как-то промелькнуло сообщение, что японским ученым будто бы удалось создать полимерный материал, выдерживающий нагрев до 2000 градусов. Возможно, это ошибка, но ошибка, которая не так уж далека от истины. Ибо термин «жаростойкие полимеры» уже скоро должен войти в длинный перечень новых материалов современной техники.
Удивительные сита
Устроены эти сита довольно оригинально. Они представляют собой гигантские органические молекулы, обладающие рядом интересных свойств.
Во-первых, как и многие пластмассы, они нерастворимы в воде и органических растворителях. А во-вторых, в них входят так называемые ионогенные группы, то есть группы, которые в растворителе (в частности в воде) могут давать те или иные ионы. Таким образом, эти соединения относятся к классу электролитов.
Ион водорода в них может замещаться каким-нибудь металлом. Так происходит обмен ионов.
Эти своеобразные соединения получили название ионообменников. Те из них, что способны взаимодействовать с катионами (положительно заряженными ионами), называют катионитами, а те, которые взаимодействуют с отрицательно заряженными ионами, именуют анионитами. Первые органические ионообменники были синтезированы в середине 30-х годов нашего столетия. И сразу же завоевали самое широкое признание. Да это и не удивительно. Ведь с помощью ионообменников можно превращать жесткую воду в мягкую, соленую — в пресную.
Представьте себе две колонки — одна из них наполнена катионитом, другая — анионитом. Допустим, мы задались целью очистить воду, содержащую обычную поваренную соль. Мы пропускаем воду сначала через катионит. В нем все ионы натрия «обменяются» на ионы водорода, и в нашей воде вместо хлористого натрия будет уже присутствовать соляная кислота. Затем мы пропускаем воду через анионит. Если он находится в гидроксильной форме (то есть анионами, способными к обмену, у него являются ионы гидроксила), все ионы хлора будут заменены в растворе ионами гидроксила. Ну, а ионы гидроксила со свободными ионами водорода немедленно образуют молекулы воды. Таким образом, вода, содержавшая первоначально хлористый натрий, пройдя через ионообменные колонки, стала совершенно обессоленной. По своим качествам она может поспорить с лучшей дистиллированной водой.
Но не только опреснение воды принесло ионитам широкую известность. Оказалось, что ионы по-разному, с различной силой, удерживаются ионитами. Ионы лития удерживаются сильнее, чем ионы водорода, ионы калия — сильнее, чем натрия, ионы рубидия — сильнее, чем калия, и так далее. С помощью ионитов стало возможным очень легко проводить разделение различных металлов. Большую роль играют иониты сейчас и в различных отраслях промышленности. Например, на фотографических фабриках долгое время не было подходящего способа улавливания драгоценного серебра. Именно ионитовые фильтры решили эту важную задачу.
Ну, а сможет ли человек когда-нибудь использовать иониты для извлечения ценных металлов из морской воды? На этот вопрос нужно ответить утвердительно. И хотя морская вода содержит огромное количество различных солей, по-видимому, получение благородных металлов из нее дело недалекого будущего.
Сейчас трудность в том, что при пропускании морской воды через катионит, соли, которые в ней есть, фактически не дают возможности осесть небольшим примесям ценных металлов на катионите. Однако в последнее время синтезированы так называемые электронообменные смолы. Они не только обменивают свои ионы на ионы металла из раствора, но еще и способны восстанавливать этот металл, отдавая ему электроны. Недавние опыты с такими смолами показали, что если через них пропускать раствор, содержащий серебро, то вскоре на смоле осаждаются не ионы серебра, а металлическое серебро, причем смола в течение длительного периода сохраняет свои свойства. Таким образом, если через электронообменник пропускать смесь солей, ионы, которые наиболее легко восстанавливаются, могут превратиться в атомы чистого металла.
Химические клешни
Как утверждает старый анекдот, ловить львов в пустыне проще простого. Поскольку пустыня состоит из песка и львов, надо взять сито и просеять пустыню. Песок пройдет сквозь отверстия, а львы останутся на решетке.
А что делать, если есть ценный химический элемент в смеси с огромным количеством тех, что не представляют для вас какой-либо ценности? Или необходимо очистить какое-либо вещество от вредной примеси, содержащейся в весьма малых количествах.
Такое случается нередко. Примесь гафния в цирконии, который используется в конструкциях ядерных реакторов, не должна превышать нескольких десятитысячных процента, а в обычном цирконии его около двух десятых процента.
Эти элементы очень похожи по химическим свойствам, и обычные методы здесь, как говорится, не срабатывают. Даже удивительное химическое сито. А между тем требуется цирконий исключительно высокой степени чистоты…
Веками химики следовали немудреному рецепту: «Подобное растворяется в подобном». Неорганические вещества хорошо растворяются в неорганических растворителях, органические — в органических. Многие соли минеральных кислот хорошо растворяются в воде, безводной плавиковой кислоте, в жидкой цианистоводородной (синильной) кислоте. Очень многие органические вещества довольно хорошо растворимы в органических растворителях — бензоле, ацетоне, хлороформе, сернистом углероде и т. д. и т. п.
А как будет вести себя вещество, которое является чем-то промежуточным между соединениями органическими и неорганическими? Вообще-то химикам были знакомы до некоторой степени такие соединения. Так, хлорофилл (красящее вещество зеленого листа) органическое соединение, содержащее атомы магния. Он хорошо растворим во многих органических растворителях. Существует огромное количество неизвестных природе, искусственно синтезированных металлоорганических соединений. Многие из них способны растворяться в органических растворителях, причем эта способность зависит от природы металла.
На этом и решили сыграть химики.
В ходе работы ядерных реакторов время от времени возникает необходимость заменять отработанные урановые блоки, хотя количество примесей (осколков деления урана) в них обычно не превышает тысячной доли процента. Сначала блоки растворяют в азотной кислоте. Весь уран (и другие металлы, образовавшиеся в результате ядерных превращений) переходит в азотнокислые соли. При этом одни примеси, как ксенон, йод, автоматически удаляются в виде газов или паров, Другие, например олово, остаются в осадке.
Но получившийся раствор, кроме урана, содержит примеси многих металлов, в частности плутоний, нептуний, редкоземельные элементы, технеций и некоторые другие. Вот здесь и приходят на помощь органические вещества. Раствор урана и примесей в азотной кислоте смешивают с раствором органического вещества — трибутилфосфата. При этом практически весь уран переходит в органическую фазу, а примеси остаются в азотнокислом растворе.
Такой процесс получил название экстракции. После двукратной экстракции уран почти освобождается от примесей и может быть снова использован для изготовления урановых блоков. А оставшиеся примеси идут на дальнейшее разделение. Из них извлекут наиболее важные части: плутоний, некоторые радиоактивные изотопы.
Подобным же образом можно разделить цирконий и гафний.
Экстракционные процессы получили сейчас широкое распространение в технике. С их помощью проводят не только очистку неорганических соединений, но и многих органических веществ — витаминов, жиров, алкалоидов.
Химия в белом халате
Он носил звучное имя — Иоганн Бомбаст Теофраст Парацельс фон Гогенгейм. Парацельс — это не фамилия, а скорее своеобразный титул. В переводе на русский он означает «сверхвеликий». Был Парацельс превосходным химиком, а народная молва окрестила его чудесным исцелителем. Потому что он был не только химик, но и врач.
В средние века окреп союз химии и медицины. Химия тогда еще не заслужила права именоваться наукой. Ее воззрения были слишком туманны, а ее силы распылялись в тщетных поисках пресловутого философского камня.
Но, барахтаясь в сетях мистики, химия училась излечивать людей от тяжких недугов. Так родилась иатрохимия. Или врачебная химия. И многие химики в шестнадцатом, семнадцатом, восемнадцатом веках именовались аптекарями, фармацевтами. Хотя занимались чистейшей воды химией, готовили различные целительные снадобья. Правда, готовили вслепую. И не всегда эти «лекарства» оказывали человеку пользу.
Среди «аптекарей» Парацельс был одним из самых выдающихся. Список его лекарств включал ртутные и серные мази (кстати, их и поныне употребляют для лечения кожных заболеваний), соли железа и сурьмы, разные растительные соки.
Поначалу химия могла дать врачам лишь вещества, которые встречаются в природе. И то в очень ограниченном количестве. Но медицине этого было мало.
Если мы перелистаем современные рецептурные справочники, то увидим, что 25 процентов медикаментов — это, так сказать, природные препараты. Среди них экстракты, настойки и отвары, приготовленные из различных растений. Все остальное — искусственно синтезированные лекарственные вещества, незнакомые природе. Вещества, созданные могуществом химии.
Первый синтез лекарственного вещества был осуществлен около 100 лет тому назад. О целебном действии салициловой кислоты при ревматизме знали давно. Но добывать ее из растительного сырья было и трудно и дорого. Лишь в 1874 году удалось разработать простой способ получения салициловой кислоты из фенола.
Эта кислота легла в основу многих лекарственных препаратов. Например, аспирина. Как правило, срок «жизни» лекарств недолог: на смену старым приходят новые, более совершенные, более изощренные в борьбе с различными недугами. Аспирин в этом отношении своеобразное исключение. С каждым годом он раскрывает все новые, неизвестные ранее удивительные свойства. Оказывается, аспирин не только жаропонижающее и болеутоляющее средство, диапазон его применений куда более широк.
Очень «старое» лекарство — известный всем пирамидон (год его рождения 1896-й).
Сейчас в течение одного-единственного дня химики синтезируют несколько новых лекарственных веществ. С самыми различными качествами, против самых разнообразных болезней. От лекарств, побеждающих боль, до лекарств, помогающих излечивать психические заболевания.
Исцелять людей — нет задачи благороднее для химиков. Но нет и задачи труднее.
Несколько лет немецкий химик Пауль Эрлих пытался синтезировать препарат против страшного недуга — сонной болезни. В каждом синтезе что-то получалось, но всякий раз Эрлих оставался неудовлетворенным. Лишь в 606-й попытке удалось получить эффективное средство — сальварсан, и десятки тысяч людей смогли излечиться не только от сонной, но и от другой коварной болезни — сифилиса. А в 914-й попытке Эрлих получил препарат еще более могущественный — неосальварсан.
Долог путь лекарства от химической колбы к аптечному прилавку. Таков закон врачевания: пока лекарство не прошло всестороннюю проверку, его нельзя рекомендовать в практику. А когда этому правилу не следуют, бывают и трагические ошибки. Не так давно западногерманские фармацевтические фирмы разрекламировали новое снотворное — толидомид. Маленькая белая таблетка ввергала в быстрый и глубокий сон человека, страдающего стойкой бессонницей. Толидомиду пели дифирамбы, а он оказался страшным врагом для младенцев, еще не появившихся на свет. Десятки тысяч родившихся уродцев — такой ценой заплатили люди за то, что недостаточно проверенное лекарство поспешили выпустить в продажу.
И потому химикам и медикам важно знать не только, что такое-то лекарство успешно излечивает такую-то болезнь. Им необходимо самым тщательным образом разобраться, как именно оно действует, каков тонкий химический механизм его борьбы с болезнью.
Вот маленький пример. Сейчас в качестве снотворных нередко используют производные так называемых барбитуровых кислот. Эти соединения, содержащие в своем составе атомы углерода, водорода, азота и кислорода. Кроме этого, к одному из углеродных атомов присоединены две так называемые алкильные группы, то есть молекулы углеводородов, лишенные одного атома водорода. И вот к какому выводу пришли химики. Только тогда барбитуровая кислота обладает снотворным действием, когда сумма атомов углерода в алкильных группах не меньше четырех. И чем больше эта сумма, тем дольше и быстрее действует препарат.
Чем глубже ученые проникают в природу болезней, тем более тщательные исследования проводят химики. И все более и более точной наукой становится фармакология, занимавшаяся ранее лишь приготовлением различных лекарств и рекомендацией их применения против различных болезней. Теперь фармаколог должен быть и химиком, и биологом, и врачом, и биохимиком. Чтобы никогда не повторялись толидомидные трагедии.
Синтез лекарственных веществ — это одно из главных достижений химиков, создателей второй природы.
…В начале нашего столетия химики упорно пытались изготовить новые красители. И в качестве исходного продукта брали так называемую сульфаниловую кислоту. У нее очень «гибкая», способная к различным перестройкам молекула. В отдельных случаях, рассуждали химики, молекула сульфаниловой кислоты может преобразоваться в молекулу ценного красителя.
Так и оказалось на деле. Но до 1935 года никто не думал, что синтетические сульфаниловые красители одновременно являются могущественными лекарственными препаратами. Погоня за красящими веществами отошла на второй план: химики начали охоту за новыми лекарственными препаратами, которые получили общее название сульфамидных. Вот имена наиболее известных: сульфидин, стрептоцид, сульфазол, сульфадимезин. В настоящее время сульфамиды занимают одно из первых мест среди химических средств борьбы с микробами.
…Индейцы Южной Америки из коры и корней растения чилибухи добывали смертельный яд — кураре. Противник, пораженный стрелой, наконечник которой был смочен в кураре, моментально погибал.
Почему? Чтобы ответить на этот вопрос, химикам пришлось основательно разобраться в тайне яда.
Они нашли, что главное действующее начало кураре — алкалоид тубокурарин. Когда он попадает в организм, мышцы не могут сокращаться. Мышцы становятся недвижимыми. Человек теряет способность дышать. Наступает смерть.
Однако в определенных условиях этот яд может приносить пользу. Он может пригодиться хирургам при проведении некоторых очень сложных операций. Например, на сердце. Когда нужно выключить легочные мышцы и перевести организм на искусственное дыхание. Так смертельный враг выступает в роли друга. Тубокурарин входит в клиническую практику.
Однако он слишком дорог. А нужен препарат дешевый и доступный.
Снова вмешались химики. По всем статьям изучали они молекулу тубокурарина. Расщепляли ее на всевозможные части, исследовали полученные «осколки» и шаг за шагом выяснили связь между химическим строением и физиологической активностью препарата. Оказалось, что его действие определяется особыми группами, в которых содержится положительно заряженный атом азота. И что расстояние между группами должно быть строго определенным.
Теперь химики могли встать на путь подражания природе. И даже пытаться ее превзойти. Сначала они получили препарат, не уступающий по своей активности тубокурарину. А потом усовершенствовали его. Так родился синкурин; он вдвое активнее тубокурарина.
А вот еще более яркий пример. Борьба с малярией. Лечили ее хиной (или, по-научному, хинином), природным алкалоидом. Химикам же удалось создать плазмохин — вещество в шестьдесят раз более активное, чем хинин.
Современная медицина располагает огромным арсеналом средств, так сказать, на все случаи жизни. Против почти всех известных болезней.
Есть сильнейшие средства, успокаивающие нервную систему, возвращающие спокойствие даже самому раздраженному человеку. Существует, например, препарат, полностью снимающий чувство страха. Конечно, никто не порекомендует его студенту испытывающему боязнь перед экзаменом.
Есть целая группа так называемых транквилизаторов, лекарств-успокоителей. К ним относится, например, резерпин. Его применение для лечения некоторых психических заболеваний (шизофрении) в свое время сыграло огромную роль. Химиотерапия занимает теперь первое место в борьбе с душевными расстройствами.
Однако не всегда завоевания лекарственной химии оборачиваются положительной стороной. Есть, скажем, такое зловещее (иначе трудно его назвать) средство как ЛСД-25.
Во многих капиталистических странах его используют как наркотик, искусственно вызывающий различные симптомы шизофрении (всевозможные галлюцинации, позволяющие на какое-то время отрешиться от «земных тягот»). Но было немало случаев, когда люди, принявшие таблетки ЛСД-25, так и не приходили в нормальное состояние.
Современная статистика показывает, что большинство смертных случаев в мире — результат инфарктов или кровоизлияний в мозг (инсультов). Химики борются с этими врагами, изобретая разные сердечные лекарства, приготовляя препараты, расширяющие сосуды головного мозга.
С помощью синтезированных химиками тубазида и ПАСКа медики успешно побеждают туберкулез.
И наконец, ученые упорно ищут средства борьбы с раком — этим страшным бичом рода человеческого. Здесь еще очень много неясного и неизведанного.
Врачи ждут от химиков новых чудодейственных веществ. Ждут не напрасно. Тут химии еще предстоит показать, на что она способна.
Чудо из плесени
Это слово было известно давно. Врачам и микробиологам. Упоминалось в специальных книгах. Но ровным счетом ничего не говорило человеку, далекому от биологии и медицины. Да и редкий химик знал его значение. Теперь его знают все.
Слово это — «антибиотики».
Но еще раньше, чем со словом «антибиотики», человек познакомился со словом «микробы». Было установлено, что ряд заболеваний, например, пневмония, менингит, дизентерия, тиф, туберкулез и другие, обязан своим происхождением именно микроорганизмам. Для борьбы с ними и нужны антибиотики.
Уже в средние века было известно о лечебном действии некоторых видов плесеней. Правда, представления средневековых эскулапов были довольно своеобразны. Например, считалось, что в борьбе с болезнями помогают только плесени, взятые с черепов людей, повешенных или казненных за преступления.
Но это не существенно. Существенно другое: английский химик Александр Флеминг, изучая один из видов плесени, выделил из нее активное начало. Так появился на свет пенициллин, первый антибиотик.
Оказалось, что пенициллин — прекрасное оружие в борьбе со многими болезнетворными микроорганизмами: стрептококками, стафилококками и т. д. Он способен победить даже бледную спирохету — возбудителя сифилиса.
Но хотя Александр Флеминг открыл пенициллин в 1928 году, расшифровали формулу этого лекарства лишь в 1945-м. А уже в 1947 году удалось провести полный синтез пенициллина в лаборатории. Казалось, человек догнал природу на этот раз. Однако не тут-то было. Провести лабораторный синтез пенициллина — задачка нелегкая. Значительно проще получать его из плесени.
Но химики не отступили. И здесь они смогли сказать свое слово. Пожалуй, не слово сказать, а дело сделать. Суть в том, что плесень, из которой обычно получали пенициллин, очень мало «производительна». И ученые решили повысить ее продуктивность.
Эту проблему они решили, найдя вещества, которые, внедряясь в наследственный аппарат микроорганизма, меняли его признаки. Причем новые признаки были способны передаваться по наследству. Именно с их помощью и удалось вывести новую «породу» грибов, которая была значительно более активна в производстве пенициллина.
Ныне набор антибиотиков весьма внушителен: стрептомицин и террамицин, тетрациклин и ауреомицин, биомицин и эритромицин. Всего сейчас известно около тысячи самых разнообразных антибиотиков, и около сотни их применяется для лечения различных заболеваний. И немалую роль в их получении играет химия.
После того как микробиологи накопили так называемую культуральную жидкость, содержащую колонии микроорганизмов, наступает черед химиков.
Именно перед ними ставится задача выделить антибиотики, «активное начало». Мобилизуются разнообразные химические методы извлечения сложных органических соединений из природного «сырья». Антибиотики поглощают с помощью специальных поглотителей. Исследователи применяют «химические клешни» — экстрагируют антибиотики различными растворителями. Очищают на ионообменных смолах, осаждают из растворов. Так получается антибиотик-сырец, который подвергается снова продолжительному циклу очистки, пока, наконец, не предстает в виде чистого кристаллического вещества.
Некоторые, например пенициллин, и до сих пор синтезируют с помощью микроорганизмов. Но получение других — только наполовину дело природы.
Но есть и такие антибиотики, например синтомицин, где химики полностью обходятся без услуг природы. Синтез этого препарата от начала и до конца проводится на заводах.
Без могущественных методов химии слово «антибиотик» никогда бы не смогло завоевать столь широкую известность. И не произошло бы того подлинного переворота в использовании лекарственных средств, в лечении многих болезней, который эти антибиотики произвели.
Микроэлементы — витамины растений
Слово «элемент» имеет множество значений. Так, например, называются атомы одного вида, имеющие одинаковый заряд ядра. А что такое «микроэлементы»? Так называют химические элементы, которые содержатся в животных и растительных организмах в очень малых количествах. Так, в человеческом организме 65 процентов кислорода, около 18 процентов углерода, 10 процентов водорода. Это макроэлементы, их много. А вот титана и алюминия всего по одной тысячной доле процента — именно их и можно назвать микроэлементами.
На заре биохимии на такие пустяки внимания не обращали. Подумаешь, какие-то там сотые или тысячные доли процента. Такие количества тогда и определять-то не умели.
Техника и методы анализов совершенствовались, и ученые находили все большее и большее количество элементов в живых объектах. Однако роль микроэлементов долгое время установить не удавалось. Даже и сейчас, несмотря на то, что химический анализ позволяет определять миллионные и даже стомиллионные доли процента примесей практически в любых образцах, значение многих микроэлементов для жизнедеятельности растений и животных еще не выяснено.
Но кое-что сегодня уже известно. Например, что в различных организмах присутствуют такие элементы, как кобальт, бор, медь, марганец, ванадий, йод, фтор, молибден, цинк и даже… радий. Да, именно радий хотя и в ничтожных количествах.
Кстати говоря, ныне в составе организма человека обнаружено около 70 химических элементов, и есть основание полагать, что в человеческих органах содержится вся периодическая система. Причем каждый элемент играет какую-то вполне определенную роль. Существует даже точка зрения, что многие заболевания возникают из-за нарушения микроэлементного равновесия в организме.
Железо и марганец играют важную роль в процессе фотосинтеза растений. Если вырастить растение на почве, не содержащей даже следов железа, листья и стебли его будут белыми как бумага. Но стоит опрыскать такое растение раствором солей железа, как оно принимает свой естественный зеленый цвет. Медь тоже необходима в процессе фотосинтеза и влияет на усвояемость растительными организмами соединений азота. При недостаточном количестве меди в растениях очень слабо образуются белки, в состав которых входит азот.
Сложные органические соединения молибдена входят в качестве составных частей в различные ферменты. Именно они способствуют лучшему усвоению азота. Недостаток молибдена порой приводит к ожогу листьев из-за большого накопления в них солей азотной кислоты, которые в отсутствии молибдена не усваиваются растениями. И на содержание в растениях фосфора молибден оказывает влияние. В его отсутствие не происходит превращения неорганических фосфатов в органические. Недостаток молибдена сказывается и на накоплении пигментов (красящих веществ) в растениях — появляется пятнистость и бледная окраска листьев.
В отсутствие бора растения плохо усваивают фосфор. Бор способствует также лучшему передвижению по системе растения различных сахаров.
Микроэлементы играют важную роль не только в растительных, но и в животных организмах. Оказалось, что полное отсутствие ванадия в пище животных вызывает потерю аппетита и даже смерть. В то же время повышенное содержание ванадия в пище свиней приводит к их быстрому росту и к отложению толстого слоя сала.
Цинк, например, играет важную роль в обмене веществ и входит в состав эритроцитов животных.
Печень, если животное (и даже человек) находится в возбужденном состоянии, выбрасывает в общий круг кровообращения марганец, кремний, алюминий, титан и медь, но при торможении центральной нервной системы — марганец, медь и титан, а выделение кремния и алюминия задерживает. В регулировании содержания микроэлементов в крови организма принимают участие, кроме печени, мозг, почки, легкие и мышцы.
Установить роль микроэлементов в процессах роста и развития растений и животных — важная и увлекательная задача химии и биологии. В недалеком будущем это, безусловно, приведет к весьма значительным результатам. И откроет науке еще один из путей к созданию второй природы.
Что едят растения и при чем тут химия?
Еще повара древности славились своими кулинарными успехами. Столы королевских дворцов ломились от изысканных блюд. Люди с достатком становились разборчивыми в пище.
Растения, казалось, были куда более неприхотливыми. И в знойной пустыне и в полярной тундре уживались травы и кустарники. Пусть чахлые, пусть жалкие, но уживались.
Что-то было потребно для их развития. Но что? Это загадочное «что-то» ученые искали долгие годы. Ставили опыты. Обсуждали результаты.
А ясности не было.
Ее внес в середине прошлого века знаменитый немецкий химик Юстус Либих. Ему помог химический анализ. Самые разнообразные растения «разложил» ученый на отдельные химические элементы. Их поначалу оказалось не так-то много. Всего десять: углерод и водород, кислород и азот, кальций и калий, фосфор и сера, магний и железо. Но эта десятка заставляла бушевать зеленый океан на планете Земля.
Отсюда следовал вывод: чтобы жить, растение каким-то образом должно усваивать, «поедать» названные элементы.
Как именно? Где же находятся кладовые пищи растений?
В почве, в воде, в воздухе.
Но встречались удивительные вещи. На одних почвах растение бурно развивалось, цвело и давало плоды. На других — хирело, сохло и становилось блеклым уродцем. Потому что в почвах этих не хватало каких-нибудь элементов.
Еще до Либиха знали люди и другое. Если даже на самой плодородной почве год за годом высевать одни и те же сельскохозяйственные культуры, то урожай становится все хуже и хуже.
Почва истощалась. Растения постепенно «съедали» все запасы необходимых химических элементов, содержащихся в ней.
Надо было почву «подкармливать». Вводить в нее недостающие вещества, удобрения. Их применяли еще в седой древности. Применяли интуитивно, опираясь на опыт предков.
Либих возвел использование удобрений в ранг науки. Так родилась агрохимия. Химия стала служанкой растениеводства. Перед ней возникла задача: научить людей правильно употреблять известные удобрения и изобретать новые.
Сейчас используют десятки различных удобрений. И самые главные из них — калийные, азотные и фосфорные. Потому что именно калий, азот и фосфор — элементы, без которых не растет ни одно растение.
Маленькая аналогия, или как химики накормили растения калием
…Было время, когда столь знаменитый ныне уран ютился где-то на задворках интересов химии. Лишь окраска стекол да фотография заявляли на него робкие претензии. Потом в уране обнаружили радий. Из тысяч тонн урановых руд извлекали ничтожную крупинку серебристого металла. А отходы, содержащие огромное количество урана, продолжали загромождать заводские склады. Наконец пробил час урана. Выяснилось, что именно он дает человеку власть над использованием атомной энергии. Отбросы стали драгоценностью.
…Издавна были известны Стассфуртские соляные залежи в Германии. Они содержали многие соли, главным образом калия и натрия. Соль натрия, поваренная соль, сразу же находила употребление. Соли калия без сожаления отбрасывались. Огромные горы их громоздились около шахт. И люди не знали, что с ними делать. Очень нуждалось земледелие в калийных удобрениях, но стассфуртские отбросы нельзя было использовать. В них содержалось очень много магния. А он-то, полезный растениям в малых дозах, в больших оказывался гибельным.
Тут и помогла химия. Она нашла простой метод очистки калиевых солей от магния. И горы, окружающие стассфуртские шахты, стали таять буквально на глазах. Историки науки сообщают такой факт: в 1811 году в Германии был построен первый завод по переработке калийных солей. Через год их стало уже четыре, а в 1872 тридцать три завода Германии переработали более полумиллиона тонн сырой соли.
Вскоре после этого во многих странах были созданы заводы по выработке калийных удобрений. А теперь во многих странах добыча калийного сырья во много раз превосходит добычу поваренной соли.
«Азотная катастрофа»
Примерно сто лет спустя после открытия азота один из крупных микробиологов писал: «Азот более драгоценен с общебиологической точки зрения, чем самые редкие из благородных металлов». И был совершенно прав. Ведь азот — составная часть практически любой белковой молекулы, как растительной, так и животной. Нет азота — нет и белка. А нет белка — нет жизни. Энгельс сказал, что «жизнь — это форма существования белковых тел».
Для создания белковых молекул растениям необходим азот. Но откуда же они его берут? Азот отличает малая химическая активность. При обычных условиях он не вступает в реакции. Стало быть, азот атмосферы растения использовать не могут. Прямо-таки «…хоть видит око, да зуб неймет». Значит, азотная кладовая растений — почва. Увы, кладовая довольно скудная. Соединений, содержащих азот, в ней маловато. Вот почему почва быстро растрачивает свой азот, и ее необходимо дополнительно им обогащать. Вносить азотные удобрения.
Сейчас понятие «чилийская селитра» стало уделом истории. А примерно лет семьдесят назад оно не сходило с уст.
На обширных пространствах республики Чили простирается унылая пустыня Атакама. Она тянется на сотни километров. На первый взгляд это самая обычная пустыня, однако от других пустынь земного шара ее отличает одно любопытное обстоятельство: под тонким слоем песка здесь находятся мощные залежи азотнокислого натрия, или натриевой селитры. Об этих залежах знали давно, но, пожалуй, впервые вспомнили о них тогда, когда в Европе стало не хватать пороха. Ведь для производства пороха раньше использовались уголь, сера и селитра.
Срочно снарядили экспедицию для доставки заокеанского продукта. Однако весь груз пришлось выбросить в море. Оказалось, что для производства пороха годится только калиевая селитра. Натриевая жадно поглощала влагу из воздуха, порох отсыревал, и использовать его было невозможно.
Не в первый раз пришлось выбрасывать европейцам заокеанский груз в море. В XVII веке на берегах реки Платино-дель-Пино были найдены крупинки белого металла, получившего название платины. Впервые в Европу платина попала в 1735 году. Но с ней не знали толком, что делать. Из благородных металлов в то время были известны лишь золото и серебро, и платина не находила себе сбыта. Но вот ловкие люди обратили внимание, что по удельному весу платина и золото довольно близки друг к другу. Воспользовались этим и стали добавлять платину к золоту, которое шло на изготовление монет. Это уже была подделка. Испанское правительство запретило ввоз платины, а те запасы, которые еще остались в государстве, — собрали и в присутствии многочисленных свидетелей утопили в море.
Но история с чилийской селитрой не окончилась. Она оказалась превосходным азотным удобрением, благосклонно предоставленным человеку природой. Других азотных удобрений в то время не знали. Началась интенсивная разработка природных месторождений натриевой селитры. Из чилийского порта Иквикве ежедневно отчаливали суда, доставлявшие столь ценное удобрение во все уголки земного шара.
…В 1898 году мир был потрясен мрачным предсказанием знаменитого Крукса. В своей речи он предрекал человечеству смерть от азотного голода. Ежегодно вместе с урожаем поля лишаются азота, а месторождения чилийской селитры постепенно вырабатываются. Сокровища пустыни Атакамы оказались каплей в море.
Тогда ученые вспомнили об атмосфере. Пожалуй, первым человеком, обратившим внимание на безграничные запасы азота в атмосфере, был наш знаменитый ученый Климент Аркадьевич Тимирязев. Тимирязев глубоко верил в науку и силу человеческого гения. Он не разделял опасений Крукса. Человечество преодолеет азотную катастрофу, выпутается из беды, считал Тимирязев. И оказался прав. Уже в 1908 году ученые Биркеланд и Эйде в Норвегии в промышленном масштабе осуществили фиксацию атмосферного азота с помощью электрической дуги.
Примерно в это же время в Германии Фриц Габер разработал метод получения аммиака из азота и водорода. Так была окончательно решена проблема связанного азота, столь необходимого для питания растений. А свободного азота в атмосфере много: ученые подсчитали, что если весь азот атмосферы превратить в удобрения, то этого растениям хватит более чем на миллион лет.
Для чего нужен фосфор?
Юстус Либих считал, что растение может поглощать азот воздуха. Удобрять почву необходимо лишь калием и фосфором. Но именно с этими элементами ему и не повезло. Его «патентованное удобрение», которое взялась выпускать одна из английских фирм, не приводило к прибавке урожая. Лишь через много лет понял и открыто признал свою ошибку Либих. Он использовал нерастворимые фосфорнокислые соли, боясь, что хорошо растворимые будут быстро вымыты из почвы дождями. Но оказалось, растения не могут усваивать фосфор из нерастворимых фосфатов. И человеку пришлось готовить для растений своеобразный «полуфабрикат».
Каждый год урожаи всего мира уносят с полей около 10 миллионов тонн фосфорной кислоты. Для чего же нужен фосфор растениям? Ведь он не входит ни в состав жиров, ни в состав углеводов. Да и многие белковые молекулы, особенно наиболее простые, не содержат фосфора. Но без фосфора все эти соединения просто не могут образоваться.
Фотосинтез — это не просто синтез углеводов из углекислоты и воды, который «шутя» производит растение. Это сложный процесс. Фотосинтез идет в так называемых хлоропластах — своеобразных «органах» растительных клеток. В состав хлоропластов как раз и входит много соединений фосфора. Грубо приближенно хлоропласты можно представить себе в виде желудка какого-либо животного, где происходит переваривание и усвоение пищи, — ведь именно они имеют дело с непосредственными «строительными» кирпичиками растений: углекислотой и водой.
Поглощение растением углекислоты из воздуха происходит с помощью фосфорных соединений. Неорганические фосфаты превращают углекислый газ в анионы угольной кислоты, которые в дальнейшем и идут на постройку сложных органических молекул.
Конечно, роль фосфора в жизнедеятельности растений этим не ограничивается. Да и нельзя сказать, что его значение для растений уже выяснено полностью. Однако даже то, что известно, показывает его важную роль в их жизнедеятельности.
Химическая война
Это действительно война. Только без пушек и танков, ракет и бомб. Это «тихая», иногда многим незаметная, война не на жизнь, а на смерть. И победа в ней — счастье для всех людей.
Много ли вреда причиняет, например, обычный овод? Оказывается, это зловредное создание приносит убыток, только в нашей стране исчисляемый миллионами рублей в год. А сорняки? Только в США их существование стоит четыре миллиарда долларов. Или взять саранчу, сущее бедствие, превращающее цветущие поля в голую, безжизненную землю. Если подсчитать весь вред, который наносят сельскому хозяйству мира растительные и животные грабители за один-единственный год, получится невообразимая сумма. На эти деньги можно было бы целый год бесплатно кормить 200 миллионов человек!
Что такое «цид» в переводе на русский язык? Это значит — убивающий. И вот созданием различных «цидов» и занялись химики. Ими были созданы инсектициды — «убивающие насекомых», зооциды — «убивающие грызунов», гербициды — «убивающие траву». Все эти «циды» находят сейчас самое широкое применение в сельском хозяйстве.
До второй мировой войны широко применялись в основном неорганические ядохимикаты. Различных грызунов и насекомых, сорняки обрабатывали мышьяковыми, серными, медными, бариевыми, фтористыми и многими другими ядовитыми соединениями. Однако, начиная с середины сороковых годов, все большее распространение начинают находить органические ядохимикаты. Такой «крен» в сторону органических соединений был сделан вполне сознательно. Дело не только в том, что они оказались более безвредными для человека и сельскохозяйственных животных. Они обладают большей универсальностью, да и требуется их значительно меньше, чем неорганических, для получения того же эффекта. Так, всего миллионная доля грамма порошка ДДТ на один квадратный сантиметр поверхности полностью уничтожает некоторых насекомых.
В использовании органических ядохимикатов были и свои курьезы. Одним из действенных ядохимикатов считается в настоящее время гексахлоран. Однако, наверное, мало кому известно, что это вещество было получено впервые еще Фарадеем в 1825 году. Больше ста лет исследовали гексахлоран химики, даже не подозревая о его чудесных свойствах. И лишь после 1935 года, когда за его изучение взялись биологи, этот инсектицид стал выпускаться в промышленных масштабах. Лучшими инсектицидами в настоящее время являются фосфорорганические соединения, например фосфамид или препарат М-81.
До недавнего времени использовали для защиты растений и животных препараты наружного действия. Однако посудите сами: прошел дождь, подул ветер, и ваше защитное вещество исчезло. Все надо начинать сначала. Ученые задумались над вопросом — нельзя ли вводить ядохимикаты внутрь защищаемого организма? Делают же человеку прививки — и болезни ему не страшны. Как только микробы попадают в такой организм, они немедленно уничтожаются невидимыми «хранителями здоровья», появившимися там в результате введения сыворотки.
Оказалось, что создать ядохимикаты внутреннего действия вполне возможно. Ученые сыграли на различном строении организмов насекомых-вредителей и растений. Для растений такой ядохимикат безвреден, для насекомого — смертельный яд.
Химия защищает растения не только от насекомых, но и от сорняков. Были созданы так называемые гербициды, которые угнетающе действуют на сорняки и практически не вредят развитию культурного растения.
Пожалуй, одними из первых гербицидов, как это ни странно, были… удобрения. Так, уже давно отмечалось практиками сельского хозяйства, что если на поля вносить повышенные количества суперфосфата или сульфата калия, то при интенсивном росте культурных растений рост сорняков угнетается. Но и здесь, как и в случае с инсектицидами, в наше время решающую роль играют органические соединения.
Помощники земледельца
Мальчишке перевалило за шестнадцать. И вот он, пожалуй, первый раз в парфюмерном отделе. Он здесь не из любопытства, а по необходимости. У него уже начали пробиваться усы, и их надо брить.
Для начинающих это довольно интересная операция. Но примерно лет через десять-пятнадцать она до того надоест, что иногда хочется отрастить бороду.
А возьмите, например, траву. На железнодорожном полотне она недопустима. И люди из года в год «бреют» ее серпами и косами. Но представьте себе железную дорогу Москва — Хабаровск. Это девять тысяч километров. И если всю траву на ее протяжении скашивать, да еще не один раз за лето, на этой операции придется держать почти тысячу человек.
А нельзя ли придумать какой-нибудь химический способ «бритья»? Оказывается, можно.
Чтобы скосить траву на одном гектаре, необходимо, чтобы целый день работали 20 человек. Гербициды заканчивают «операцию по уничтожению» на такой же площади за несколько часов. Причем уничтожают траву начисто.
А известно ли вам, что такое дефолианты? «Фолио» — значит «лист». Дефолиант — вещество, вызывающее их опадение. Их применение позволило механизировать уборку хлопка. Из года в год, из века в век выходили люди на поля и вручную обирали кусты хлопчатника. Тот, кто не видел ручную уборку хлопка, вряд ли может представить всю тяжесть такой работы, которая, кроме всего, происходит при отчаянной жаре в 40–50 градусов.
Теперь же все значительно проще. За несколько дней до раскрытия коробочек с хлопком плантации хлопчатника обрабатываются дефолиантами. Самый простейший из них — Mg[ClO3]2. Листья с кустов опадают, и вот уже на полях работают хлопкоуборочные комбайны. Кстати, в качестве дефолианта может использоваться CaCN2, а это значит, что при обработке им кустов в почву дополнительно вносится азотное удобрение.
Но в своей помощи сельскому хозяйству, «в исправлении» природы, химия пошла еще дальше. Химиками были открыты так называемые ауксины — ускорители роста растений. Правда, поначалу природные. Простейшие из них, например гетероауксин, химики научились синтезировать в своих лабораториях. Эти вещества не только ускоряют рост, цветение и плодоношение растений, но повышают их устойчивость и жизнеспособность. Кроме этого, оказалось, что применение ауксинов в повышенных концентрациях оказывает прямо противоположный эффект — затормаживает рост и развитие растений.
Здесь наблюдается почти полная аналогия с лекарственными веществами. Так, известны лекарственные препараты, содержащие мышьяк, висмут, ртуть, однако в больших (скорее, повышенных) концентрациях все эти вещества ядовиты.
Например, ауксины могут намного удлинить сроки цветения декоративных растений, и в первую очередь цветов. При внезапных весенних заморозках затормозить распускание почек и цветение деревьев и так далее и тому подобное. С другой стороны, в холодных районах с коротким летом это позволит выращивать «ускоренным» методом урожаи многих фруктов и овощей. И хотя эти способности ауксинов еще не реализованы в широком масштабе, а представляют собой лишь лабораторные опыты, можно не сомневаться, что в недалеком будущем помощники земледельцев выйдут на широкий простор.
Обслуживают призраки
Вот факт для газетной сенсации: маститому ученому признательные коллеги преподносят… вазу из алюминия. Любой подарок заслуживает благодарности. Но не правда ли, дарить алюминиевую вазу… Есть над чем поиронизировать…
Это теперь. Сто лет назад такой дар показался бы исключительно щедрым. Его действительно преподнесли английские химики. И не кому-нибудь, а самому Дмитрию Ивановичу Менделееву. В знак великих заслуг перед наукой.
Видите, как все в мире относительно. В прошлом столетии не знали дешевого способа добычи алюминия из руд, и потому металл был дорог. Нашли способ, и цены стремительно полетели вниз.
Многие элементы периодической системы и поныне стоят недешево. И это часто ограничивает их применение. Но мы уверены, до поры до времени. Химия и физика еще не раз проведут «снижение цен» на элементы. Проведут обязательно, ведь чем дальше, тем больше обитателей менделеевской таблицы вовлекает практика в сферу своей деятельности.
Но среди них есть и такие, что в земной коре либо вовсе не встречаются, либо их безумно мало, почти что нет совсем. Скажем, астат и франций, нептуний и плутоний, прометий и технеций…
Однако их можно приготовить искусственно. А уж коль скоро химик держит в руках новый элемент, то начинает задумываться: как дать ему путевку в жизнь?
Наиболее практически важным искусственным элементом является пока плутоний. И его мировое производство превышает ныне добычу многих «обычных» элементов периодической системы. Добавим, что химики относят плутоний к числу самых изученных элементов, хотя ему «от роду» чуть больше четверти века. Все это не случайно, поскольку плутоний — превосходное «горючее» для ядерных реакторов, ничем не уступающее урану.
На некоторых американских спутниках Земли источником энергии служили америций и кюрий. Эти элементы отличаются сильнейшей радиоактивностью. При их распаде выделяется много тепла. С помощью термоэлементов оно преобразуется в электричество.
А прометий, до сих пор не найденный в земных рудах? Миниатюрные батарейки, размером чуть больше шляпки обычной канцелярской кнопки, созданы с участием прометия. Химические батареи в лучшем случае служат не более полугода. Прометиевая атомная батарейка беспрерывно работает в течение пяти лет. И диапазон ее применений весьма широк: от слуховых аппаратов до управляемых снарядов.
Астат готов предложить свои услуги врачам для борьбы с заболеваниями щитовидной железы. Ее пытаются ныне лечить с помощью радиоактивных излучений. Известно, что в щитовидке может накапливаться йод, а ведь астат — химический аналог йода. Введенный в организм, астат будет концентрироваться в щитовидной железе. Тогда-то и скажут веское слово его радиоактивные свойства.
Так что некоторые искусственные элементы отнюдь не пустое место для потребностей практики. Правда, служат человеку они односторонне. Люди могут использовать только их радиоактивные свойства. До химических особенностей руки пока не дошли. Исключение — технеций. Соли этого металла, как выяснилось, могут делать стальные и железные изделия устойчивыми против коррозии.
Несколько слов в оправдание
В ином деле самое трудное — вовремя остановиться.
Но остановиться все-таки надо. Даже если на кончике пера повис очередной занимательный рассказ по химии.
Но это, как говорится, присказка. А в заключение мы хотим сказать следующее.
Однажды слышали мы этакий жаркий спор, весьма похожий на те, что в свое время именовали «проблемой физиков и лириков». Правда, спорили на сей раз представители отменно точных наук. И один из спорщиков заявил, дескать, науки химии как таковой нет. Она — частный случай физики. Прямо так и заявил.
— А потому нет науки химии, — продолжил он, — что какой бы химический процесс мы ни взяли, если объяснять его интимный механизм, то только на основе физических закономерностей. Взаимодействуют два атома, обмениваются электронами. А что диктует возможность такого обмена? Что лежит в основе химической связи? Физические закономерности…
Можете себе представить, как возмутились химики, услышав подобное рассуждение?
Электроны-то электронами, а наука химия, древняя и вечно юная, существует! Со своими правилами и законами, со своей историей и своими безграничными перспективами. Иное дело, что ей частенько приходится привлекать на помощь и физику, и математику, и кибернетику.
Химия двадцатого столетия тем и своеобразна, тем и отличается от ранних периодов своего развития, что разбилась на множество самостоятельных направлений. Да что там — направлений! Самостоятельных наук! Электрохимия, фотохимия, радиационная химия. Химия низких температур и высоких давлений. Химия высоких температур и низких давлений.
И нередко бывает так, что ученый, работающий в одной области, плохо понимает своего коллегу-специалиста в другой. Но это ни в коей мере не говорит о низкой квалификации этих химиков.
Химические «диалекты» превратились в самостоятельные химические «языки».
И это еще полдела.
Химия ныне весьма тесно срослась с другими науками: биологией и геологией, механикой и космогонией. Эти «союзы» дали целый букет, как их называют, гибридных наук: биохимия, геохимия, космохимия, физико-химическая механика и прочее, и прочее, и прочее.
Возьмите, например, такую область, как биохимия. Ведь именно ей в конце концов предстоит разобраться в том, что же такое жизнь с ее бесчисленными проявлениями. Именно биохимии вкупе с фармакологией и медициной предстоит находить все новые и новые могущественные средства борьбы с болезнями.
А космохимия — химия далеких звезд и планет. Она еще только-только зарождается, но в познании эволюции вселенной ей будет принадлежать далеко не последнее слово.
Тут выяснилось совершенно неожиданное. Именно гибридные науки чуть ли не ежедневно приносят удивительные плоды — факты, наблюдения, о которых никто и не подозревал. От этих «гибридов» больше всего ожидает и практика.
А теперь войдите в наше положение. Берете лист бумаги и хотите написать что-то химическое. Набросали две-три фразы, и, глядишь, сквозь них уже проглядывают улыбающиеся физиономии физики и биологии. И четкий некогда замысел приобретает не в пример более смутные очертания. Помните пословицу «В огороде — бузина, в Киеве — дядька»? Так в современной науке и в химии, в частности, между «бузиной» и «дядькой» обнаруживается часто весьма конкретная связь.
Если нам когда-нибудь еще придется писать нечто популярное на тему о химии, мы, пожалуй, поставим в эпиграф приведенную пословицу.
В этой же книге мы, однако, пытались держаться в «химических» рамках.
Содержание
Вместо предисловия … 3
Обитатели большого дома
Периодическая система с птичьего полета … 9
Как астрономы оказали химикам медвежью услугу … 12
Двуликий элемент … 14
Самый первый, самый удивительный … 18
Сколько на Земле водородов? … 20
Химия = физика + математика! … 22
Еще немного математики … 24
Как химики встретились с неожиданным … 27
Разгадка, которая не принесла утешения … 29
В поисках «сумасшедшей» идеи, или как инертные газы перестали быть инертными … 31
Новое несоответствие? Как с ним справиться? … 35
«Всесъедающий» … 37
«Философский камень» Геннинга Брандта … 39
Запах свежести, или пример того, как количество переходит в качество … 41
Проще простого, удивительнее удивительного … 43
«Лед неокрепший на речке студеной…» … 46
Сколько вод на Земле? … 48
Вода «живая», животворная, вездесущая … 50
Сосулькины секреты … 52
Кое-что из области языкознания, или «две большие разницы» … 53
Почему «две большие разницы»? … 55
Еще два «почему» … 57
Некоторая несуразица … 59
Об оригинальности в архитектуре … 61
Четырнадцать близнецов … 62
Мир металлов и его парадоксы … 64
Металлы-жидкости, металл-газ (!) … 67
Необычные соединения … 68
Первый кибернетик в химии … 70
«Кибернетическая машина» застопорилась … 71
Как один элемент превратить в другой … 73
Смерть и бессмертие в мире элементов … 77
Один, два, много … 79
Справедливо ли поступила природа? … 82
Тропою ложных солнц … 84
Судьба одного из ста четырех … 86
Где твое место, уран? … 88
Маленькие истории из области археологии … 90
Уран и его профессии … 91
Недостроенное здание? … 94
Гимн современным алхимикам … 95
На краю Ойкумены … 97
«Святцы» элементов … 99
Змея, кусающая свой хвост
Душа химической науки … 103
Молнии и черепахи … 105
Чудесный барьер … 107
Змея, кусающая свой хвост … 103
Как «черепаха» становится «молнией», и наоборот … 111
Цепные реакции … 113
Как химия подружилась с электричеством … 115
Враг номер один … 116
…и как с ним бороться … 119
Светящаяся струя … 120
Солнце в роли химика … 123
Два варианта химических пут … 125
Химия и излучение … 126
Самая длинная реакция … 129
Химический музей
Вопрос без ответа … 133
Причина многообразия и ее следствия … 134
Химические кольца … 137
Третья возможность … 139
Кое-что о комплексных соединениях … 142
Сюрприз простого соединения … 144
Чего не знал Гемфри Дэви 145
26, 28, или нечто совсем удивительное … 147
Похвальное слово жидкости Кадэ … 149
Повесть о ТЭСе … 151
Необычные бутерброды … 155
Странные причуды угарного газа … 157
Красное и зеленое … 160
Все в одном … 162
Самый необычный атом, самая необычная химия … 163
Еще раз про алмаз … 164
Неизвестное под ногами … 167
Когда одно и то же вовсе не одно и то же … 168
Ее глазами
Слово о пользе анализа … 173
Чтобы порох был хорошим … 174
Как был открыт германий … 176
Свет и цвет … 178
Химический анализ… Солнца … 180
Волны и вещество … 182
И всего лишь ртутная капля … 185
Химическая призма … 187
Как открыли прометий … 188
Ароматы земляничной поляны … 196
Смерть Наполеона: легенда и действительность … 192
Анализ радиоактивационный … 194
Как взвесить невесомое? … 196
Химия единичных атомов … 198
Есть ли предел? … 200
Число, поражающее воображение … 201
Широко распростирает химия…
Опять про алмаз … 205
Бесконечные молекулы … 207
Алмазное сердце и шкура носорога … 212
Союз углерода и кремния … 214
Удивительные сита … 217
Химические клешни … 219
Химия в белом халате … 222
Чудо из плесени … 229
Микроэлементы — витамины растений … 231
Что едят растения и при чем тут химия? … 234
Маленькая аналогия, или как химики накормили растения калием … 235
«Азотная катастрофа» … 236
Для чего нужен фосфор? … 239
Химическая война … 240
Помощники земледельца … 243
Обслуживают призраки … 245
Несколько слов в оправдание … 248
Дмитрий Николаевич Трифонов и Лев Григорьевич Власов
Многие знаменательные события в жизни Дмитрия Николаевича Трифонова и Льва Григорьевича Власова произошли в один и тот же год.
Они родились в 1932 году, вместе учились на химическом факультете Московского университета, а в 1963 году оба стали кандидатами наук. Только научно-популярные книги раньше начал писать Дмитрий Николаевич Трифонов. Его «Редкоземельные элементы» и «Путешествие в страну РАИ» вышли в 1960 году в издательстве Академии наук СССР и в «Молодой гвардии».
Книжечка «Рожденные заново», выпущенная издательством «Знание» в 1962 году, — первый плод соавторства Дмитрия Николаевича Трифонова и Льва Григорьевича Власова. А через год «Молодой гвардией» был опубликован сборник «Путешествие в страну элементов», составителями и авторами которого они были.