В этой небольшой брошюре рассказывается об удивительных изобретениях природы, которые берут на вооружение современные инженеры.

Игорь Иванович Акимушкин

кандидат биологических наук

Патенты подводного царства

Небольшое введение

Откуда произошла бионика? Какая биологическая конструкция, заимствованная инженерами у природы, положила начало построению приборов-аналогов? Говорят, гидрофон, копирующий ухо тюленя, был первым кирпичиком, заложенным в фундамент новой науки. Старые гидрофоны, которыми выслушивали морские глубины корабли-охотники за подводными лодками, работали только в том случае, если корабль стоял. Когда же он двигался, то шум обтекавшей гидрофон воды заглушал гул винтов подводной лодки. А вот тюлень хорошо слышит на полном ходу! Строение его уха и послужило моделью для новой, более совершенной конструкции гидрофонов.

Другие утверждают, что бионика родилась гораздо раньше: изучение особенностей устройства стрекозиного крыла помогло авиастроителям победить опасную вибрацию крыльев воздушных кораблей.

А я готов утверждать, что еще Аристотель, большой знаток зоологии, заложил основы бионики. Попытка эвристического моделирования сделана им почти две с половиной тысячи лет назад: великий грек описал модель человеческого мозга.

Две тысячи лет спустя Рене Декарта тоже увлекла идея моделирования мозга. А Леонардо да Винчи мечтал построить копирующий птицу летательный аппарат (и до него и после него не один Икар пробовал оторваться от земли на машущих крыльях).

Давно, очень давно, люди пытались проникнуть в тайны природных конструкций. Не так уж и важно, кто был из них первым. Важно, что их труды и идеи не пропали даром и что новая наука бионика, рожденная на основе этих идей и накопленного опыта, сейчас успешно развивается.

Два секрета дельфинов

Какие природные конструкции, какие органы обитателей моря могут дать новые идеи инженерам?

Сейчас много говорят о дельфинах. Разносторонние способности этих животных поистине феноменальны. Их изучают теперь и анатомы, и психологи, и лингвисты, и физики, и кораблестроители.

Последних привлекает кожа дельфинов. Точнее: способность дельфинов быстро плавать, чем обязаны они, кроме всего прочего, особому устройству своей кожи, которая является гидрофобной, то есть не терпит воды, отталкивает ее, не смачивается. Все дело в смазке, которую выделяют кожные железы.

Позади всякого тела, плывущего в воде, возникают вихревые водовороты, а вместе с ними — пониженное давление, которое как бы тянет это тело назад, тормозит его. Кожа дельфинов устроена так, что гасит тормозящие вихри. Она волнообразно-подвижна и упруга, пронизана сложной системой сообщающихся полостей, заполненных жидким жиром, который, перетекая под давлением воды из полости в полость, как поршневой амортизатор, гасит энергию водяных вихрей.

Это свойство было использовано конструкторами торпед, которые обтянули смертоносные снаряды резиной «ламинфло», копирующей в главных деталях кожу дельфина.

Но еще раньше ученые разгадали другой секрет дельфинов: ультразвуковой сонар, акустический локатор — приспособление в высшей степени уникальное.

Дельфины очень «болтливы». Ни минуты не помолчат. Большая часть их криков составляет разговорный, так сказать, лексикон, в данном случае он нас не интересует. Другие же явно обслуживают сонары.

Дельфин афалина свистит, щелкает, хрюкает, лает, визжит на разные голоса в диапазоне частот от ста пятидесяти до ста пятидесяти пяти тысяч герц. Но когда он и «молча» плывет, его сонар постоянно ощупывает окрестности серией быстрых криков, или, как их еще называют, клаков, которые длятся не больше нескольких миллисекунд и повторяются обычно пятнадцать — двадцать раз в секунду. А иногда и сотни раз!

Малейший всплеск на поверхности — и дельфин сейчас же учащает свои крики, «ощупывая» ими погружающийся предмет. Эхолокатор дельфина настолько чувствителен, что даже маленькая дробинка, осторожно опущенная в воду, не ускользнет от его внимания. Рыба, брошенная в водоем, обнаруживается немедленно. Дельфин пускается в погоню. Не видя в мутной воде добычу, безошибочно преследует ее. Вслед за рыбой точно меняет курс. Прислушиваясь к эху своего голоса, дельфин слегка наклоняет голову то в одну, то в другую сторону, как и человек, пытающийся точнее установить направление звуков.

Если опустить в небольшой бассейн несколько десятков вертикальных стержней, дельфин быстро плывет между ними, не задевая их. Однако крупноячеистые сети он, по-видимому, не может обнаружить своим эхолокатором. Мелкоячеистые «нащупывает» легко.

Дело здесь, видимо, в том, что крупные ячеи слишком «прозрачны» для звука, а мелкие отражают его, почти как сплошная преграда.

Вильям Шевилл и Барабара Лоренс-Шевилл, научные сотрудники Вудсхольского Океанографического института, серией интересных опытов показали, насколько тонкое у дельфина акустическое «осязание».

Дельфин плавал в небольшой, отгороженной от моря бухточке. И все время «поскрипывал». А иногда гидрофон дико скрежетал от слишком быстрых, скороговоркой произнесенных звуков. Случалось это тогда, когда в воду бросали кусочки рыбы. Не просто бросали, а тихонько, без всякого всплеска, укладывали на дно. Но от дельфина трудно было утаить самое бесшумное подбрасывание пищи в пруд, даже если он плавал на другом его конце, за двадцать метров от места «диверсии». А вода в этой луже была такая мутная, что когда погружали в нее на полметра металлическую пластинку, та словно растворялась: даже самый зоркий человек не мог ее увидеть.

Экспериментаторы опускали в воду маленьких рыбешек длиной около пятнадцати сантиметров. Дельфин моментально засекал рыбку эхолокатором, хотя она едва была погружена: человек держал ее за хвост.

Считают, что клаки служат дельфину для ближней ориентировки. Общая разведка местности и ощупывание более удаленных предметов производится свистом. И свист этот частотно модулирован! Но в отличие от такого же типа сонаров летучих мышей начинается он более низкими нотами, а заканчивается высокими.

Другие киты — кашалоты, финвалы, белухи тоже, по-видимому, ориентируются с помощью ультразвуков. Вот только ученые не знают еще, чем они их издают, эти звуки. Одни исследователи думают, что дыхалом, то есть ноздрей и воздухоносными мешками дыхательного канала, другие — что горлом. Хотя настоящих голосовых связок у китов и нет, но их с успехом могут заменить (так некоторые считают) особые наросты на внутренних стенках гортани.

А может быть, и дыхало, и гортань в равной мере обслуживают передающую систему сонара.

Эхолотирующие крики

После полудня 7 марта 1949 года исследовательское судно «Атлантик» прослушивало море в ста семидесяти милях к северу от Пуэрто-Рико. Внизу под кораблем были огромные глубины. Пятикилометровые толщи соленой воды наполняли гигантскую впадину в земле.

И вот из этой бездны донеслись громкие крики. Один крик, потом его эхо. Еще крик и опять эхо. Много криков подряд с промежутком примерно в полторы секунды. Каждый длился около трети секунды, и высота его тона была пятьсот герц.

Тут же подсчитали, что неведомое существо упражнялось в вокальных соло на глубине примерно трех с половиной километров. Эхо его голоса отражалось от морского дна и потому добегало до приборов корабля с некоторым запозданием.

Поскольку киты не ныряют так глубоко, а раки и крабы не производят столь громких звуков, биологи решили, что в бездне кричала какая-то рыба, звуком зондируя океан. Измеряла, попросту говоря, его глубину. Изучала местность, рельеф дна.

Идея эта теперь мало кому кажется невероятной. Ибо уже точно установлено, что рыбы, которых долго считали немыми, издают тысячи всевозможных звуков, ударяя особыми мышцами по плавательным пузырям, как по барабану. Другие скрежещут зубами, щелкают костяшками своей брони. Многие из этих тресков, скрипов и писков звучат в ультракоротком диапазоне и служат, по-видимому, для эхолокации и ориентировки в пространстве. Значит, как и у дельфинов, у рыб тоже есть свои сонары. Они еще совсем не изучены. Некоторые исследователи, правда, уже сейчас полагают, что рыбы не способны к эхолокации и сонаров у них нет. Но будущее покажет, так ли это.

От инфразвука до инфрасвета

Тридцать лет назад академик В. В. Шулейкин впервые «услышал» и описал «голос моря». Когда над морем сильно дует ветер, то он срывает с гребней волн не только брызги и пену, но и… инфразвуки. Они быстро бегут во все стороны и предупреждают всех обитателей моря, которые их слышат, о приближении шторма.

Дельфины слышат «голос моря» и спешат уплыть подальше от берегов и скал.

И медуза его слышит: звуковые инфраволны частотой в 8–13 герц ударяют в малюсенькие камешки, которые плавают в «ухе» медузы — крошечном шарике на тонком стебельке. Камешки трутся о нервные рецепторы в стенках «шарика», и медуза слышит грозный рокот приближающегося шторма.

Уже сконструирован прибор «ухо медузы» — в нем сходство с оригиналом не только в названии: он довольно точно имитирует чувствительный к инфразвуку орган медузы. Работает прибор с большой точностью: о приближении шторма предупреждает за 15 часов!

Не только инфразвук, но и инфрасвет помогает животным лучше ориентироваться в окружающем море. Обнаружены животные, наделенные инфракрасным «зрением». Среди них — черепахи и кальмары.

Польский исследователь Войтузяк, экспериментируя с водяными черепахами трех разных видов (одна из них обычная европейская болотная черепаха), доказал, что они различают длинноволновые лучи солнечного спектра и их можно обучить воспринимать инфракрасный свет как сигнал.

Что касается кальмаров, то некоторые их глубоководные виды, помимо обычных глаз, наделены еще так называемыми термоскопическими глазами, то есть органами, способными улавливать инфракрасные лучи. Эти глаза рассеяны у них по всей нижней поверхности хвоста. Каждый имеет вид небольшой темной точки. Под микроскопом видно, что устроен он, как обычный глаз, но снабжен светофильтром, задерживающим все лучи, кроме инфракрасных. Светофильтр расположен перед преломляющей линзой — хрусталиком. Линза отбрасывает сконцентрированный пучок тепловых лучей на чувствительный к ним воспринимающий орган.

Термолокаторы иной конструкции изучены недавно у гремучих змей, но поскольку животные эти сугубо сухопутные, о них я здесь рассказывать не буду.

Сто разновидностей живых радаров

Среди многочисленных священных животных древнего Египта была одна рыба, обладающая совершенно уникальными способностями.

Рыба эта — мормирус, или водяной слон. Челюсти у нее вытянуты в небольшой хоботок. Необъяснимая способность мормируса видеть невидимое казалось сверхъестественным чудом. Изобретение радиолокатора помогло раскрыть тайну.

Оказывается, природа наделила водяного слона удивительнейшим органом — радаром!

У многих рыб, как известно, есть электрические органы. У мормируса в хвосте помещается тоже небольшая «батарейка». Напряжение тока, который она вырабатывает, невелико: всего шесть вольт. Но этого достаточно.

Каждую минуту радиолокатор мормируса посылает в пространство восемьдесят — сто электрических импульсов. Возникающие от разрядов «батарейки» электромагнитные колебания частично отражаются от окружающих предметов и в виде радиоэха вновь возвращаются к мормирусу. «Приемник», улавливающий эхо, расположен в основании спинного плавника удивительной рыбки. Мормирус «ощупывает» окрестности с помощью радиоволн!

Сообщение о необычных свойствах мормируса было сделано в 1953 году Восточно-африканским ихтиологическим институтом. Сотрудники института заметили, что содержавшиеся в аквариуме мормирусы начинали беспокойно метаться, когда в воду опускали какой-нибудь предмет, обладающий высокой электропроводностью, например кусок проволоки. Похоже, мормирус обладает способностью ощущать изменения электромагнитного поля, возбужденного его электрическим органом.

Анатомы исследовали рыбку: парные ветви крупных нервов проходили вдоль ее спины — от головного мозга к основанию спинного плавника, где, разветвляясь на мелкие веточки, заканчивались в тканевых образованиях на равных друг от друга интервалах. Видимо, здесь помещается орган, улавливающий отражение радиоволны. Мормирус с перерезанными нервами, обслуживающими этот орган, терял чувствительность к электромагнитному излучению.

Живет мормирус на дне рек и озер и питается личинками насекомых, которых извлекает из ила длинными челюстями, словно пинцетом. Во время поисков пищи рыбка окружена обычно густым облаком взбаламученного ила и ничего вокруг не видит. Капитаны кораблей по собственному опыту знают, насколько незаменим в условиях плохой видимости радиолокатор.

Мормирус — не единственный на свете «живой радар». Замечательный «радиоглаз» обнаружен также в хвосте электрического угря, обитающего в водоемах Южной Америки, «аккумуляторы» которого развивают рекордное напряжение тока — до пятисот вольт, а по некоторым данным до восьмисот вольт!

Американский исследователь Кристофор Коутес после серии экспериментов, проведенных в Нью-Йоркском аквариуме, пришел к выводу, что небольшие бородавки на голове электрического угря — антенны радиолокатора. Они улавливают отраженные от окружающих предметов электромагнитные волны, излучатель которых расположен в конце хвоста угря. Чувствительность радарной системы этой рыбы такова, что угорь, очевидно, может установить, какой природы предмет попал в поле действия локатора. Если это годное в пищу животное, электрический угорь немедленно поворачивает голову в его сторону. Затем приводит в действие мощные электрические органы передней части тела — мечет в жертву «молнии» и не спеша пожирает убитую электрическим разрядом добычу.

В тех же реках, где лениво дремлют у дна электрические угри, снуют в зарослях элегантные ножи-рыбы, айгенмании. Вид у них странный: спинных плавников нет и хвостового тоже (лишь голый тонкий шпиль на хвосте). И ведут себя эти рыбы необычно: вертят этим самым шпилем во все стороны, словно принюхиваются хвостом. И прежде чем залезть под корягу или в пещерку на дно, суют в щель сначала опять-таки хвост, а потом, если обследование дало «положительные» результаты, сами туда забираются. Но лезут не головой вперед, а хвостом. Похоже, рыбки ему больше доверяют, чем глазам.

Все объяснилось очень просто: на самом конце нитевидного хвоста айгенмании ученые обнаружили электрический «глаз», как у мормируса.

У гимнотид, очень похожих на айгенманий — тропических американских рыбок, по-видимому, тоже есть радары, хотя это еще и не доказано.

Недавно доктор Лиссман из Кембриджа снова заинтересовался давно уже изученным зоологами электрическим сомом, обитающим в реках Африки. Эта рыба, способная развить напряжение тока до двухсот вольт, охотится ночью. Но у нее очень «близорукие» глаза, и в темноте она плохо видит. Как же тогда находит сом добычу? Доктор Лиссман доказал, что, подобно электрическому угрю, электрический сом свои мощные аккумуляторы использует и как радар.

Предполагаемая электролокационная система была более или менее тщательно исследована у следующих видов рыб: мормирус (бассейн Нила до самых верховьев), гимнархус (реки Центральной Африки), электрический сом (реки Центральной и Западной Африки), электрический угорь (реки Гвианы, нижняя и средняя Амазонка) и айгенмания (реки Южной Америки от Гвианы до Уругвая). Однако некоторые биологи предполагают, что возможно все электрические рыбы, которых в море и в пресных водах известно уже около ста видов, обладают радарами.

И не только электрические: думают, что даже миноги, у которых нет отчетливых электрических органов, тем не менее с помощью электричества, накопленного в мышцах, «ощупывают» окрестности и отыскивают рыб, к которым присасываются. Во всяком случае установлено, что минога каким-то образом создает вокруг себя электрическое поле и реагирует на все предметы, внесенные в это поле. И в зависимости от их электропроводности реакция миноги меняется.

«Электрическим» чувством некоторые исследователи пытаются объяснить тот странный факт, что миноги, наносящие большой вред рыбному хозяйству в пресных водах, сравнительно редко паразитируют на морских рыбах. Их нападениям здесь подвергаются, в основном, попавшие в сети и больные рыбы. Объясняют это тем, что электропроводность пресной воды меньше, чем морской, и поэтому морские рыбы издали чувствуют посылаемые миногой электромагнитные импульсы и успевают вовремя удрать. Пресноводные же ощущают их с запозданием, когда минога уже близко и бегство не спасает.

Кроме того, возможно, что пресноводные рыбы не успели еще приспособиться к миногам, то есть не развили еще достаточно эффективную антирадарную систему, которая отлично функционирует у морских рыб, давно уже имеющих дело с миногами. Ученые полагают, что миноги лишь совсем недавно, в ледниковый период, переселились из моря в реки.

Рыбы обладают еще одним необычным чувством — ощущением тончайших колебаний воды.

Всякое движение вызывает в воде волны. Водяные волны распространяются много медленнее радиоволн, но, оказывается, ими тоже можно «ощупывать» окрестности.

По телу рыбы, от жабер к хвосту, тянется цепочка крошечных отверстий: будто кто-то тонкой иглой прострочил рыбу на швейной машинке. Этот чудесный портной — природа, а тончайшая строчка — боковая линия рыбы. Каждое отверстие боковой линии ведет в микроскопическую полость. В ней сидит чувствительный сосочек, нервом он соединен с мозгом. Водяные волны колеблют сосочек — мозг получает соответствующий сигнал. Так рыба узнает о приближении врага.

Слепая рыба плавает не хуже зрячей. На «углы» она никогда не натыкается. Слепая рыба и за добычей охотится, пожалуй, не хуже зрячей. Как-то в аквариум, где жила лишенная зрения щука, пустили рыбешек. Щука насторожилась. Сосочки боковой линии сообщили, что добыча недалеко. Когда рыбки приблизились, щука выскочила из засады и схватила одну из них. Не видя цели, она не промахнулась: боковая линия — очень точный корректировщик.

Органы, улавливающие колебания воды, ученые нашли также у головастиков и тритонов.

Реактивные двигатели и…

Кроме средств ориентации, которыми располагают обитатели подводного царства, есть у них и другие удивительные механизмы приспособления, над которыми стоит задуматься бионикам. Вот хотя бы реактивный «двигатель» головоногих моллюсков (зоологи называют так осьминогов, кальмаров и каракатиц): обратите внимание, как просто и экономно решила природа сложную задачу.

Снизу, у «шеи» кальмара (рассмотрим в качестве примера этого моллюска), заметна узкая щель — мантийное отверстие. Из нее, словно пушка из амбразуры, торчит наружу мускулистая трубка. Это воронка, или сифон, — сопло реактивного двигателя.

И щель, и воронка ведут в обширную полость в «животе» кальмара: то мантийная полость — «камера сгорания» живой ракеты. Всасывая в нее воду через широкую мантийную щель, моллюск с силой выталкивает ее затем через воронку. Чтобы вода не вытекала обратно через щель, кальмар плотно ее замыкает при помощи особых «застежек-кнопок» до тех пор, пока «камера сгорания» не наполнится забортной водой. По краю мантийного отверстия расположены хрящевые грибовидные бугорки. На противоположной стороне щели им соответствуют углубления. Бугорки входят в углубления и прочно запирают все выходы из камеры, кроме одного — через воронку.

Когда моллюск сокращает брюшную мускулатуру, сильная струя воды бьет из сифона. Отдача толкает кальмара в противоположную сторону.

Воронка направлена к концам щупалец, поэтому головоногий моллюск плывет хвостом вперед.

Реактивные толчки и всасывание воды в мантийную полость с неуловимой быстротой следуют одно за другим, и кальмар ракетой проносится в синеве океана.

Если бы толчки были отделены друг от друга значительными промежутками времени, то животное не получило бы особых преимуществ от такого передвижения. Чтобы ускорить темп реактивных «взрывов» и довести его до бешеной скорости, необходима, очевидно, повышенная проводимость нервов, которые возбуждают сокращение мышц, обслуживающих реактивный двигатель.

Проводимость же нерва, при прочих равных условиях, тем выше, чем больше его диаметр. И действительно, у кальмаров мы находим самые крупные в животном царстве нервные волокна.

Диаметр их достигает целого миллиметра — в пятьдесят раз больше, чем у большинства млекопитающих, и проводят возбуждение они со скоростью двадцать пять метров в секунду.

У трехметрового кальмара дозидикуса (он обитает у берегов Чили) толщина нервов фантастически велика — восемнадцать миллиметров. Нервы толстые, как веревки!

Сигналы мозга — возбудители сокращений мчатся по нервной «автостраде» кальмара со скоростью легкового автомобиля — девяносто километров в час!

Когда в начале нашего века были открыты эти сверхгигантские нервы, ими тотчас заинтересовались физиологи. Наконец-то нашли они подопытное животное, у которого в живые нервы можно было вставлять игольчатые электроды. В результате исследование сложной работы нервов сразу же продвинулось вперед.

…солевые сепараторы

Старые легенды рассказывают, что крокодил льет горькие слезы, оплакивая несчастную жертву, им же самим проглоченную. Давно стало нарицательным выражение «крокодиловы слезы». Говорят так о лицемерном человеке, притворно скорбящем о товарище, которому он причинил зло. Что же касается крокодила, то принято считать, будто никаких слез он вовсе и не льет. Это, дескать, миф, поэтический вымысел.

Недавно шведские ученые Рагнар Фанге и Кнут Шмидт-Нильсон решили все-таки проверить, плачут ли крокодилы.

И оказалось, что крокодилы и в самом деле проливают обильные слезы. Но не из жалости, конечно, не от избытка чувств, а излишка… солей.

Почки пресмыкающихся животных — несовершенный инструмент. Поэтому для удаления из организма избытка солей у рептилий развились особые железы, которые помогают почкам. Железы, выделяющие растворы солей, расположены у самых глаз крокодила. Когда они работают в полную силу, кажется, будто свирепый хищник плачет горькими слезами.

Бразильские индейцы рассказывают, что и морские черепахи, выходя на сушу, горько плачут, сожалея о покинутой родине…

Фанге и Шмидт-Нильсон исследовали и черепах. Нашли у них точно такие же, как у крокодилов, слезные железы, выделяющие избыток солей. Солевые железы есть у морских змей и морских ящериц — игуан.

Человек не может без вреда для организма долго пить морскую воду. А морские рептилии ее пьют. Пьют морскую воду и чайки, альбатросы, буревестники. Прежде многие ученые оспаривали наблюдения моряков: морские птицы, говорили они, не глотают соленую воду, а лишь набирают ее в клюв и потом выплевывают. Полощут, так сказать, рот.

Решили проверить это на опыте. Выяснилось, что птицы действительно пьют морскую воду. Анатомы нашли у них около глаз солевыводящие железы — своего рода «слезные почки». Лишнюю соль из организма они удаляют даже быстрей, чем настоящие почки.

Понятно, обладая столь продуктивным «перегонным аппаратом», чайки, бакланы, альбатросы, буревестники и пеликаны могут без вреда пить морскую воду. Слезный «сепаратор» очистит ее от солей, ткани организма получат пресную воду.

Солевые железы у всех животных, обладающих ими, устроены почти одинаково. Это клубок мельчайших трубочек, оплетенных кровеносными сосудами. Трубочки забирают соль из крови и перегоняют ее в центральный канал железы. Оттуда солевой раствор по каплям вытекает наружу: у крокодилов и черепах через отверстия около глаза, у птиц обычно через ноздри. У пеликана на клюве есть даже продольные бороздки. По ним, как по каналам, стекают к кончику клюва соленые «слезы».

Еще более интересное приспособление обнаружено у буревестника. Зоологов удивляло устройство его ноздрей: они снабжены трубочками, которые, наподобие спаренных ружейных стволов, лежат на спинке клюва. «Жерла» направлены вперед.

Разные были объяснения странной формы этих ноздрей. Но оказалось, что ноздри-трубки похожи на двуствольный пистолет не только по форме, но и по существу: они «стреляют» солеными капельками, которые выделяет слезная железа. Часами паря над волнами, буревестник редко опускается на воду. В полете встречный поток воздуха сильно затрудняет выделение из ноздрей насыщенной солью жидкости. Поэтому природа позаботилась о «водяном пистолете» для буревестника: из трубчатых ноздрей с силой, преодолевающей сопротивление ветра, выбрызгиваются «слезы».

Разгадка тайны крокодиловых слез — одно из открытий физиологической науки последних лет.

Почему вертячки вертятся?

Есть ли пруд или заводь речная, в которых летом не вертелись бы вертячки? Наверное, нет. Я такого пруда и такой заводи еще не встречал.

Маленькие черненькие жучки целыми днями в веселом танце скользят по поверхности воды, словно по льду и словно стальные брызги рассыпаются во все стороны, когда вы, желая рассмотреть их, слишком низко нагнетесь над прудом — черная тень пугает жуков.

Но тревога миновала, и жучки опять кружатся. Они не тонут потому, что снизу их поддерживают силы поверхностного натяжения.

Вертячки охотятся. Высматривают добычу и над водой и под водой. Им не приходится оставлять один наблюдательный пункт ради другого: глаза их разделены на надводные и подводные доли. Выходит, у жуков как бы четыре глаза: два высматривают все интересное в пруду, а два ведут наблюдение за воздухом.

Но это не единственное, чем могут привлечь вертячки любознательный ум. Как выразился один ученый, более близкое знакомство с их образом жизни заставило конструкторов рассматривать с единой точки зрения и этих жуков и работу самых сложных радиолокаторных установок.

Когда вертячек принесли в лабораторию и поставили банку в темную комнату, они кружились и в темноте. Так же ловко, как и в солнечный день в пруду, маневрировали, поворачивая в нужную минуту, чтобы избежать столкновения друг с другом и со стенками аквариума. Лишили жучков зрения — ничего в их поведении не изменилось.

Немецкий биолог Фридрих Эггерс решил внимательнее исследовать эти загадочные способности вертячек. Он заметил, что усики вертячек (зоологи называют их антеннами) устроены иначе, чем у других жуков. Когда жук вертится, его антенны всегда лежат на границе между водой и воздухом, не ниже и не выше. Они своими густыми щетинками словно снимают с воды «сливки».

Это и в самом деле почти так: «сливки», которые ловят антенны жуков, — поверхностные волны. Те самые волны, что разбегаются кругами по воде от упавшего листа или камня. Они же устремляются во все стороны и от жука, бегущего по воде, отражаясь от препятствий, и возвращаются опять к жучку. Тут он их и ловит своими усиками — сепараторами.

Когда доктор Эггерс повреждал усики вертячек — обрывал, а затем выпускал жучков в воду, то от их ловкости не оставалось и следа. Они беспомощно, подобно птице, бьющейся об оконное стекло, натыкались на все предметы, друг на друга, на стенки аквариума…

Микроскопические щетинки на усиках насекомых, отклоняясь под давлением поверхностной волны на миллиардную долю сантиметра, способны информировать мозг животного о своем перемещении и, следовательно, о встрече с волной. Но удивительно, как жуки отличают отраженные волны, которые сами посылают вперед, от других колебаний воды?

Тайна эта еще ждет исследователей…

Бионика — второй факел Прометея

Недавно у некоторых моллюсков был открыт магнитный компас, который так упорно искали у птиц и не нашли. Доказано, что улитки нассариуса ориентируются в воде, следуя указаниям земного магнетизма. Американские океанологи поймали в глубоководной впадине у Филиппин… радиоактивных рыб. Позади глаз у этих далеко не безопасных жителей мрачной бездны ярко светились большие органы, испускавшие, помимо обычных лучей видимого спектра, также и всепроникающие рентгеновские лучи! Рыб этих сейчас тщательно исследуют.

Инженеры-бионики рассчитывают сконструировать много новых навигационных устройств, изучая живые модели.

Многое уже сделано. Ранее мы говорили, что изучение крыла насекомых помогло в борьбе с вибрацией крыльев воздушных кораблей, а паучьи ноги послужили моделью для создания шагающей броневой машины, которую американцы испытывают сейчас в джунглях. Изучение секретов кожи дельфинов даст в руки кораблестроителей новые возможности в проектировании новых сверхскоростных судов. А автопилот птичьего глаза (предполагают, что он именно там располагается) вооружит наших штурманов самым совершенным навигационным прибором. Антирадары мотыльков тоже интенсивно исследуются конструкторами. И таких примеров — великое множество…

В 1956 году США и Канада потратили три миллиона долларов на сооружение электрических заборов, которые перегородили течения рек, впадающих в озера Гурон, Мичиган и Верхнее. Электрический ток, пропущенный через проволочный «частокол», отпугивает лососей и других рыб, идущих на нерест в верховья рек. Следуя вдоль забора, рыбы попадают в особый загон, где их сортируют: больных и сорных вылавливают, ценных производителей пропускают на нерестилища. Но вот что интересно: миноги, оказывается, не чувствуют электромагнитного поля, которое возникает около электрических заборов. А может быть, и чувствуют, но приближаются, чтобы их исследовать (ведь у миног есть радары, для которых электрочастокол создает помехи и по привычке они сейчас же реагируют на эти помехи). Пока не ясно, в чем тут дело. Во всяком случае, миноги натыкаются на электрические барьеры и гибнут под ударами тока. Американцы рассчитывают таким способом уничтожить всех миног в своих озерах.

Перед инженерами, которые ищут новые идеи в «живых конструкциях», открываются богатейшие перспективы. Человеку есть чему поучиться у природы. Соревнуясь с ней и совершенствуя природные конструкции, он достигнет небывалого прогресса во всех сферах своей деятельности. Союз техники и биологии — второй факел Прометея, который наука принесет человечеству.

Содержание

Небольшое введение… 3

Два секрета дельфинов… 4

Эхолотирующие крики… 6

От инфразвука до инфрасвета… 7

Сто разновидностей живых радаров… 8

Реактивные двигатели и….. 11

…солевые сепараторы… 12

Почему вертячки вертятся?… 14

Бионика — второй факел Прометея… 15